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ABSTRACT In this paper, we propose an approach for detecting internal and external network scanning
attacks on enterprise networks. In our approach, an inline scan detection system (SDS) monitors the ingress
and egress flows of an enterprise network subnet and detects scanning probes based on the correlation of
flows with preceding DNS query/responses and reducing TTL values of DNS Resource Records (RR).
Through rigorous evaluation, we show that our method is effective against both external and internal
port scanners and network worms, its effectiveness is independent of scanning rate or technique, and its
deployment incurs negligible overhead on DNS and network response times. While the idea of detecting
scans by correlating network flows with preceding DNS query/responses has been proposed in the literature,
this work extends the state-of-the-art by offering four contributions: 1) we show that without decreasing TTL
values of RRs in DNS responses, attackers can piggyback on cached DNS records to bypass our detection;
thus we incorporate a TTL reduction mechanism to enhance the effectiveness of this approach, especially
against stealthy and adaptive scanners; 2) while prior works work against internal scanners, we use the
relatively new extension of DNS protocol, ENDS0 Client Subnet (ECS) option, to expand this approach
toward detecting external scanners; 3) we present a novel adaptive scanning technique, called DNS-cache-
based scanning, that exploits local DNS cache to bypass prior detection methods, and shows that, while prior
approaches fail to defeat this threat model, our approach is effective against this evolved threat model as
well; and 4) contrary to existing work that focuses on defeating fast network scanning worms, this approach
is effective against any scanning, including stealthy scanning that uses conservative timing profiles to evade
detection.

INDEX TERMS Network scanning, intrusion detection, domain name system (DNS), network worm.

I. INTRODUCTION
Network scanning refers to the process of identifying and
enumerating active machines and their services in an address
space by sending probes (e.g., ICMP Ping requests) to
IP addresses in this space and analyzing their responses.
Network scanning is one of the indispensable steps in the
reconnaissance stage of cyber intrusions, and it is one of
the most important means for the discovery of potential
targets or infected peers by malwares. While network
worms such as Conficker [1] or Code Red [2] have not
been very prevalent in the last decade due to their high
detectability [3], self-inhibiting propagation [4], and lack of
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financial incentives, in recent years we have witnessed a
resurrection of scanning attacks bymalwares. One of themost
recent examples is a novel class of Cryptomining malware
like WannaMine, which scans target networks to discover
potential machines that are susceptible to EternalBlue SMB
vulnerability [5]. Another important example is the IoT-
targetingmalware calledMirai [6] that uses network scanning
to discover unsecured IoT devices. In addition to target
discovery, network scanning has been used by somemalwares
(e.g., Stuxnet [7]) for discovering already-infected peers in
the internal network for purposes like sharing the latest
versions of the malware binary.

However, the most prominent adversarial use of network
scanning is in the reconnaissance stage of cyber intrusions [8]
to gather information about a target network, such as which
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IP addresses are actively used as well as more detailed infor-
mation about machines assigned to these addresses, a process
that is referred to as network mapping. Scans may range from
simple pings (ICMP requests and responses) to more nuanced
scans that may reveal the machine’s software/versions via
server banners or other network artifacts. [9]. Network
scanning is usually done using off-the-shelf tools such as
Nmap [10], Masscan [11], or ZMap [12], but sophisticated
adversaries may devise their own novel (zero-day) scanning
methods as well. Meanwhile, intrusion detectionmechanisms
(behavior-based and content-based) have not been able to
mitigate the threats of scanning completely. By keeping the
scanning rate low (e.g., one scan/min), strategic attackers can
evade behavior-based scanning detection mechanisms [13],
while by using new or stealthy scanning methods (e.g.,
stateless scans used by Zmap [14]), they can evade content-
based (aka signature-based) detection techniques.

In this paper, we present a simple yet highly effective
proactive technique that slows down scanning-based threat
models in network enterprises. Our approach is primarily
effective against internal scanners, but can also be extended
to external scanners with some modifications. This approach
takes advantage of a fundamental principle in TCP/IP
networks that any regular communication from machine A
to an IP address I must be preceded by a DNS query by A
for attaining the IP address I and the DNS record must be
still valid (unexpired) during connection setup as specified
by its TTL. Any connection that does not follow this policy
is marked as a scan. While the central idea of this internal
scan detection mechanism is straightforward and proposed
in several prior works [15], [22], in this paper, we show
that the robust and evasion-free deployment of this detection
mechanism requires manipulation (reduction) of TTL values
of DNS responses, which are typically long (24 hours on
average), to values in order of a few minutes. This is because
when machine A has an unexpired mapping in its DNS cache
for the IP address I , a scanner on machine A can scan I with-
out being detected. By expediting the expiration of cached
DNS records, we prevent a scanner on A from piggybacking
on existing cached DNS records on the local machine to
successfully scan IP addresses in the local DNS cache.

We also propose a variation of our internal scan detection
approach for detecting external scanners targeting our
enterprise network, based on the relatively new EDNS0 client
subnet extension (ECS) [16] of DNS protocol. Using this
option, a recursive resolver acting on behalf of a client, which
could be in a different network than the client, can include
part of the client’s (i.e., the query originator) IP address in
the DNS query, thus allowing DNS servers to observe and
adapt DNS responses to the geolocation of clients. Using this
relatively new, but widely implemented feature, we propose
a novel method for detecting external scans sent to a network
with high accuracy and precision.

For both internal and external detection, the monitoring
and TTL manipulation are enforced by a scanning detection
system (SDS) which is located at the subnet gateways

and, in addition to TTL manipulation, is responsible for
the detection and filtering of internal and external scans.
Deployment of our approach through SDS devices does
not require any modification in existing network protocols,
network devices, andmachines. Through rigorous evaluation,
we show that our approach is feasible against both internal
and external scanners and incurs low overhead. We inves-
tigate its effectiveness against state-of-the-art scanners and
network worms in small-scale and large-scale networks; we
show that the combination of correlating connections with
DNS responses and reducing TTL values can throttle their hit
rate up to four orders of magnitude. We also show that unlike
conventional signature-based or behavior-based detection
techniques [15], [17], [18], our approach can defeat unknown
scanning techniques and stealthy scanners using conservative
scan rates. In addition to evaluating our approach against
existing state-of-the-art scanning techniques, we discuss how
the next generation of scanners could potentially adapt to
evade our techniques, using a novel scanning technique
calledDNS-cache-based scanning. Using a simulation model
based on a dataset of network traffic traces collected at Los
Alamos National Laboratory corporate internal network [19],
we show that, while such DNS-cache-based scanners can
defeat all previous approaches based on DNS traffic and flow
correlation, it has extremely low effectiveness against our
approach, even in their best-case scenarios. We investigate
the overhead of our internal and external scan detection
approaches, especially using smaller TTL values, on the
workload of authoritative DNS servers. We also evaluate the
effect of deploying our approach on network response time
and show that it is negligible. Finally, we discuss some of the
practical considerations for the deployment of our approach,
along with its limitations and directions for future work.

While the idea of detecting scans by correlating network
flows with preceding DNS query/responses have been
proposed in the literature [15], [22], this work offers several
transformative contributions:

1) We demonstrate that without decreasing the TTL
values of the DNS responses, attackers can piggyback
on cached DNS responses to bypass this detection
method; thus, we incorporate TTL manipulation to
enhance the effectiveness of this approach, especially
against stealthy scanners.

2) While prior works only work against internal scanners,
we use the new extension of DNS protocol, ENDS0
client subnet option (ECS), to expand this approach
toward detecting external scanners with high precision
and accuracy.

3) We present a novel adaptive scanning technique, called
DNS-cache-based scanning, that uses local DNS cache
to bypass this detection method. We show that while
prior approaches [15], [22] fail to defeat this evolved
threat model, our approach is effective against it.

4) We present a complementary approach that provides a
countermeasure against scanners that rely on reverse-
DNS queries to bypass our defense.
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5) Contrary to existing works, which typically focus on
defeating fast network scanning worms, our approach
is effective against scanners/worms with any scanning
rate, including stealthy rates that use conservative
timing profiles to evade detection.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III discusses the inter-
nal and external scanning threat models. In Sections IV
and V, we present the algorithms and architecture of
the proposed approach for defeating internal and external
scanners, respectively. Section VI presents our evaluation
results on the efficacy and the overhead of the proposed
approaches and discusses practical challenges and limitations
in implementing our approach. Finally, SectionVII concludes
the paper and identifies future works.

II. RELATED WORK
In this section, we briefly review previously proposed
scan detection mechanisms in three categories: signature-
based techniques, behavior-based techniques, and DNS-
based techniques.

Signature-based techniques defeat scanning by identifying
scanning probes through their signature. For example,
Snort IDS [20] can identify various Nmap scans like
TCP scans or even evasive fragmentation-based scans
using their signatures [21]. The main well-known short-
coming of signature-based detection techniques is their
susceptibility to evasion using scanning zero-day or new
techniques [13].

Behavior-based techniques defeat scanning by identifying
scanners through their probing behavior. Although all
behavior-based scan detectors are initially designed for
worm detection, they can be leveraged to detect other types
of scanners. Threshold Random Walk (TRW) detector [3]
identifies a scanning machine based on the notion that a
scanner will have a higher connection failure rate than a
machine engaged in legitimate operations. Another notable
approach, Minimum Rim Width (MRW) detector [17] works
based on the observation that scanning results in connections
to many destinations; thus, if the number of first-contact
connections from a machine to new destinations within a
given window exceeds a certain threshold, the machine is
identified as a scanner. Rate-based Sequential Hypothesis
Testing (RBS) detector [18] measures the rate of first-
contact connections to new destinations. It works based on
the hypothesis that a worm-infected machine contacts new
destinations at a higher rate than a legitimate machine. RBS
measures this rate by fitting the inter-arrival time of new
destinations to an exponential distribution. The TRWRBS
detector [18] combines the TRW and RBS detectors and
observes both the connection failure rate and the first
contact rate. It performs sequential hypothesis testing on the
combined likelihood ratio to detect worms. The problem with
behavior-based detectors is their susceptibility to evasion
against low-and-slow scanners that use conservative timing
profiles. For example, Stafford et al. [13] shows that by

adopting highly conservative scanning rates (e.g., one scan
per minute), a scanner can bypass all the behavior-based
detectors. Moreover, these detectors are able to detect a
scanner only after observing a relatively high number of
scanning probes.

DNS-based techniques detect scanning by correlating con-
nection requests with preceding DNS queries, similar to our
approach. Whyte et al. [15] propose correlating connection
requests with preceding DNS queries to detect network
worms. Specifically, if no DNS activity is observed before
a new connection is initiated, the connection is considered
anomalous. In a similar work, Ahmad et al. [22] propose
NEDAC (NEtwork and DAta link layer Countermeasure),
which counters network worms by observing DNS activities
and detecting the absence of DNS lookup in newly initiated
outgoing connections. In this approach, when a datagram
is transmitted to a destination address without prior DNS
lookup, the source IP address is maintained in a cache, and
its corresponding counter is incremented. A threshold value
is set in order to assign a maximum number of distinct IP
addresses a machine can attempt to contact without a prior
DNS lookup per time duration. Upon reaching the threshold
value within this duration, the detection system will mark the
behavior as worm propagation and invoke the containment
mechanism. These two approaches, which are closest to our
work, only detect internal scanning (local machines scanning
other local machines or remote machines) but do not work
against external scanners (remote scanners scanning local
machines). Moreover, TTL values of DNS responses are not
reduced by either of the approaches and thus they both suffer
from high false negative rates against scanners. Reducing
TTL values makes the DNS-based detection technique robust
and evasion-resistant. This is because the average DNS
response TTL values are typically long (24 hours). With
such a long TTL value, at any point, a machine would have
a large DNS cache that includes DNS mappings for many
internal and external machines. If a machine with a large DNS
cache is compromised, and the attacker scans the network
from this machine, scans to IP addresses in the DNS cache
would not be detected, resulting in a large number of false
negatives. More importantly, these approaches fail entirely
against our evolved DNS-cache-based scanning technique,
where a scanner only scans IP addresses already in the local
DNS cache.

In a related work but pursuing a different objective,
Shue et al. [24] combine the idea of IP randomization
(fluxing server’s IP address over time) and NATing so that
clients are required to periodically query the DNS for a
server’s address, thus turning the DNS lookup into a decision
point whereby the server’s network can decide to allow
or deny service to some client while preventing arbitrary
clients from probing to learn about a server (e.g., using port
scanners). This work pursues a different objective as it uses
the DNS lookup as a mechanism for enforcing capabilities
(which clients are allowed to communicate with a server),
rather than using DNS lookup to detect malicious scans.
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In summary, while the notion of correlating DNS lookup
with newly initiated connections to detect scans has been
proposed in the literature [15], [22], existing works suffer
from several shortcomings: 1) none of these works include
TTL reduction as an indispensable mechanism to reduce
false negatives against classic network scanning worms,
2) none of the works have considered how existing scanning
techniques could be evolved to bypass their detection, and
they only work against existing scanning techniques, 3) none
of these works are capable of detecting external scanners that
target enterprise networks and are only capable of detecting
internally initiated scans, and 4) both of these works focus
on fast scanning network worms, and the efficacy of these
methods against conservative low-and-slow scanners have
not been investigated. Our proposed approach addresses these
shortcomings.

III. THREAT MODEL
Network scanning is among the most important tools in
attackers’ arsenal for discovering machines in an address
space. Network worms such as Conficker or Mirai have used
scanning to select the next potential targets for infection,
while others like Stuxnet [7] have used scanning to discover
other infected peers. However, the most insidious and
prevalent use of IP/port scanning is in the reconnaissance
stage of cyber intrusions [9]. In this initial stage, adversaries
usually rely on off-the-shelf port scanning tools such as
Nmap [10] or Masscan [11] to discover active machines in
a target address space and also identify their open ports and
running services.

Any scanning by network worms or port scanners,
regardless of its rate or technique, requires sending probing
datagrams to IP addresses in a target address space.
Depending on the location of the scanner, this scanning could
be internal or external.

Internal scanning refers to cases where the scanning
agents are located within the enterprise network and scan
either the internal address space (local-to-local scan) or
public address space (local-to-remote scan).

External scanning refers to cases where the scanners are
outside the perimeter of the enterprise network and scan the
public address space of this network (remote-to-local scan) to
discover its publicly accessible machines, which are usually
located in the demilitarized zone (DMZ) of the enterprise
networks.

Defeating scanners is a challenging problem because
attackers use various evasion techniques to bypass the detec-
tion algorithms. For example, by decreasing the scanning rate
to below a certain threshold (e.g., one scan/min), attackers
are able to bypass all behavior-based scanning detection
algorithms [13].

We will first show how our technique can detect
internal scanners and then discuss how it could be
extended - with certain limitations - to detect external
scanners.

IV. DETECTING INTERNAL SCANNERS
Our detection algorithm takes advantage of the fact that
while benign users usually first attain an IP address using
a DNS lookup before initiating a connection to it, scanners
and network worms randomly select IP addresses from
the targeted address space, and thus their probe or exploit
datagrams sent to a destination IP address are not preceded
by a DNS lookup.

Considering this differentiating factor, to detect internally
initiated scans, we propose an algorithm based on the
principle that any legitimate connection attempt by a machine
A to a destination IP address I (either internal/local or
public/remote) must be typically preceded by aDNS query by
A to attain I . Meanwhile, IP addresses that must be rightfully
excluded from this policy are identified and added to an
allowlist prior to the deployment. Thus, if we observe a
connection from machine A to a non-white-listed IP address
I with no record of A querying the authoritative DNS to
attain I , we mark this connection attempt as a scan. Our
discussion here focuses on IPv4-based addressing and scans;
in Section VI-D, we discuss how this approach could be
extended to IPv6.

Since, in an enterprise network, the authoritative name
servers and network machines are under the same authority,
this policy can be enforced straightforwardly against internal
scanners. To apply this policy, we must keep track of DNS
queries and responses issued by every internal machine.
However, if the interval between issuing a DNS query for
attaining I and establishing the connection to I is too long,
keeping track of these queries would incur non-trivial storage
and lookup overhead. More insidiously, it allows attackers
to take advantage of existing cached DNS records on the
residing machine to bypass our detection, as discussed in
Section IV.
In DNS responses, TTL (time-to-live) determines the

duration in seconds for which the given DNS RR (resource
record) is valid. The DNS RR should be considered expired
after this interval. To shorten the duration between (1) the
time when a DNS response provides an IP address I to
an internal machine A is received and (2) the time when
the corresponding communication attempt is made by A
to I , we intercept DNS responses destined to machine A
and modify the TTL of all DNS RRs within the response
to relatively small values, e.g., 60 − 300 seconds, before
forwarding the updated DNS response to A. This ensures that
A only caches the most recent DNS records, and cached IP
addresses in the local DNS of A are expired after a short
interval.

While shorter TTL values are more desirable, they would
result in receiving a higher number of DNS queries by the
authoritative DNS server(s) of the network. The trade-off
between the overhead and the effectiveness for different TTL
values is investigated in Section VI.

Figure 1 shows the overall architecture for the deployment
of our mechanism in a network. The scan detection gateways
(SDS) are located at the boundaries of virtual or physical
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FIGURE 1. Location of SDS devices in enterprise network architecture.

LANs. SDS performs three major tasks: (1) they keep track
of ingress DNS responses (and DNS RRs) received by each
machine in their LAN; (2) they change the TTL values of
the DNS responses to a given value (denoted by τ ) for
every ingress DNS response, and (3) they validate ingress
connection attempts (e.g., TCP SYN segment, first UDP
datagram, first ICMP packet) according to the above policy,
and mark connections with no or expired preceding DNS
lookup as scans. Upon detecting a scan datagram, SDS could
either drop it or just log it for further inspection, depending on
the security policy. Note that each SDS is only responsible for
its subnet (e.g., LAN or VLAN). Therefore, the mechanism
does not rely on any central entity, which makes the approach
scalable.

Algorithm 1 shows the pseudo-code run by each SDS for
the subnet under its control. When SDS observes a DNS
response destined for a machine with IPS , it modifies the TTL
values of all type A resource records (in IPv4) in the DNS
response and also records them in a hash table. Assume a
DNS response to an IPA includes a type A RRwhich provides
the IP address IPD. SDS changes the TTL value of the DNS
RR to τ , which is a short TTL value given as input. It also
records the new expiration time of each DNS RR in a hash
table where the key is IPS ||IPD and the value is the current
clock, denoted as clock , plus τ which is the new TTL. After
performing this change for all RRs in the DNS response, SDS
recalculates the UDP header checksum and then forwards the
DNS response.

When SDS observes a communication attempt from IPS
to an IP address IPD at a time t , it checks to see if the key
IPS ||IPD has a matching and non-expired entry in the hash
table. If so, it allows the connection; otherwise, it either drops
the connection or raises an alert, depending on the predefined
security policy. Also, the security operator also may decide to
denylist or quarantine the scanning machine for a while until
a proper investigation and infection removal are conducted.
Since the SDS is within the same LAN/VLAN as the scanning
machine, this filtering could be performed using the MAC
address of the scanning machine. Since each SDS is only
responsible for its own subnet, the clock could be local, and
there is no need for global clock synchronization among SDS
devices. This further simplifies the deployment and increases
the scalability of the approach.

Note that using Alg. 1, the border SDS in Fig. 1 can also
detect the egress internal scans that target external machines
on the Internet (i.e., local-to-remote scans). This is because
the perimeter SDS in Figure 1 can monitor and manipulate
ingress DNS responses from external DNS servers and also
correlate ingress DNS responses with egress connections
destined to external IP addresses to detect scans. While
this egress filtering is more beneficial for others than the
enterprise network itself, it serves the enterprise by making
it a good neighbor and protecting its reputation.

Algorithm 1 SDS Algorithm for Detecting Internally-
Initiated Scans
%marking origins of DNS queries
for every ingress DNS response destined to a machine
with address IPS do

for every type-A RR ∈ DNS response providing
address IPD do

ht[IPS ||IPD]← (clock + τ )
update TTL of DNS RR to τ

update UDP checksum of DNS response
forward response

%validating connections
for every new egress connection from IPS to IPD at time
t do

if exists(ht[IPS ||IPD]) and ht[IPS ||IPD] ≥ t then
allow connection

else
drop/log connection
block IPS (if policy allows)

An informed attacker may try to bypass our technique
using reverse-DNS queries. For example, Nmap performs
reverse-DNS resolution for every IP which responds to host
discovery probes (i.e., those that are online). Reverse DNS
is represented by DNS PTR records in the zone files of
authoritative DNS servers and stored in a special zone called
.in-addr.arpa [25]. For example, the zone for the PTR record
of private address range 10. ∗ . ∗ . ∗ /8 would be 10.in-
addr.arpa. An attacker would use the reverse-DNS in the
following manner: first, they issue a reverse-DNS query for a
given IP address. If they receive a response that maps that IP
address to a domain name, they know that the IP address is
online. Then, they would issue a DNS query for that domain
name in order to precede the following scan with a DNS
lookup and bypass our detection. Finally and after receiving
the DNS response, they would scan the IP address without
being detected.

To prevent this evasion scenario, we filter reverse-DNS
queries, except for allowlisted users and domains. Reverse-
DNS allowlisting provides benefits of the reverse-DNS while
preventing its misuse by potential attackers. One of the main
uses of reverse-DNS queries on the Internet is to verify that
the sending mail server is not a malicious spammer. This is
done by doing reverse-DNS lookups for the IP of the sending
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server to ensure that there is a reverse-DNS record associated
with it in the zone files of the claimed authoritative DNS
server. If not, the receiving mail server may consider our
emails spam. Disabling reverse-DNS queries makes Internet
mail servers consider our mail server as a spammer. Thus,
rather than responding to all reverse-DNS queries, we only
respond to the queries sent by allowlisted addresses and only
those sent for machines with potentially legitimate purposes
like mail servers. This practice enables us to take advantage
of the benefits of reverse-DNS service for administrative
purposes and spam detection while avoiding its abuse for
malicious purposes.

V. DETECTING EXTERNAL SCANNERS
External scans are initiated from external machines and
sent to public IP addresses of our enterprise network,
in order to discover the publicly accessible machines within
our network. While the perimeter firewalls and intrusion
detection systems (IDS) can detect and filter many different
types of scans from their signature or behavior of the scanning
machine (e.g., high rate of connections to new destinations),
the scanners can still evade detection using new types of scans
or stealthy low scan rates.

The main difference between using our approach for the
detection of internal and external scans is that contrary
to internal scans where the IP address of the DNS query
originator is known to the authoritative DNS server, on the
Internet, most queries come from recursive resolvers, and
the source address of a DNS query is that of the recursive
resolver rather than of the query originator [26]. While in
legacy networks, recursive resolvers were usually located
within the user’s own autonomous system (AS), in modern
networks, clients increasingly query a ‘‘cloud DNS’’ host
or open resolver, such as the Google Public DNS, situated
at a different AS [27]. The rise of open recursive DNS
servers, which are typically situated in separated ASes
from the users entails that recursive resolvers are not
necessarily geographically close to the querying clients.
This limitation does not allow us to adopt the internal
scan detection approach against external scans because the
recursive resolver querying on behalf of a client may be
situated in a completely different AS than the client, and thus
the query’s source IP reveals no information about the IP
address of the querying client.

To work around this limitation, we modify our approach
by relying on a relatively new extension for DNS that allows
DNS queries to carry information about the machine/network
that originated that query to authoritative DNS servers. This
extension, called EDNS0 Client Subnet (ECS) option, allows
a recursive resolver to include a prefix of the IP address
of the source query originator in the DNS query. Initially
proposed as an experimental draft in 2011 and officially
adopted in 2016 [27], ECS is specified in RFC 7871 [26]
and enables a recursive DNS resolver, such as Google Public
DNS, to specify the subnetwork for the host or client on
whose behalf it is making a DNS query. This is generally

intended to help speed up the delivery of data from content
delivery networks (CDN) by allowing more efficient DNS-
based load balancing to select a service address near the client
machine.

ECS includes a truncated portion of the client’s IP address,
referred to as the client subnet, in all subsequent requests
made by the recursive to an authority supporting ECS. ECS
does not change the DNS resolution process but augments
the information exchanged between recursive resolvers and
authoritative DNS servers. When the recursive resolver and
the authoritative DNS servers support ECS, the DNS queries
and responses are extended with several new extra data
fields, most importantly including source prefix-length, and
scope prefix-length. Source prefix-length is an unsigned
octet representing the leftmost number of significant bits
of the client IP address to be used for the lookup (/24 is
the default [27] and currently the most typical), and it
is specified by the recursive resolver in the DNS query.
In response, the source prefix-length mirrors the same value
as in the corresponding queries. Accordingly, the DNS
response includes a scope prefix-length, which denotes the
leftmost number of significant bits of the given source address
that the response covers. The authoritative DNS typically
sets the scope prefix-length of a DNS response to the same
value as the source prefix-length in the corresponding DNS
query [26]. In queries, scope prefix-length must be set
to 0 [26].

ECS protocol is widely adopted and constitutes a sig-
nificant percentage of the DNS traffic. ECS is currently
‘‘on by default’’ for all traffic through many of the largest
open DNS servers [27]. This extension has currently been
adopted by many of the largest open DNS providers on the
Internet, including Google Public DNS, OpenDNS, Quad9,
and NextDNS [27]. A recent study in 2021 investigated
11.5 billion DNS queries on the Internet and observed that
69% were ECS enabled.

By enabling the ECS option, a recursive resolver could
provide a prefix of the client IP address to the authoritative
DNS server. A source prefix-length value of 32 means that
the recursive resolver must add the complete client IP address
information to its queries, while a value of 0 means that
the resolver must not add any prefix of client address to
its queries. The prefix length is recommended to be less
than the full IP address for privacy purposes [26]. According
to a recent longitudinal study exploring the deployment of
ECS extension in 2021 [27], 54% of the announced prefixes
are /24 and only 2.5% are less or equal to /16. This is
consistent with the recommendation of RFC 7871, which
determines that /24 can be leaked without compromising
the client’s privacy [26]. The study also reports that since
2015 the utilization of prefixes larger than /24 has increased
considerably.

Figure 2 shows the architecture and communication
schemes for a benign client (black lines) vs. a scanning
attacker (orange lines). Suppose a client intends to com-
municate with our enterprise Web server on the domain
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FIGURE 2. Communication protocol for external clients/scanners.

‘‘www.example.org.’’ 1) The client’s machine first issues
a DNS query to a recursive DNS resolver. In the usual
case, where no ECS option was present in the client query,
the recursive resolver initializes the option and sets the
source prefix-length to a predetermined default value (24 is
recommended by RFC). If the client query included an ECS
option itself, the resolver sets source prefix-length to the
shorter of the incoming query’s source prefix-length and the
server’s default value. The resolver also includes the client’s
IP address but is truncated to the number of bits indicated
by the source prefix-length field and padded with 0 bits to
pad to the end of the last octet needed. 2) The resolver
forwards the query with ECS data to the authoritative DNS
server of the web server, which is located in our enterprise
network. 3) The authoritative DNS server resolves the query
and returns the IP address of the webserver to the resolver.
The DNS server, by default, assigns small TTL values to
DNS RRs, because, to achieve high effectiveness, we need
to adopt the same strategy of announcing DNS resolutions
with small TTL values. TTL values of 20 seconds or less
are currently being widely used by content delivery networks
(CDNs) [28] for load balancing. 4) The SDS device located
at the perimeter of the DMZ intercepts the egress DNS
response, and for every type-A RR, it records the client’s
subnet address, the given IP address, and the expiration time
(based on the given TTL) in a Connection Table. It then
forwards the response to the resolver. Algorithm 2 denotes the
pseudo-code executed by the SDS devices to mark the origins
of external DNS queries. 5) The resolver forwards the DNS
response back to the querying client. 6) The client initiates
a connection with the webserver’s IP address. 7) The SDS
device intercepts the incoming datagram (TCP SYN segment)
and checks the Connection Table to see whether the client’s

IP address belongs to a subnet that has previously attained the
IP address within the last TTL seconds. Algorithm 2 denotes
the pseudo-code executed by the SDS devices to validate
incoming connections. 8) Since the client’s subnet has been
included in the DNS query by the resolver, the client would
be allowed to communicate with the web server with no alarm
raised.

In contrast, a scanning attacker would initiate a connection
or send a probe to the webserver’s IP address before first
querying the authoritative DNS server, as shown in Figure 2.
Thus, unless a benign client from the same subnet as
the attacker has queried the authoritative DNS server very
recently (in the last TTL seconds), the attacker’s connection
request will be detected as a potential scan and logged for
further inspection.

The main drawback of the proposed approach is that while
ECS adoption has raised considerably and will continue to
grow, and also utilization of prefixes equal to or larger than
/24 has increased significantly [27], ECS deployment and use
are not mandatory for servers, clients, and resolvers. A client,
DNS resolver, or authoritative DNS server may not support
ECS; alternatively, both the client and the DNS resolver
acting on behalf of the client can optionally select a source
prefix-length of 0 to fully anonymize the IP address of the
client [26].

Since ECS deployment is not mandatory, we can not
reject a non-compliant DNS query (e.g., one with no
ECS enabled or announcing a 0 source prefix-length) or
drop a non-conforming connection. Without this mandatory
enforcement, malicious scanners would prefer to either not
use ECS or announce a source prefix-length of 0 to anonymize
their identities and avoid detection. However, while opting
out of using ECS with large prefixes is not necessarily
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Algorithm 2 SDS Algorithm for Detecting Externally-
Initiated Scans
%marking origins of DNS queries
for every egress DNS response to an external resolver do

for every type-A RR ∈ DNS response, providing
address IPD for a client with subnet
CS = ⟨x.y.z.d/t⟩ do

T [CS, IPD]← (clock + τ )
update TTL of DNS RR to τ

update UDP checksum of DNS response
forward DNS response

%validating connections
for every new ingress connection from an external
machine with address IPS to address IPD at time t do

if there exists an entry [CS, IPD] in T where
IPS ∈ CS and T [CS, IPD] ≥ t then

allow connection
else

log connection

malicious, opting in is definitely a sign of non-maliciousness.
In Section VI-D, we discuss this limitation in further detail.

VI. EVALUATION
In this section, we evaluate the effectiveness of internal scan
detection and external scan detection algorithms. We also
present our results on evaluating the overhead of the
approach, followed by a discussion on the limitations of
the approach. Table 1 provides a summary of our primary
evaluation methods, testbeds, and

A. DETECTING INTERNAL SCANNERS
To evaluate our approach, we first deploy our method on
a consolidated testbed consisting of a few virtual machines
to ensure the feasibility of our approach and evaluate its
technical intricacies; we then deploy it on a large simulated
network to evaluate its efficacy in large-scale scenarios.

1) SMALL-SCALED EVALUATION ON A REAL TESTBED
To prove the feasibility of our approach, we built a small
network and deployed a proof-of-concept implementation
of our approach on it. We used VirtualBox 6.1 to
host 3 virtual machines (VM) on a capable server. The
three machines are part of a subnet with the network
address 192.168.0.0./16. One VM represents a benign
client machine. This machine runs a python script that
uses Chrome Selenium to automatically browse the top
10, 000 websites in Alexa top domains [29] (discontinued
starting May 2022). The second VM represents a scanner; on
this machine, we executed Nmap 7.91 to scan the internal
network range.

The third VM acts as SDS (Scan Detection System)
module. This machine has two interfaces, one connecting it
to the virtual internal network and one bridge connecting it

to the physical network and the Internet. This VM acts as the
default gateway for two other VMS, and all traffic sent and
received by them passes through this VM. A python script on
this VM implements Algorithm 1. This script monitors and
records DNS responses and updates their TTL values. It also
monitors incoming connections from VMs and detects those
not preceded by a non-expired DNS query/response as scans.
The new small TTL value for DNS responses, τ , was set to
300 seconds.

After observingN = 1, 018, 171 packets from both benign
and scanning VMs, the following results were achieved:
• Total (N) = 1,018,171
• True Negative (TN) = 116,765
• True Positive (TP) = 864,833
• False Negative (FN) = 2,152
• False Positive (FP) = 34,421 (18,096 correspond to
existing but expired cached records)

Thus, the accuracy, precision, and recall attained in this
experiment are as follows:
• Accuracy = (TP + TN)/N = 0.964
• Precision = TP/(TP + FP) = 0.961
• Recall = TP/(TP + FN) = 0.997
In this evaluation, we only experimented with one TTL

value (300 seconds) andmainly focused on a feasibility study.
The impact of TTL reduction is more tangible in large-scale
networks, which will be discussed in the next section.

The approach suffers from false negatives; these false
negatives occur when an IP address that exists in the local
DNS cache is scanned by the scanner. These false negatives
can not be eliminated completely, but by reducing the TTL
value, we can reduce their likelihood, as demonstrated in the
results of the large-scale evaluation.

More importantly, the approach has a relatively high
number of false positives. These false positives occur when
the machine attempts to communicate with a benign IP
address that does not exist in the DNS cache. 52% of
these false positives correspond to communicating with IP
addresses with existing - but expired - DNS records. This
could be due to - among other reasons - TTL pinning by
the browsers (see Section VI-D2). 41% of the false positives
are for communicating with IP addresses belonging to CDN
proxies and cloud machines by reputable provides such as
Amazon, Microsoft, Akamai, etc. Our investigation shows
that these addresses are attained via a different means than
DNS. However, these reputable network addresses could
be identified and added to an allowlist over time, thus as
discussed in Section VI-D1. The remaining 7% of false
positives belonged to communications with private static
addresses like the gateway IP address, and reserved or
multicast addresses (224.0.0.0/24). These IP addresses could
be straightforwardly identified and allowlisted.

2) LARGE-SCALE EVALUATION ON A SIMULATED TESTBED
To evaluate the approach for large-scale scenarios, we devel-
oped a simulated class B (/16) enterprise network based
on the Los Alamos National Laboratory corporate internal
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TABLE 1. Summary of evaluation methods.

computer network flow datasets [19], which collectively
represent the communication log in an internal network
among 8495 machines over the course of 57 days. We used
two datasets from this repository: 1) a flow dataset including
network flow events collected from central routers within
the network. Each event in this dataset presents a network
flow event from a source machine to a destination machine
at the given time and the given duration in seconds; and 2) a
DNS dataset presenting DNS lookup events collected from
the central DNS servers within the network. Each event in
this dataset presents a DNS lookup at the given time by the
source computer for the resolved computer.

To evaluate the effect of benign communications on the
success rate of scanners, connections among these machines
were simulated according to these datasets. For evaluations
regarding port scanners, the port scanner was assumed to
be residing on a machine that is identified in the dataset as
C1065. This machine was chosen because it has the highest
communication rate with other machines in the dataset.
Therefore, our analysis here shows the best-case scenario for
attackers. Similarly, for worms, this machine was assumed to
be the initial infection point in order to evaluate our approach
against the worst-case worm propagation scenario.

We investigate the effectiveness of the model against two
classes of threat models: port-scanners and network worms.
The main distinction is that port scanners solely probe
machines for information gathering, while network worms
infect and propagate. In worm propagation, each infected
machine would turn into yet another scanner, and the number
of scanners increases exponentially over time.

Effectiveness against Internal Port Scanners: Any
scanning, regardless of its type or rate, will result in sending
probes to randomly chosen addresses in a target address
space. With SDS proxies deployed, such probes would be
easily detected because scans to IP addresses will not be
preceded by DNS queries. The only exceptions are the
addresses in the local DNS cache of the scanner’s machine,
which have been obtained through some legitimate means,
like browsing activities of a user on that machine. The number
of these cachedDNS entries depends on the TTL values of the
DNS RRs; the smaller the TTL value, the lower the number
of cached DNS records.

We used this simulated network to evaluate the effective-
ness of the model. We used the following assumptions in our
evaluation:
• Internal machines communicate according to the Flow
and DNS logs in the Los Alamos National Lab-
oratory corporate internal computer network flow
datasets [19].

• A scanner on one of the network machines - with the
highest communication rate among all machines - scans
the network.

• We conducted our experiments on two types of network,
an Unprotected network not using our defense model
and a Protected network using our defense model.
We conducted these experiments for different TTL
values and scanners with different rates (aggressive vs.
stealthy). We also conducted experiments against an
evolved scanning technique.

• In our experiments, we assumed that in a protected
network, once a scanning packet is detected, it is
dropped, but the scanner is not denylisted.

Figure 3 compares the success rate of scanning in an
unprotected network with its success rate in the same
network protected by our technique. The success rate denotes
the ratio of internal machines successfully probed by the
attacker without being detected. In the figure, note that in
an unprotected network and when the scanner is scanning
with an aggressive rate (300 addr/sec), the attacker will
be able to probe all machines in less than 20 minutes.
In comparison, note that in the protected network, even with a
5-min TTL expiration interval, after 2, 000 minutes, the same
aggressive scanning only succeeds in probing at most 6% of
the machines. In contrast, the same aggressive scanner in an
unprotected network takes only 20 seconds to scan 6% of
network machines.

Aggressive scanning is very noisy and detectable by
the detection techniques like TRW [3] or RBS [18]. With
aggressive scans being detected and filtered out, attackers
have to resort to stealthy scanning rates like T0 or T1 timing
profiles in Nmap, which take an extraordinarily long time
to scan thousands of machines or ports. With a conservative
scanning rate (4 addr/sec), in the unprotected network, it only
takes 200 seconds to probe 50% of the network machines,
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FIGURE 3. Comparing success ratio of scanners in protected vs.
unprotected networks.

FIGURE 4. Success ratio of scanners in a protected network with various
TTL values (scan rate = 300 addr/sec).

while in the protected network, the scan success rate does not
surpass 0.01% even after 2, 000 minutes.
These results are obtained by assuming that the scanning

machine is not denylisted after detection. However, once we
detect a few scans from a source, we can denylist it.When this
is enforced as a security policy, then the scanning success rate
will be close to 0.

Figure 4 compares the success rates of an aggressive
scanner in a protected network with various enforced
TTL values. Firstly, note that our approach is still effec-
tive even when no TTL value manipulation is enforced
(τ = 24 hours). Also, note that as the TTL value gets smaller,
the effectiveness increases. For example, after 500 minutes
and with τ = 24 hours, the scanner succeeds in probing
11% of network machines. In contrast, with τ = 1 minute,
this ratio remains below 0.4%. This clearly emphasizes
the significance of manipulating TTL values in achieving
reasonable effectiveness against scanners.

But what if the attacker knows about our technique?
Instead of using regular scanning, the attacker would

FIGURE 5. Success ratios of adaptive DNS-cache-based scan vs. regular
scan in a protected network.

passively monitor the local DNS cache on the residing
machine to identify machines for which an unexpired
DNS query has been issued and will only scan those.
We refer to this technique as DNS-cache-based adaptive
scanning. We consider this technique in order to evaluate our
mechanism not only against existing scanning mechanisms
but also against potential evasion techniques.

Algorithm 3 Adaptive DNS-Cache-Based Scanning
Algorithm

while true do
L = exec ipconfig /displaydns
for every type-A record with IP i ∈ L do

scan i

Algorithm 3 shows the pseudo-code of an adaptive
DNS-cache-based scanner. The scanner regularly monitors
network connections using a command like ipconfig
/displaydns on Microsoft Windows to discover unex-
pired (cached) DNS records, and will only scan those.
Therefore, scanning will be only limited to addresses for
which a valid mapping exists in the local DNS cache.

In the adaptive DNS-cache-based scanning of a protected
network, the success rate depends on the rate at which a
machine establishes benign connections with other machines
in the network, and it is independent of the TTL values
of DNS RRs. Figure 5 shows the success rate of adaptive
scanners on the machine C1065 in the Los Alamos network
flow dataset and compares it with those of regular scanners
in a protected network with all other parameters kept the
same. First, note that in a protected network adaptive DNS-
cache-based scanners outperform regular scanners that use
random scanning, even when the scan rate is aggressive
(300 addr/sec), and the TTL value is not manipulated (τ =
24 hours). Secondly, note that although outperforming regular
scanners, a DNS-cache-based scanner is still ineffective, and
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even after 2000 minutes, it has only probed less than 18%
of machines. In comparison, a regular aggressive scanner
would take less than 20 minutes to probe all machines in an
unprotected network. Thirdly, note that for regular scanners,
the TTL value has a noticeable effect on the effectiveness,
while for DNS-cache-based scanners, the success rate is
independent of the TTL value. This is because a DNS-cache-
based scanner probe all the IP addresses that appear in the
local DNS cache, and this is independent of the expiration
rate of cached DNS entries.

Effectiveness against Network Worms: A worm would
propagate infection across the internal network by automated
exploitation of vulnerabilities. Network worms rely on
scanning to discover vulnerable machines. Once a new
machine is infected, it turns into another scanning machine.
Thus, the number of scanners increases exponentially over
time.

To evaluate the effectiveness of our approach against
network worms that propagate internally, we rely on the
same simulated testbed, including the Unprotected and
Protected networks, but instead of a scanner, we assume
a network worm initiates its propagation from one of the
internal machines with the highest connection rate. This is
the best-case scenario for worm propagation because the
high communication rate means a highly-populated local
DNS cache, which enhances the likelihood of evasion.
We assume the worst-case scenario where all network
machines are vulnerable to infection. Once a machine is
successfully contacted without being detected, it becomes
infected and starts scanning the address space. We conduct
our experiments on these two networks using different TTL
values and against an aggressive network worm with a
scanning rate of 300 addr/sec, a stealthy network worm with
a scanning rate of 4 addr/sec, and an evolved network worm
that uses an evolved scanning technique based on local DNS
cache to evade detection.

Figure 6 compares the propagation of a worm with
various scanning rates in an unprotected vs. a protected
network. Note that in an unprotected network, propagation
is relatively instantaneous (less than 10 seconds). Even for
a stealthy scanning rate of 4 addr/sec, the propagation takes
less than 2 minutes. In comparison, a scanning worm in a
protected networkwould have amuch slower propagation and
success rate. An aggressive worm would only infect 73% of
networkmachines after 2000minutes evenwith an aggressive
scanning rate of 300 addr/sec and enforced TTL value of
5 minutes. In comparison, the same worm would infect 73%
of machines in an unprotected network in merely 6 seconds.
This shows a slowdown of (2000 ∗ 60)/6 = 20000 times
in terms of worm propagation. For a stealthy scanning rate
of 4 addr/sec and τ = 5 min, the percentage of infected
machines in 2000 minutes falls to 60%. The same worm
would infect 60% of machines in an unprotected network in
253 seconds. This shows a propagation slowdown of (2000 ∗
60)/253 = 474 times for infecting the same number of
machines.

FIGURE 6. Worm propagation in an unprotected vs. protected network.

FIGURE 7. Comparing propagation of adaptive vs. random scanning
worms in an unprotected vs. a protected network.

Also, in Figure 6 note the effect of enforced TTL values
(τ ) on the propagation speed. As the figure shows, worm
propagation speed decreases with smaller TTL values. In the
figure, note that for a low scanning rate of 4 addr/sec and a
short expiration interval of τ = 1 min, the worm would only
infect 37% of network machines after 2000 minutes. This
again emphasizes the significance of reducing TTL values in
enhancing the efficacy of the approach.

Similar to adaptive port-scanners, attackers could develop
an adaptive DNS-cache-based worm that, once it infects a
machine, only scans IP addresses within its local DNS cache,
as described in Alg. 3. Figure 7 compares the propagation
of a random vs. an adaptive worm in an unprotected vs.
a protected network. Note that an adaptive wormwould infect
74% of network machines in 2000 minutes. Note that the
propagation of an adaptive worm is comparable to that of
a random scanning worm with an aggressive scanning rate
(300 addr/sec) in a protected network with an enforced TTL
value of 5 minutes. This is expected since a fast-scanning
wormwould have a high probability of successfully hitting all
the machines within the local DNS cache during a 5-minute
interval.
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FIGURE 8. Propagation of adaptive worms in a protected network with
various initial population sizes.

In previous figures, we assumed the propagation starts
from one initially-infected machine. Figure 8 compares the
propagation of an adaptive worm with various population
sizes of initially infected populations in a protected network.
Note that in a protected network, even with an initial infected
population of 1000 machines, only 76% of network machines
are infected after 2000 minutes, which is slightly higher than
the original scenario. This again shows the effectiveness of
our approach in throttling scanning-based attack vectors in
internal networks.

B. DETECTING EXTERNAL SCANNERS
From the perspective of our network, the behavior of an
external port scanner and an external network worm are the
same because they both attempt to send packets to an IP
address of our network without first querying the authorita-
tive DNS. If a network worm infects an enterprise machine,
that machine then becomes an internal network worm and
will be countered by the internal detection method. Thus,
in evaluating external scanners, we focus on a generic threat
model where an external machine sends packets (e.g., either
scanning probes or exploits) to an IP address of our network.

The client subnet extension allows authoritative DNS
servers to provide responses that are specific to a subnet
address. After excluding the reserved addresses, the number
of public IPv4 addresses on the Internet is close to 4.2 billion.
If all the recursive resolvers implement EDNS0 Client Subnet
option and announce client subnets with the recommended
/24 length (i.e., each subnet includes 28 addresses), and a
public server has clients from 1, 000 different subnets at
any time, then the probability that a random scanner on
the Internet succeeds to scan (false negative) a public DMZ
machine of our enterprise at that time is (1000∗(28−2))/(4.2∗
109) ≃ 5.9 ∗ 10−5, which is very low.

Figure 9 generalizes this evaluation for different ECS
subnet prefix lengths and the different numbers of clients
from distinct subnets. Note that even when prefix length
is 20 and clients are from 10, 000 distinct subnets of size

FIGURE 9. Hit rate of external attackers for various ECS subnet prefix
lengths.

232−20 = 4096, the success probability of a random scanner
is still below 0.01.

In order to evaluate our external detection mechanism in
a realistic but isolated testbed, we developed four different
modules simultaneously running on a test server, collectively
emulating the communication architecture and protocols of
Fig. 2.

The first module, called the User module, emulates the
behavior of regular clients. In this module, in an infinite
loop, we first select a randomly-generated source IP address
representing an external client; we then issue a DNS query
- with ECS option enabled - from this client for the target
domain name, www.example.org, to the Authoritative
DNS server module; the source prefix-length is chosen using
a weighted sampling based on the distribution of prefix
lengths on the Internet infrastructure (see Fig. 10) as observed
in a recent survey in 2021 [27], and the client subnet is also
included in the DNS query based on the chosen prefix-length.
After receiving the DNS response, the script sends a TCP
SYN from this source IP address to port 80 of the web server.
The web server is a Virtual Machine on the testbed server,
which hosts a simple web app on port 80.

The authoritative DNS server module receives DNS
queries and provides a simulated DNS response containing
the same type-A RR to all of them; i.e., all queries receive
the same Web server IP and same TTL, where TTL value is
modified across different experiments. Based on RFC 7871,
the scope and subnet prefix-lengths are set to the subnet
prefix-length in the DNS query. The TTL value of the DNS
RR is set to the given TTL value for that experiment.

The Scanner module emulates the behavior of port
scanners. In this script, in an infinite loop, we randomly select
a source IP address as the address of an external scanning
machine, and send a TCP SYN segment from this source IP
to port 80 of the Web server, without querying the DNS.

Finally, the SDS module implements the proposed defense
Algorithm 2; in an infinite loop, the script monitors DNS
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FIGURE 10. The distribution of prefix lengths announced on the Internet
as reported by [27].

FIGURE 11. Experimental results against external scanners.

responses and records the client subnet address and length,
and the expiration time (current time + TTL value) of the
response in a table, called Connection Table. It also monitors
new connections and checks them against the entries in the
Connection Table: if the source IP belongs to a subnet in the
table, it marks the source IP as benign; otherwise, it marks
the source IP as malicious (a scan).

Figure 11 shows the results achieved on this experi-
mental testbed for different TTL values. Each experiment
is conducted with a different TTL value, and a total of
200, 000 connections were observed for each experiment.
On average, in each experiment, 90% of connections were
benign, and the rest were scans. In Figure 11, note that the
approach is still effective, even with TTL values of 24 hours;
the precision is the same for all TTL values, which is because
the approach does not have any false positives: no benign
connection is identified as a scan. This is expected, because,
in our simulation, any benign connection is always preceded
by a pair of DNS query and response messages. However,
we acknowledge that this result needs further investigation on

production systems with real users. Especially, TTL pinning
(see Section VI-D2) could result in false positives.

However, the approach expectedly incurs false negatives
because if a scanning attacker is inside a client subnet from
which a benign user has already received a non-expired DNS
response, then their scans would be missed by SDS. The
larger the client subnet lengths, the higher the likelihood
of evasion by a scanning attacker. Obviously, larger subnet
prefix-lengths are more desirable, as they increase the
accuracy and recall of the approach. Also, note that both
accuracy and - especially - recall drop as the TTL value
increases because the number of false negatives increases as
the TTL value increases. This is because, with a larger TTL,
a scanning attacker hasmore time and thus a higher likelihood
of piggybacking on a benign client’s previous query, which
still resides in the Connection Table, to evade detection.
The recall significantly drops for larger TTL values, which
proves the gravity of using small TTL values in lowering
the number of false negatives, thus enhancing the efficacy
of the approach. The average TTL value in current Internet
infrastructure is 24 hours, which yields a recall value of 84%.
With an enforced 1-minute TTL value, the recall increases
to 99.4%.

C. OVERHEAD
In this section, we evaluate the impact of our detection
method on authoritative DNS servers and communication
latency.

1) OVERHEAD ON AUTHORITATIVE DNS SERVERS
Smaller TTL values for DNS RRs increase the number of
DNS queries that are received by our authoritative DNS
servers. Expectedly, the shorter the expiration interval, the
higher the number of DNS queries. Figure 12 shows the
number of DNS queries in a network with 8495 machines and
various enforced TTL values. These results are achieved by
simulating machine communications using the Los Alamos
dataset [19]. In the figure, note that smaller TTL values
increase the load on the authoritative DNS server. This
increased load is a determining factor in identifying the
optimal TTL value. In other words, the TTL value must be
enforced such that the authoritative DNS server can handle
the resulting expected extra load.

2) EFFECT OF TRAFFIC MONITORING AND MANIPULATION
ON LATENCY
SDS devices act the same as legacy IDS/IPS devices. They
receive traffic on an ingress interface, inspect and filter
malicious traffic, and send the remaining packets on an egress
interface. In practice, the latency of SDS processing on traffic
depends on the implementation efficiency and the type and
specifications of the machining hardware. In a proof-of-
concept implementation for evaluating latency, we recorded
that a socket read and write for MTU of 1500 bytes incurs a
latency of on average 60 µs on each frame. Other operations
like extracting A records from DNS responses, checking
the hash table for expiration times, etc. require < 10µs
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FIGURE 12. Number of DNS queries for various TTL values.

in total. We calculated these latencies under normal CPU
and memory load. The average latency is less than 70 µs.
This is comparable with evaluations of commercial Cisco
IPS devices that have reported latencies in the order of
50 to 100 microseconds for different models [30]. Since
packet round-trip delay times are usually in the order of
milliseconds, the SDS processing time incurs negligible delay
in response times.

3) COMPLEXITY AND SCALABILITY OF METHODS
In this section, we investigate the time and space complexity
of the proposed methods. Alg. 1 presents our method for
detecting internally-initiated scans including local-to-local
scans as well as local-to-remote scans, while Alg. 2 presents
our method for detecting externally-initiated or, remote-to-
local scans. We investigate the time and space complexity for
inspecting each of the three classes of local-to-local, local-to-
remote, and remote-to-local scans, next.
Local-to-local connections: Suppose a network has n

machines, and each machine only has one network interface,
thus, one internal IP address is assigned to it. For a subnet
that includes m machines, its SDS needs to store m ∗ (n− 1)
DNS records in the worst case. Thus, the space complexity
of the Connection Table is O(m · n); thus, the local-to-local
scan detection approach is scalable with regard to both the
network size and subnet size.

The TTL value impacts the Connection Table size and,
thus, the space complexity. The lower the TTL value, the
smaller the Connection Table because SDS devices con-
stantly delete expired DNS records from the table. Figure 13
compares the size of the local-to-local Connection Table of
an SDS for various TTL values based on the communication
traces of machines in the Los Alamos dataset [19]. Note
that as the TTL value increases, the number of entries
increases accordingly. This is because when DNS records are
expiring at a lower rate, the SDS needs to keep track of a
higher number of these records. Thus, while using smaller
TTL values increases the load on authoritative DNS servers,
it decreases the overhead on SDS devices while enhancing

FIGURE 13. Number of SDS entries for various expiration intervals.

the efficacy of the approach. Since we use hash tables to store
the Connection Table, the time complexity for insertion and
search isO(1); Thus, the time required for inspecting a local-
to-local connection is independent of the network or subnet
size.
Local-to-remote connections: Suppose a subnet includesm

machines (each with one network interface), and t denotes
the maximum DNS cache size of machines in the subnet at
any time; then, the space complexity for detecting local-to-
remote connections on the SDS device of this subnet would
beO(m · t). The lower the TTL value, the lower the t and the
smaller the Connection Table. The time complexity is again
O(1) because this Connection Table is also implemented
using hash tables. Thus, the method is scalable with regard
to both the subnet size and the DNS cache size.
Remote-to-local connections: Suppose k denotes the

number of publicly-reachable machines located in the DMZ
of the enterprise network. Assume each public server has
active clients (i.e., their DNS responses have not expired yet)
from at most p different ECS subnets at any time. The space
complexity of the Connection Table of the DMZ SDS device
for handling remote-to-local connections would be O(k · p).
Again, the lower the TTL value, the lower the p, and the
smaller the Connection Table.

This Connection Table is implemented using a two-
dimensional array. The time complexity for inserting a new
entry into the table and for inspecting a remote-to-local
connection to a public DMZ machine is O(p) because,
as denoted in Alg. 2, for every incoming connection to a
public machine, we need to inspect at most p entries in
the Connection Table (i.e., only active clients of the public
server). Thus, the method is scalable with regard to both the
number of public machines and the number of active clients.

D. PRACTICAL ISSUES FOR DEPLOYMENT
1) IDENTIFICATION OF ALLOWLISTED ADDRESSES
An important step in the deployment of our approach is
identifying and excluding machines and IP addresses that are
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not obtained through DNS but through other methods. Net-
work machines that are not named and are typically accessed
through IP addresses, such as gateway machines or DNS
servers, must be identified and allowlisted. Also, applications
whose legitimate operations depend on the IP address, like a
printer or a database server with a static IP address, or their
IP addresses are attained from mechanisms other than DNS,
such as peer-to-peer applications must also be identified and
allowlisted. Some busy websites include URLs consisting of
numeric IP addresses within the payload of an HTTP packet,
in order to outsource their content, especially images, to other
servers for faster page retrieval [15]. Such mechanisms are
considered malpractices and strongly prohibited in HTTP
RFC documentation (e.g., 2616 and 1900). For internal Web
servers, these malpractices could be prohibited as an enforced
policy. For external cases where an internal machine is
communicating with an external Web server that uses IP
address embedding, these embedded addresses could result
in mistakenly marking an internal machine as malicious.
In our experiments on internal scanners in Section VI-A,
we observed that almost 50% of false positives were observed
in the Web browsing of popular websites belonging to CDN
proxies and cloud machines, which are not obtained through
DNS and potentially obtained throughHTTP payloads. These
IP addresses could be identified in a training phase and
added to an allowlist. In this stage, rather than dropping
detected scans, the SDS can merely generate alerts for further
inspection. The network admins would then review the alert
logs, inspect IP addresses that cause false positives and add
them to the allowlist if needed.

2) DEALING WITH TTL PINNING
Another problematic scenario stems from the TTL pinning
technique that is used by many Web browsers to defeat
DNS rebinding attacks [31]. DNS rebinding attacks rely
on DNS responses with small TTL values to bypass the
same-origin policy of Web browsers and access the internal
servers of enterprise networks [31]. To defeat this, modern
browsers use a technique called TTL pinning: once the
browser resolves a machine name to an IP address for
the first time, it caches the result for a fixed duration,
regardless of its TTL value [31]. TTL pinning is problematic
for our approach because by ignoring the TTL value, the
browser could initiate a connection with an IP address even
after its TTL has expired. This new connection will be
falsely identified as a malicious scan. However, the TTL
pinning duration is usually short (e.g., [60, 120) seconds
in Firefox [31]) and comparable with our enforced TTL,
τ . Moreover, to prevent potential false positives, we will
add an exception for Web flows as follows: if a client re-
establishes an HTTP/HTTPS connection to the same IP
address within a fixed interval (e.g., 120 seconds) since the
TTL expiration, we will not mark it as a scan. While attackers
could use this as an evasion technique, this has a negligible
effect on the robustness of the approach, as it only permits
probes to a very small set of ports (e.g., 80, 443) of a

target machine. Moreover, these scans could only come from
machines that have recently queried the authoritative DNS of
a target and initiated a legitimate HTTP connection with it,
and only within a short interval after the previous TTL has
expired.

3) PRACTICAL LIMITATIONS IN DETECTING EXTERNAL
SCANS
Defeating external scanning depends on the cooperation of
recursive resolvers. However, implementing or complying
with the EDNS0 client subnet option by querying machines
or recursive resolvers is not mandatory [26]. While originally
designed as a mechanism for geographical load balancing
and decreasing service provision latency, our work shows
the potential of using this option as a robust security
feature against scanning attacks. Moreover, ECS protocol
is widely being adopted, and comparing the adoption rate
from 2015 to 2019 shows a notable growth rate [27]. As of
now, ECS-enabled DNS messages constitute a significant
percentage of the DNS traffic. ECS is currently ‘‘on by
default’’ for all traffic through many of the largest open DNS
servers, including Google Public DNS, OpenDNS, Quad9,
and NextDNS [27]. A recent study in 2021 [27] investigated
several billion DNS queries on the Internet and reported
that 69% were ECS enabled. Thus, over time we expect
more clients and resolvers to adopt ECS. While attackers can
continue avoiding the use of ECS, as the clients increasingly
use ECS and provide their subnet addresses for better address
resolution, the lack of using ECS could become a sign of
suspicious behavior. Also, while attackers are fully motivated
to opt out, we can provide incentives for benign clients to opt
in; i.e., enabling the ECS option and announcing large subnet
prefixes of clients’ IP addresses. For example, by giving a
higher quality of service (QoS) to conforming clients and
penalizing (e.g., rate-limiting) non-compliant connections,
we could provide incentives for collaboration by clients.
The QoS could even become dependent on the precision
(length) of the provided client’s address, where the highest
priority could be given to clients that include 24 bits or more
of their IP address in the DNS query. Over time, as more
clients opt in, the remaining non-compliant connections
will dominantly belong to attackers, thus enabling us to
adopt even more stringent throttling policies against them.
We leave further investigations in this regard to future
work.

4) EXTENSION TO IPv6 ADDRESS FAMILY
This paper only focuses on the IPv4 address family.
Extending our approach to the IPv6 family is straightforward
with minor changes. For example, instead of inspecting
DNS A records in internal and external detection algorithms
(Alg. 1 and 2 respectively, for IPv6, we need to record DNS
AAAA records. The ECS option supports IPv6 addressing as
well; the recommended subnet size (source prefix-length) for
IPv6 addresses is 56 bits, based on RFC7871 [26].
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However, due to the abundance of addresses in the IPv6
address domain, random IP scanning of IPv6 address ranges
is not effective, and thus random scanning is not a viable
threat model in IPv6, and intelligent heuristics need to be
developed to reduce the search space [32], [33].

5) FUSION WITH DNSSEC AND OTHER CRYPTOGRAPHIC
EXTENSIONS OF DNS
DNS-over-HTTPS and DNS-over-TLS: DNS does not have
any built-in cryptographic capabilities to protect its traffic
from on-path eavesdropping and man-in-the-middle attacks.
To address this increasing concern that could impact the
privacy of users, several standards, such as DNS-over-HTTPS
(DoH) and DNS-over-TLS (DoT) have been proposed and
widely adopted by major public DNS resolvers, including
Google and Cloudflare, and implemented in the latest
versions of popular operating systems like Windows 11.
Both methods encrypt the DNS traffic between the client and
its DNS resolver by transmitting it over a TLS channel.

With DoH or DoT in place, since the DNS traffic is
encrypted, SDS devices located at the subnet edges can
not read and change (the TTL values of) DNS responses
since the TLS channel is established between the client and
the resolver, and SDS does not have access to TLS keys.
Thus, to fuse our approach with these emerging technologies,
one viable option is to move and perform DNS traffic
monitoring and TTL manipulation on the local recursive
DNS resolver of the network; for every DNS query and
corresponding response received from any machine, the
local recursive DNS resolver updates the corresponding
Connection Table. Simultaneously, for every new ingress
connection to amachine, SDS devices will communicate with
the DNS resolver through a secure channel and query whether
a corresponding unexpired entry exists in the corresponding
Connection Table for the source IP address. However, the
extra time required for sending this query and receiving
the response may incur a non-negligible latency on the
communications; in future extensions of this work, we will
conduct further inquiries in this regard.
DNSSEC: With no cryptographic protection, DNS is

susceptible to cache poisoning attacks which could be
conducted by off-path attackers through forging and spoofing
DNS responses. DNSSEC adds a suite of extensions to
the DNS protocol to ensure cryptographic authenticity and
integrity of the DNS messages exchanged among recursive
resolvers and DNS servers through the digital signing of zone
data on authoritative DNS servers. DNSSEC uses public key
cryptography to sign and authenticate DNS resource record
sets (RRsets). A zone signs its authoritative RRsets by using
a private key and stores the corresponding public key in a
DNSKEY RR. A DNS resolver can then use the public key to
validate signatures covering the RRsets in the zone and thus
authenticate them.

Client operating systems do not support DNSSEC and
cannot validate DNSSEC messages themselves. Rather, they
delegate this job to a trusted recursive resolver that supports

DNSSEC. Therefore, evenwhen an enterprise uses DNSSEC,
SDS devices can still read and manipulate DNS messages
because DNSSEC protects the traffic between recursive DNS
resolvers and DNS servers, but it does not impact DNS
messages exchanged between client machines and recursive
resolvers that pass through SDS devices. Thus, the original
methodwould still work with DNSSEC. Further investigation
of this issue is left to future work.

VII. CONCLUSION AND FUTURE WORK
In this paper, we present a defense mechanism for protecting
enterprise networks against internal and external network
scanning attacks. These attacks are typically either conducted
by cyber attackers in the reconnaissance stage of cyber
intrusions to identify active machines in an address space
or by network worms in the propagation stage for target
discovery. Our approach acts based on the idea that a DNS
resolution must typically precede any legitimate communi-
cation between two machines; Thus, any communication that
is not preceded by a DNS query is marked as a scan, unless it
is allowlisted based on the network security policy.

We propose the necessary architectures and algorithms
for the deployment of our approach in detecting internally-
initiated scans. Through experimentation, we show that this
approach achieves over 96% accuracy evenwithout excluding
false positives related to allowlisted IP addresses. Using a
public dataset of network flows, we simulate our approach
in a large-scale network against port scanners and network
worms and demonstrate that reducing TTL values (reducing
expiration time of cachedDNS records) is necessary to reduce
the likelihood of evasion by scanners. Moreover, we show
that by reducing TTL values, this approach slows down
scanning success up to 20, 000 times, even in their best cases.
Then, relying on a relatively new extension of DNS protocol,
ENDS0 Client Subnet Option (ECS), we develop a variation
of this approach for detecting externally-initiated scans
conducted against our enterprise network. Through a realistic
emulation built based on the latest statistics on ECS adoption
by DNS servers, we confirm that our approach can achieve
over 98% accuracy in detecting external scans. We discuss
the overhead of this approach, in terms of increased load on
authoritative DNS servers, and communication latencies, and
confirm that both are reasonable. Finally, we highlight the
practical challenges and limitations of the approach.

In the future, we will conduct a full-fledged implementa-
tion of evaluation of our approach against externally-initiated
threats. We also plan to deploy our approach in a production
network to conduct a more fine-grained investigation of cases
where our approach does not apply or could disrupt the
operations of the network.
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