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ABSTRACT Artificial Intelligence (AI)-based medical computer vision algorithm training and evaluations
depend on annotations and labeling. However, variability between expert annotators introduces noise in
training data that can adversely impact the performance of AI algorithms. This study aims to assess,
illustrate and interpret the inter-annotator agreement among multiple expert annotators when segmenting
the same lesion(s)/abnormalities on medical images. We propose the use of three metrics for the qualitative
and quantitative assessment of inter-annotator agreement: 1) use of a common agreement heatmap and a
ranking agreement heatmap; 2) use of the extended Cohen’s kappa and Fleiss’ kappa coefficients for a
quantitative evaluation and interpretation of inter-annotator reliability; and 3) use of the Simultaneous Truth
and Performance Level Estimation (STAPLE) algorithm, as a parallel step, to generate ground truth for
training AI models and compute Intersection over Union (IoU), sensitivity, and specificity to assess the inter-
annotator reliability and variability. Experiments are performed on two datasets, namely cervical colposcopy
images from 30 patients and chest X-ray images from 336 tuberculosis (TB) patients, to demonstrate the
consistency of inter-annotator reliability assessment and the importance of combining different metrics to
avoid bias assessment.

INDEX TERMS Reliability, agreement, inter-annotator, heatmap, STAPLE, Cohen’s kappa, Fleiss’ kappa.

I. INTRODUCTION
In computational health research, it is typical to col-
lect annotations from several expert annotators to capture
the diversity of opinion, mitigate subjective biases, and
compensate for factors such as the level of experience,
expertise, or fatigue [1], [2], [3], [4]. Therefore, it is
necessary to (i) assess the extent of agreement between
different annotators, called inter-annotator reliability or
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inter-annotator agreement, and (ii) develop an appropriate
strategy for training reliable segmentation models that reflect
the underlying agreement/disagreement between different
annotators [5], [6].

A typical situation in which it may be necessary to
assess inter-rater reliability is when multiple experts annotate
images for the presence or severity of underlying disease(s).
In this case, the judgments from different experts or
annotators are with discrete categories, such as ‘‘presence’’
and ‘‘absence’’ of lesions, and qualitative assessments as
lesions being ‘‘mild,’’ ‘‘moderate,’’ or ‘‘severe.’’ These
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categories are mutually exclusive; therefore, each case falls
into one of these categories. The kappa statistic [7], [8]
is commonly used to evaluate inter-annotator reliability in
categorical classification problems [9], [10], [11]. However,
it is challenging to assess agreement when multiple experts
draw boundaries around regions in images. To the best of our
knowledge, there are no systematic studies assessing inter-
annotator agreement on segmentation in medical images,
which is crucial in evaluating the performance of region
segmentation algorithms that may be used for the clinical
assessment of various diseases.

Modern Artificial Intelligence (AI) techniques have accel-
erated the development of automated systems for detecting
diseases in images and quantifying disease progression [1].
Simultaneous Truth and Performance Level Estimation
(STAPLE) based methods [12], [13] and label fusion algo-
rithms [14], [15], [16] are commonly used to obtain ground
truth labels. Lampert et al. [17] presented an in-depth study
to quantify the effects of acquiring ground truth data from
multiple annotators using different methods. They concluded
that the STAPLE and maximizing a posteriori probability-
based method algorithms find a reasonable balance between
all annotations when the overall inter-rater segmentation
variance is low.

The assessment of the inter-annotator agreement is essen-
tial for several reasons. First, ensuring that annotators’
annotations are consistent is essential to designing and
establishing stable AI algorithms. Second, an agreement
is desirable for AI model training and evaluation since
high levels of inter-annotator agreement help reduce noise
and subjectivity. Third, it helps improve the validity of
the annotations. Data with higher inter-annotator reliability
indicates good quality and supports reproducible studies. The
high inter-annotator agreement supports enhanced clinical
decision-making and risk prediction.

In this paper, we systematically assess the inter-annotator
reliability in two applications: lesion segmentation on
cervical images and abnormality segmentation in Chest X-
ray (CXR) images. Our work makes the following four main
contributions:

• We propose two agreement heatmaps to visualize
and quantify the inter-annotator reliability, including a
common agreement heatmap and a ranking agreement
heatmap. To the best of our knowledge, no prior works
have studied similar agreement heatmaps, particularly
the ranking agreement heatmap, toward evaluating the
reliability of inter-annotator agreement.

• We extend kappa coefficients, particularly Fleiss’ kappa
coefficient, from categorical classification to pixel-wise
segmentation, by generating and interpreting the new
kappa tables for the image segmentation problem.

• We apply the STAPLE algorithm to generate the
ground truth and compute Intersection overUnion (IoU),
sensitivity, and specificity to quantitatively evaluate the
inter-annotator reliability and variability and compare
the consistency of agreement using different metrics.

The IoU, sensitivity, and specificity values facilitate the
identification of raters with little or high agreement.

• We publish a new collection of annotations for the
Shenzhen dataset.

The rest of this paper is organized as follows. In Section II,
we describe the different metrics for qualitative and quanti-
tative assessment of inter-annotator reliability. In Section III,
we present the two datasets used in this study and demonstrate
the evaluation results, followed by the Discussion and
Conclusion in Section IV.

II. RELATED WORKS
We follow the well-known PRISMA approach to search and
select related works on inter-annotator reliability assessment
in cervical cancer images and chest X-Rays (CXRs). We used
different keywords to search in PubMed and Google Scholar.
Examples of these keywords include ‘‘heatmap’’, ‘‘kappa’’,
‘‘multi-rater’’, ‘‘multiple annotations’’, ‘‘inter-rater’’, ‘‘inter-
annotator’’, ‘‘cervical cancer images’’, ‘‘CXR’’, etc. Then,
we read the abstract to confirmwhether the papers or methods
fit well. These criteria resulted in a total of 18 papers that are
discussed below.

A. HEATMAP
Heatmaps have been utilized in data analysis for over a
century [18], and are recently widely used in radiomics
and understanding of AI model predictions. In radiomics,
large data tables are clustered and then color-coded to
help identify patterns [19], [20]. In computer vision, an AI
model may produce a heatmap that identifies the areas of
the input image which contribute most to the model using
class activation mappings [21]. In [22], the Class-selective
RelevanceMap (CRM) and Class ActivationMap (CAM) are
used to visualize the model prediction for ablative treatability
classification in digitized cervix images. In [23], the weights
from the last convolutional layers are used to generate a
heatmap to emphasize the high-weight signals of coronavirus
disease (COVID-19) in CXRs. In [24], a probability map is
used to visualize segmentation/annotations ofmultiple organs
and to reduce the use of tedious and prone-to-error manual
annotations from CXRs. Despite the wide usage of heatmaps
in radiomics and visualization of model predictions, current
heatmaps are not suitable for multiple annotations. This is
the first paper that proposes agreement heatmaps for inter-
annotator reliability assessment.

B. KAPPA STATISTICS
In [25] and [26], Cohen’s kappa coefficient is used to evaluate
inter-annotator agreement on the performance of visual
inspection with acetic acid for precancerous lesion classi-
fication between two test providers. In [27], both Cohen’s
kappa and Fleiss’ kappa coefficients are used to assess the
inter-annotator and intra-annotator agreement for five or
nine categories among twelve pathologists on 1790 cervical
biopsy specimens from 850 patients. In [28], Cohen’s kappa
coefficient is used to evaluate the agreement between two
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radiologists on TB diagnosis. In [29] and [30], Cohen’s kappa
coefficient is applied to assess the agreement between two
annotators for CXR findings in COVID-19 and the diagnosis
of pneumonia, respectively. In [31], weighted Cohen’s kappa
coefficient is calculated to assess the agreement between
lung ultrasound and CXR for classification between normal,
unilateral, or bilateral pulmonary infiltrates. Although kappa
statistics have been widely used for categorical classification
and certain works have applied Cohen’s kappa in image
segmentation, we are not aware of any previous work that
explores and interprets Fleiss’s kappa coefficient for medical
image segmentation.

C. STAPLE CONSENSUS
STAPLE is a well-known expectation-maximization algo-
rithm for multi-annotator segmentation evaluation that gen-
erates a ground truth segmentation map from the annotations
of multiple experts while providing a performance measure
associated with each individual annotation. In [32], [33],
and [34] the STAPLE algorithm is applied to cervigram
images to generate a ground truth from multiple cervix
segmentations, whereas in [32] and [33] the authors also
utilize the STAPLE algorithm to evaluate automatic cervix
segmentation algorithms. In [35] and [36], the authors applied
the STAPLE method to build ground truth segmentations
consensus from two bounding-box-based annotations for
CXR lung abnormalities and CXR COVID-19 findings,
respectively, as well as used IoU and Dice scores to compare
the agreement between segmentation STAPLE consensus and
segmentations from DL models.

III. INTER-ANNOTATOR RELIABILITY ASSESSMENT
A. AGREEMENT HEATMAP
In this study, we propose two agreement heatmaps to assess
the inter-annotator reliability that are different from those
used in radiomics [19], [20] and for the understanding of
AI model prediction [21]. We propose a common agreement
heatmap that can be used for all kinds of annotations and a
ranking agreement heatmap that can be used when a ranking
order is also included in the annotation.

A common agreement heatmap is generated using the
sum of annotation masks from multiple annotators. Assume
Mask_i is a binary mask generated by the ith annotator,
in which non-zero values correspond to lesion areas. Then
the common agreement heatmap can be computed using:

Heatmap(x, y) =

∑
i=1:N

Mask_i(x, y), (1)

where N indicates the number of annotators, and (x, y)
represents the coordinates. A higher pixel value in the
heatmap indicates higher inter-annotator agreement. The
maximum possible value in the heatmap is N .
If annotations include ranking numbers indicating the

severity of lesions, then a ranking agreement heatmap can be
generated using the average of ranking masks:

Heatmap_r(x, y) =
1
N

∑
i=1:5

MaskR_i(x, y), (2)

where MaskR_i is a ranking mask generated by the ith

annotator, and (x, y) represents the coordinates. The pixel
value, which indicates the inter-annotator agreement, is called
the heatmap agreement score in our study.

By taking the lesion annotations in cervical images as
an example and assuming that the maximum number of
annotated lesion areas is L, we use a non-linear function
y = [ax−b] to represent the relationship between pixel
values of lesion areas in a ranking mask and the ranking
number, where y is an integer indicating the pixel value in
the ranking mask, x indicates the ranking number, and a and
b are constants that ensure the value of y will decrease in
a non-linear manner and not go beyond zero. In this study,
y = [0.77x−13] and L = 10. The two constants a = 0.77 and
b = 13 are empirical values to ensure that pixel values
from x = 1 to x = L are different and decrease with a
reducing speed and could be changed to other values that
satisfy the two conditions. Since x ∈ [1, 10] , pixel values
in a ranking mask y ∈ [2, 23] . When using (2) to generate
the ranking agreement heatmap, the maximum value is 23,
which indicates all the N annotators agree with a given lesion
with rank = 1 (most severe). Fig. 1 shows an example of a
ranking agreement heatmap on a cervical colposcopy image
for precancer/cancer lesion annotation from five annotators.
For the upper left area (in dark red), four annotators rated it
as rank = 1 and one annotator rated it as rank = 2, and thus
the pixel values in this area (in dark red) are calculated as
(4 × 23+1 × 18)/5 = 22.

FIGURE 1. A ranking agreement heatmap generated from five
annotations for cervical lesion segmentation.

The ranking agreement heatmap may provide more
accurate guidance for further evaluation, such as biopsy
sampling. In cervical cancer screening, colposcopy results
are typically characterized by a colposcopic impression and
the selection of the worst-appearing site for biopsy [37].
However, studies from screening and vaccination trials have
suggested that colposcopic impression and biopsy sampling
are poorly reproducible [38] and fail to detect 30% to
50% of prevalent high-grade squamous intraepithelial lesions
(HSILs) [39], [40]. These data also suggest that taking

21302 VOLUME 11, 2023



F. Yang et al.: Assessing Inter-Annotator Agreement for Medical Image Segmentation

more biopsies increases the detection of HSILs. A ranking
agreement heatmap may help identify the most suspicious
lesion area(s), i.e., the highest scoring area(s).

B. EXTENDING KAPPA COEFFICIENT FROM
CLASSIFICATION TO SEGMENTATION
Although the kappa coefficient [7], [41] has been widely
used to assess inter-annotator agreement, most previous
works explored it with classification tasks such as cervical
cancer classification [25], [26], [27] and disease/survival
prediction in CXR [29], [30], [31], among others. Our
literature review reveals that the Fleiss’ Kappa coefficient
has never been explored with medical image segmentation.
In this section, we first describe the calculation of the general
kappa coefficient and then explain how we extend it to image
segmentation.

Kappa statistic is a quantitative metric initially proposed to
measure the extent of agreement between multiple annotators
when classifying a given group of subjects into several
categories. In medicine, kappa statistic is used to determine
the agreement between categorical ratings made by two
or more annotators and agreement between categorical
ratings made by the same annotator on two or more
occasions, representing inter-annotator reliability and intra-
annotator reliability, respectively. It is calculated as the
observed agreement beyond chance divided by the maximum
agreement beyond chance:

k =
P̄− P̄e
1 − P̄e

, (3)

where P̄ is the proportion of observed agreements and P̄e is
the proportion of agreements expected by chance. Cohen’s
kappa coefficient [7] and Fleiss’ kappa coefficient [41] are the
most widely used kappa statistics. They are discussed below:

1) COHEN’s KAPPA COEFFICIENT [7]
Cohen’s kappa coefficient is commonly used to measure the
level of agreement between two annotators, who each classify
M subjects into K mutually exclusive categories. P̄ and P̄e in
(3) can be calculated as shown in (4) and (5).

P̄ =
Number in agreement

Total
, (4)

P̄e =
1
M2

K∑
k=1

nk1nk2, (5)

where nki is the number of times that annotator i predicted
category k . Taking the simplest case of two-category
classification rated by two annotators for M patients as an
example, the agreement matrix (also called confusion matrix
when measuring between ground truth and predicted results)
is shown in Table 1. A+D is the number of patients for whom
two annotators agree, and B+C is the number of patients for
whom they disagree. Then, P̄ and P̄e can be calculated by the

following formula.

P̄ =
(A+ D)

A+ B+ C + D
, (6)

P̄e =
(A+ B) (A+ C)

(A+ B+ C + D)2
+

(C + D) (B+ D)

(A+ B+ C + D)2
. (7)

TABLE 1. Agreement matrix of agreement and disagreement from two
annotators. A+D is the number of patients for whom two annotators
agree, and B+C is the number of patients for whom they disagree.

In this work, we extend Cohen’s kappa from classification
to segmentation as follows:

FIGURE 2. Annotation results from two annotators, with A, B, C, and D
indicating the number of pixels included in both annotated areas, only in
the annotated area of Annotator 2, only in the annotated area of
Annotator 1, and in both background areas, respectively.

• First, a similar agreement matrix as in Table 1 is
established, which now accounts for each image instead
of all patients. Fig. 2 illustrates the counts for Cohen’s
kappa agreement matrix in image segmentation. A, B, C,
andD indicate the number of pixels included in both seg-
mentations, only in the segmentation from Annotator 2,
only in the segmentation from Annotator 1, and outside
of both segmentations, respectively. In segmentation,
categories 1 and 2 are segmentation and background,
respectively.

• Then, the final Cohen’s kappa coefficient on all
patients is calculated as the average of Cohen’s kappa
coefficients of all images.

2) FLEISS’ KAPPA COEFFICIENT [41]
Fleiss’ kappa coefficient is proposed tomeasure the reliability
of agreement between more than two annotators when
classifying several subjects into different categories. Let M
be the total number of subjects, let N be the number of
annotators per subject, and let K be the number of categories
into which classifications are made. The subjects are indexed
by i = 1, . . . M and the categories are indexed by j= 1, . . . K .
Let nij represent the number of annotators who classify the
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ith subject to the jth category. The Fleiss’ kappa coefficient
can be calculated in four steps. First, the proportion pj of
all classifications to the jth category is calculated using the
following equation:

pj =
1
MN

M∑
i=1

nij. (8)

Second, the agreement rate Pi among the N annotators
for the ith subject can be indexed by the proportion of
agreeing pairs out of all the N (N − 1) possible pairs of
classifications [41]:

Pi =
1

N (N − 1)

K∑
j=1

nij
(
nij − 1

)

=
1

N (N − 1)

 K∑
j=1

n2ij − N

 . (9)

Third, P̄ and P̄e that indicate the mean of Pi and the
squared total value of pj, respectively, are computed using the
following equations:

P̄ =
1
M

M∑
i=1

Pi =
1

MN (N − 1)

 M∑
i=1

K∑
j=1

n2ij −MN

 ,(10)

P̄e =

K∑
j=1

p2j , (11)

Finally, the Fleiss’ kappa coefficient is calculated using (3).

TABLE 2. Counts of agreement between fifteen annotators on the
five-category classification of ten subjects. nij is the number of
annotators who classify the ith subject to the jth category.

Table 2 shows an example of the application of the Fleiss
kappa coefficient, where 15 annotators classify ten patients
into five categories. We denote the number of annotators who
classify the ith subject to the jth category as nij . The row
of Subject 1 shows that all fifteen annotators agree that the
first subject belongs to Category 5. The sum of each row
consistently equals the number of annotators.

We extend Fleiss’s kappa coefficient from classification to
image segmentation as follows:

• First, a Fleiss’ kappa table is established for each image.
As shown in Table 3, each row indicates a pixel, and each

TABLE 3. Counts of agreement between fifteen annotators on binary
segmentation of one image. nij is the number of annotators who annotate
the i th subject to the j th category. The total number of annotators is 15.

column represents a category (ROI and background.
We denote the number of annotators who annotate the
ith pixel to the jth category as nij , corresponding to
an element in Table 3. Again, the sum of each row
consistently equals the number of annotators.

• Then, pj and Pi are calculated using (8) and (9), and P̄
and P̄e are computed using (10) and (11).

• The Fleiss’ kappa coefficient for one image is then
calculated using (3). The final Fleiss’ kappa coefficient
for all patients is calculated as the average of Fleiss’
kappa coefficients of all images.

The extension of kappa coefficients to segmentation is impor-
tant for evaluating the inter-annotator and intra-annotator
reliability of multiple segmentations, and for assessing
automatic segmentation models. Table 4 lists the difference
between extended and general kappa coefficients.

TABLE 4. Characteristics for kappa coefficients before and after
extension.

3) INTERPRETATION FOR THE KAPPA COEFFICIENT
The kappa coefficient ranges from -1 (worst) to +1
(best). The higher the coefficient, the better the inter-
annotator reliability. Landis and Koch [42] proposed the
following interpretation for two-annotator two-class classi-
fication: values ≤ 0 as no agreement, 0.01–0.20 as slight
agreement, 0.21–0.40 as fair agreement, 0.41– 0.60 as
moderate agreement, 0.61–0.80 as substantial agreement, and
0.81–1.00 as almost perfect agreement. Similar formulations
have been proposed [43], [44], [45], but with slightly different
descriptors. Sim and Wright [8] pointed out that the effects
of prevalence and bias on the kappa coefficient should be
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considered when judging the reliability of agreement and that
the number of categories would affect the kappa value.

C. STAPLE-BASED CONSENSUS
A common question arises when we have segmentations
from multiple annotators: what is the ground truth we
can use to train an AI-based model? STAPLE algorithm
[12], [46], which is a widely used approach to aggregate
multiple annotations, uses expectation-maximization (EM)
to find sensitivity and specificity values that maximize the
data likelihood. In this study, we use the STAPLE algorithm
to characterize the inter-annotator variability through anno-
tators’ sensitivity and specificity estimation and to generate
a consensus reference segmentation. Further, sensitivity,
specificity, and IoU scores are calculated to evaluate the
performance of each annotator.

Consider an image of N voxels. Let q = (q1, q2, . . . .,
qM )T be a column vector ofM elements, with each element a
sensitivity parameter characterizing one ofM segmentations,
and r = (r1, r2, . . . ., rM )T be a column vector ofM elements,
with each element a specificity parameter characterizing
the performance of one of M segmentations. Let D denote
an N × M matrix that describes binary decisions made
for each segmentation at each image voxel. Let T denote
an indicator vector containing N elements representing
hidden true binary segmentation where for each voxel, the
structure of interest is recorded as present (1) or absent
(0). The complete data can be written as (D, T) and the
probability mass function as f (D,T |q, r). The goal of the
STAPLE algorithm is to estimate the performance level of the
annotators characterized by (q, r) using the EM algorithm,
which maximizes the data log-likelihood function(

q′, r′
)

= argmaxq,rln f (D,T |q, r) . (12)

We use the STAPLE-based consensus as the ground truth
and measure its agreement with the segmentation from each
annotator using sensitivity, specificity, and IoU scores. The
sensitivity and specificity are defined as,

Sensitivity =
TP

FN + TP
, (13)

Specificity =
TN

FP+ TN
, (14)

where TP, FP, TN, and FN indicate true positives, false
positives, true negatives, and false negatives, respectively.
The IoU metric, also named the Jaccard Index, is defined
as a ratio between the area of overlap and the area of union
between two segmentations:

IoU =
Area of overlap
Area of union

. (15)

IV. EXPERIMENTAL RESULTS
A. DATA
We use two datasets to assess inter-annotator reliability:
(i) cervical colposcopy images and (ii) the Shenzhen TBCXR
dataset [47], [48].

The cervical image dataset includes 510 images from
30 patients acquired using the dynamic spectral imaging
(DSI) colposcope (DYSIS by DYSIS Medical, Edinburgh,
UK) with a digital video camera. For each patient, a series
of 17 images were acquired with an interval of seven to
ten seconds, from before to after the application of acetic
acid, while visualizing the cervix using the DYSIS digital
colposcope [49]. After completing the data acquisition,
biopsies were taken according to colposcopic impression.
Histology is considered the gold standard for this dataset.
The biopsy sampling position was not reported. According
to the biopsy results, the dataset includes six CIN3 (Cervical
Intra-epithelial Neoplasia 3) patients, four CIN2 patients,
11 CIN1 patients, six negative patients, and three patients
with unknown biopsy results. Five experienced colposcopists
annotated lesion areas on the image at the 56th second
(considered to be a typical indication of aceto-whiteness) via
an interactive video/image annotation tool CVAT [50], with
a ranking number ordering lesions according to perceived
severity. Rank=1 indicates the most severe lesion. CIN1 is
not considered as precancer since it usually regresses without
treatment. CIN2 or CIN3 is not cancerous but may become
cancer and spread to nearby normal tissue if not treated.

The Shenzhen TB dataset [47], [48] includes 326 CXRs
from non-TB patients and 336 CXRs from TB patients. Two
radiologists annotated the 336 TB patients for 19 abnor-
malities, including pleural effusion, apical thickening, sin-
gle nodule (non-calcified), pleural thickening (non-apical),
calcified nodule, small infiltrate (non-linear), cavity, linear
density, severe infiltrate (consolidation), thickening of the
interlobar fissure, clustered nodule (2mm-5mm apart), mod-
erate infiltrate (non-linear), adenopathy, calcification (other
than nodule and lymph node), calcified lymph node, miliary
TB, retraction, other, and unknown [48]. The cases in the
dataset have been confirmed by culture, and that typical TB
appearance in imaging combined with a positive response
to anti-TB medication was a criterion for confirming TB.
The CXRs vary in dimensions but are approximately 3000×

3000 pixels. The Shenzhen TB dataset and annotations from

FIGURE 3. An example of overlapping abnormalities in a CXR image
annotated by the same annotator.
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FIGURE 4. Dynamic cervical images and corresponding agreement
heatmaps from five annotators. (a) Dynamic colposcopy images. (b) The
common agreement heatmap obtained from five segmentations. The
areas in yellow (upper left and lower part) had the highest value of 5.
(c) The ranking agreement heatmap computed from the five ranking
annotations. The top four severe lesion areas correspond to the four
areas with the top four high values, marked as lesions 1, 2, 3, and 4.

one radiologist are publicly available.1 Annotations from a
second radiologist have been published along with this paper,
which can be accessed using the same link.

B. PRE-PROCESSING
In the Shenzhen CXR dataset, different abnormalities anno-
tated by the same annotator for a given image may overlap.
As shown in Fig. 3, the dark blue area is annotated as a
‘‘calcified nodule,’’ and the light blue area is annotated as
a ‘‘clustered nodule.’’ The dark blue area belongs to both
categories. This study does not consider such multi-label
problems because they may cause overcounted agreement in

1https://data.lhncbc.nlm.nih.gov/public/Tuberculosis-Chest-X-ray-
Datasets/Shenzhen-Hospital-CXR-Set/index.html

FIGURE 5. Fleiss’ kappa coefficient vs patient number.

heatmaps. To give each pixel a unique label, we excluded
the small area from the larger one. In addition, we do
not differentiate abnormality types in agreement heatmaps,
kappa analysis, and STAPLE consensus. That is, all 19
abnormalities are considered an abnormality union, and the
Kappa coefficient calculation and STAPLE consensus are
obtained based on binary segmentation, i.e., foreground TB-
consistent pixels and background pixels.

C. RESULTS
Qualitative and quantitative analyses are performed to mea-
sure the inter-annotator reliability in terms of the agreement
heatmap(s), kappa statistics, and STAPLE consensus along
with sensitivity, specificity, and IoU score.

1) COLPOSCOPY IMAGES
Fig. 4 shows an example of cervical lesion segmentations
from five annotators. The histology for this case was
CIN3. Fig.4(a) shows the dynamic images in colposcopy
based on which the five annotators determined lesion areas
by comparing the aceto-whitening changes. Fig. 4(b) and
Fig. 4(c) show the common agreement heatmap and the
ranking agreement heatmap of the annotations, respectively.
We observe in the common agreement heatmap that the
highest agreement between the five annotators was achieved
in the upper left (in yellow) and bottom areas (in yellow).
In contrast, in the ranking agreement heatmap, there is
better discrimination, and the top four severe lesion areas
correspond to different values (colored in dark red to orange).
In Table 5 we present the overall agreement among five
annotators in cervical colposcopy images using Fleiss’ kappa
coefficient. We observe that the five annotators achieve a
fair agreement on the 30 patients and achieve a moderate
agreement when excluding patients with histology label
Unknown and CIN2, whose diagnosis and distinction from
CIN1 and CIN3 is a well-recognized problem in clinics.

Fig. 5 shows the distribution of Fleiss’ kappa coefficients
for the 30 patients. There is slight agreement (kappa
coefficient range 0-0.20) for eight patients, among whom
two are unknown type in histology, four are Negative and
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FIGURE 6. STAPLE-based consensus and binary masks from the five annotators on a cervical image. The STAPLE image indicates the STAPLE-based
consensus, and Reviewer 1 to Reviewer 5 indicates the binary masks generated from annotations of five annotators.

TABLE 5. Reliability of agreement between five annotators for the
cervical images from 30 patients using Fleiss kappa analysis.

CIN1 and two are CIN2. There is fair agreement (kappa
coefficient range 0.21-0.4) for six patients, among whom four
are Negative and CIN1, one is CIN2, and one is CIN3. There
is moderate agreement (kappa coefficient range 0.41-0.6) for
11 patients, including one negative case, seven CIN1 cases,
two CIN2 cases, and one Unknown case. There is substan-
tial agreement (kappa coefficient range 0.61-0.8) for four
patients, corresponding to one Negative case, one Unknown
case, and two CIN3 cases. There is almost perfect agreement
(kappa coefficient range 0.81-1.0) for a CIN3 patient.

FIGURE 7. Agreement vs categories in histology for the cervical dataset.
Y-axis indicates the agreement score by different metrics, while the x-axis
indicates the different categories in histology. The mean Fleiss’ kappa
coefficient, mean IoU score and mean value of normalized ranking
agreement heatmap value are shown in blue, orange, and gray,
respectively. IOU is calculated by comparing the ground truth by STAPLE
with each segmentation of the five annotators. The heatmap agreement
score in each category is computed using the following steps: 1) the
ranking heatmap is normalized using the equation Y =

(X-Min)/(Max-Min); 2) the mean heatmap score in the given category is
calculated by averaging the normalized heatmap values in this category.

The STAPLE-based consensus is shown in Fig. 6, which
is a weighted voting result of annotations from the five
reviewers. Sensitivity and specificity are calculated to com-
pare the agreement between each annotator with STAPLE-
based consensus, and we find that reviewers 2, 3, and

4 consistently achieve higher sensitivity than reviewers 1 and
5 among the 30 patients, whereas reviewer 3 consistently
has the lowest specificity among 30 patients. Fig. 7 shows
the inter-annotator agreements in each histology class. The
Fleiss’ kappa coefficient, IoU score, and normalized ranking
agreement heatmap value are shown in blue, orange, and gray,
respectively. The three different metrics consistently show
that the agreement of multiple annotators increases from the
Negative category to the CIN3 category, except for CIN2.

FIGURE 8. Agreement heatmap of abnormality annotations from two
experienced annotators on a chest X-ray image of a TB patient.
(a) Annotated abnormalities from two reviewers overlapped with the
original CXR. The two blue areas are annotated by Annotator 1, and the
yellow areas are annotated by Annotator 2. (b) Common agreement
heatmap from two annotators who achieve the highest agreement at the
two dark red areas in the right lung.

2) SHENZHEN TB CXR DATASET
Fig. 8 shows an example of abnormality annotations from
two annotators in a TB CXR image. Fig. 8 (a) illustrates
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annotations from both annotators overlapping with the
original CXR. Blue areas are abnormalities annotated by the
first annotator, while the second annotator annotates yellow
areas. Fig. 8 (b) is a common agreement heatmap that shows
the agreement between the two annotators. From the figure,
we can see that they achieve an agreement on the nodule areas
in dark red.

FIGURE 9. Histogram of Cohen’s kappa coefficients for 336 CXRs in the
Shenzhen dataset. Kappa coefficients less than zero indicate no
agreement between two annotators, e.g., for patients for whom two
annotators annotated in different locations, shown in Fig.10 (a). Kappa
coefficients of zero correspond to patients for whom one of the two
annotators does not find any abnormality in the CXR, as shown in
Fig. 10(b).

FIGURE 10. Annotations at different levels of agreement. (a) No
agreement. Kappa = -0.0032; (b) No agreement. Kappa = 0; (c) Slight
agreement, Kappa = 0.0100; (d) Almost perfect agreement, Kappa =

0.8096. Blue and yellow areas correspond to abnormalities annotated by
Annotator 1 and Annotator 2, respectively.

TABLE 6. Reliability of agreement between two annotators for chest
X-ray TB patients using Cohen’s kappa analysis.

FIGURE 11. STAPLE-based consensus and binary masks from two
annotators for the patient shown in Fig.8. (a) STAPLE-based consensus.
(b) Abnormality annotations from Annotator 1. (c) Abnormality
annotations from Annotator 2.

Fig. 9 shows the distribution of Cohen’s kappa coefficients
for 336 CXRs, and Fig.10 illustrates examples at different
agreement levels. Among the 336 CXRs, 17 cases for
which both annotators annotated abnormalities but in non-
overlapping different positions, corresponding to Cohen’s
kappa coefficients of less than zero and indicating that there
is no agreement between the two annotators, as shown in the
first bar in Fig. 9. An example of such situation is shown in
Fig. 10 (a). The first annotator did not find any abnormalities
in six of the 336 CXRs, and the second annotator did not
find any abnormalities in 12 CXRs. For the 18 patients, there
is no overlapping ROI between annotation masks from the
two annotators, and thus Cohen’s kappa coefficients are zero,
which is shown in the second bar in Fig. 9. The second bar
in Fig. 9 also includes 15 patients for whom annotated masks
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from the two annotators overlap only in a very small area.
Corresponding examples are shown in Fig.10 (b) and (c).
Table 6 lists the overall agreement between the two annotators
using Cohen’s kappa coefficient. The two annotators achieve
a moderate agreement on the 336 CXRs.

The STAPLE-based consensus and annotations from two
annotators for the CXR example in Fig.8 are illustrated in
Fig. 11. To achieve fast convergence, STAPLE was only
performed on the 301 CXRs for which the kappa score
is larger than zero. The histogram of IoU scores for both
annotators for 301 CXRs (with STAPLE consensus as the
ground truth) is shown in Fig.12, in which patients are
excluded if no abnormality is found by one annotator or
no overlap is found between the abnormality annotations
between two annotators. The mean IoU score for 301 CXRs
across two annotators is 0.5407.

FIGURE 12. Histogram of IoU scores for 301 CXRs in the Shenzhen
dataset. Patients are excluded if no abnormality is found by one
annotator, or if no overlap is found between the abnormality annotations
between two annotators.

V. DISCUSSION AND CONCLUSION
Evaluation of ground truth annotations and inter-annotator
agreement from multiple segmentations is challenging.
Human annotators can easily achieve high agreement on the
presence or absence of an object in a certain image region but
are more likely to generate different contours when they are
asked to annotate the outline of the same object in the same
image. It would be more challenging to achieve an agreement
when the annotations are for many objects with different sizes
and different types (the situation in our CXR dataset).

It is important to evaluate the inter-annotator agreement
before using the annotations to train AI models since
the model performance is affected by the inter-annotator
agreement. It is generally assumed that human inter-annotator
agreement defines the upper limit on our ability to measure
automated performance [51].

In colposcopy, agreement heatmaps with ranking can
highlight the most suspicious cervical lesions, which could
be used to guide biopsy sampling. The diagnosis of CIN2

and its distinction from CIN1 and CIN3 is a well-recognized
problem since CIN2 is not biologically homogeneous, with
some aligning with CIN1 (intermediate pattern) and some
with CIN3 (transforming pattern [46]. Therefore, it is
reasonable to observe low agreement in CIN2, which is
consistent with agreement heatmap, kappa analysis, and
STAPLE-based IoU score. The small number of samples may
also contribute to this issue.

Extending kappa coefficients from classification to seg-
mentation makes it possible to quantitatively evaluate and
interpret the inter-annotator reliability of multiple segmenta-
tion annotations. To our knowledge, this is the first paper to
extend and interpret the Fleiss’ kappa table for medical image
segmentation.

STAPLE is a proven algorithm dealing with multiple
annotations for obtaining the ground truth and analyzing
the inter-annotator reliability and variability. Although it has
been widely used, STAPLE has some limitations: 1) it fails
to converge when multiple annotations have no overlap,
which may occur in lesion/abnormality annotations; 2)
Since STAPLE relies on majority voting, it could tend to
underestimate the edges of the structure that are traced;
3) If there is a high degree of variability between the
annotators, it requires a greater number of annotators to
obtain a meaningful or acceptable consensus.

Evaluating the inter-annotator agreement with different
metrics is important to avoid bias when using a single metric.
For example, the agreement heatmap from the dynamic
cervical image dataset showed that the five annotators
achieved high agreement for the most suspicious lesions,
whereas the kappa coefficient showed that the inter-annotator
agreement is fair, and adjustments (such as changing the
number of annotators, limit the maximum number of lesions
per image, etc.) could be made to improve agreement and
generalization before training models. We also should note
that the size of annotations could generate potential biases
for the metrics. For example, it is easy to achieve more
than 50% overlap between two annotators when segmenting
objects that occupy a major part of an image, e.g., the
lungs in a CXR or CT for 3D. However, this may not be
even qualitatively considered an acceptable inter-annotator
agreement. In this case, increasing the acceptable kappa
threshold (e.g., kappa>0.8) could be considered as one
approach. This study focused on lesions that tend to occupy
a smaller part of the image. Challenges related to unifying
segmentation disagreements between larger objects will be
explored in future work.

The proposed metrics in this study have several clinical
and practical implications for both health organizations and
individuals. In clinical practice, the proposed metrics can
be applied to a small subset to assess the robustness of
annotations before applying it to a large dataset; this can allow
clinicians to have a better understanding of the annotations
and fine-tune annotation instructions. Further, organizations
and individuals can use the proposed metrics to assess the
quality of annotations in existing datasets before releasing
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these datasets or using them for model development. From
a machine learning standpoint, the proposed metrics could be
used to build robust annotations, leading to robust training
and development for AI models. In addition, the proposed
metrics can be used to generate clean labels or remove noisy
labels, which can enhance the performance of AI models and
lead to faithful diagnosis/prediction.

To conclude, this paper systematically assessed the inter-
annotator reliability for medical image segmentation using
different metrics, including agreement heatmaps, extended
kappa statistics, and STAPLE analysis. Experimental results
on dynamic cervical images showed that an overall fair
agreement is achieved between the five annotators, and
the highest agreement is achieved on CIN3, which is the
most severe category in histology. Experiments on TB CXR
images showed an overall moderate agreement between the
two annotators. We consider the annotations with a good
agreement due to the uncertainty of the number and size
of abnormalities when performing annotations. There are
19 abnormalities among the 336 CXRs, while each image
may include zero to 19 abnormalities, and the size of the
abnormality can be a very small area, such as a single nodule,
or a large area, such as moderate infiltrate or miliary. When
the annotated area is very small, background agreement D
will be much larger than foreground agreement A in (6) and
(5), which therefore results in a very small Cohen’s kappa
coefficient using (3). The reliability measurements on the
agreement of multiple annotators are consistent with different
metrics, including agreement heatmaps, kappa coefficient,
and IoU score, which proves the validity of annotations as
well as our proposed metrics. Finally, it is important to
note that although the proposed agreement heatmaps and the
extended kappa coefficients were evaluated on two medical
imaging datasets, such metrics can be easily applied to any
other data with multiple segmentation annotations.
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