
Received 12 January 2023, accepted 22 February 2023, date of publication 27 February 2023, date of current version 6 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3249757

Multi-Agent Action Graph Based Task Allocation
and Path Planning Considering Changes
in Environment
TAKUMA OKUBO 1, AND MASAKI TAKAHASHI 2, (Member, IEEE)
1Graduate School of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan
2Department of System Design Engineering, Faculty of Science and Technology, Keio University, Kohoku, Yokohama 223-8522, Japan

Corresponding author: Takuma Okubo (takuma.okubo.56@keio.jp)

This work was supported by the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology
Agency (JST) under Grant JPMJCR19A1.

ABSTRACT Task allocation and path planning considering changes in the mobility of robots in the
environment allows the robots to efficiently execute tasks with smaller travel times. A lunar base construction
is one of the situations in which robots can more efficiently accomplish its goal by taking such environment
changes into account when performing tasks. For the construction, we assumed that when a robot executes a
task of building a road, the environment changes such that aisles that were unusable before the task become
usable post execution. If such changes in environment are considered in advance, the robot can efficiently
plan to wait until the environment changes and canmove before executing the task. However, previous studies
have not considered such changes, resulting in inefficient planning. To solve this problem, we developed a
multi-agent action graph that consists of multiple layers and expresses the environment changes associated
with task execution in terms of changes in these layers. In this graph, task allocation and path planning are
formulated as a combinatorial optimization problem and are optimized using mixed-integer programming.
Multi-agent action graphs and the proposed formulation enable efficient planning considering changes in the
robots’ mobility in advance. Through simulations, we confirmed that the proposed method completed the
construction of the lunar base approximately 16.4% earlier than the conventional method, while consuming
approximately 16.0% less total energy of the robots.

INDEX TERMS Task allocation, path planning, environment changes, multi-robot systems, robotic lunar
surface operations.

I. INTRODUCTION
Task allocation [1] and path planning [2] are very important
for multi-robots to perform tasks in a coordinated manner.
Although there have been many studies on these planning
problems in the past, it is difficult for these studies to plan
for changes in the mobility of robots in the environment.
By taking into account changes in the robot’s mobility in
advance, an approach that allows the robots to efficiently
execute tasks with smaller travel times can be realized.
There are situations in which robots can more efficiently
accomplish its goal by taking such environment changes into

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Alshabi .

account when performing tasks in the real world. In this
study, we assume a situation in which robots’ mobility in the
environment may change: the construction of a lunar base by
robots, which has been the focus of much attention in recent
years.

Projects such as robotic lunar surface operations (RLSO)
have attracted increasing attention toward the goal of building
a human-capable lunar base and generating sufficient oxygen
and hydrogen from the polar ice to operate it [3], [4].
The construction of a lunar base is necessary for long-term
activities on the Moon; evidently, however, it is difficult
for humans alone to construct a lunar base. Therefore, such
plans typically envision the use of robots for construction.
The construction of a lunar base using robots is divided into

21160 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-3275-765X
https://orcid.org/0000-0001-8138-041X
https://orcid.org/0000-0002-9540-3675


T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

four major phases, as shown in Fig. 1. First, lunar surface
conditions are surveyed robotically, as shown in Fig. 1(a).
As in previous studies [5], [6], a geological survey of the lunar
surface enables selection of the best site for the construction
of the lunar base. Second, as shown in Fig. 1(b), the facility
layout of the lunar base is determined based on the results of
the lunar surface condition survey. To do so, it is necessary
to realize a facility layout suitable for the mission, such
as a plan to search for polar ice on the Moon’s surface.
Herein, optimization can generally be performed as a facility
placement problem, which is a combinatorial optimization
problem [7], [8]. Third, the schedule for base construction
is determined, as shown in Fig. 1 (c). At this stage, it is
necessary to consider the order in which tasks are to be
executed to realize the base construction as well as the due
dates of the tasks. Here, the specific steps, such as which
cargo to transport and when to transport it, or when to
construct a particular part of the facility, are not determined.
Instead, only a rough schedule is determined, such as which
facilities are to be constructed andwhen. Herein, optimization
can generally be performed as a scheduling problem, which
is also a combinatorial optimization problem. Many studies
on scheduling such practical construction projects have been
conducted so far [9], [10]. Finally, as shown in Fig. 1 (d),
the robot constructs the lunar base based on the determined
facility layout and schedule. In this phase, specific procedures
are determined, such as which cargo is to be transported
and when, and when specific parts of the facility are to
be constructed. This study focused on this specific phase.
An attempt to plan the construction of an entire facility
layout may cause a combinatorial explosion, requiring a
significant amount of computation power. In addition, major
replanning may be necessary in the event of changes to
the construction schedule. Therefore, in this stage, the
facility layout determined in the second stage and the
schedule determined in the third stage are divided into
a certain number of sections and realized as shown in
Figs. 1 (b) and (c).
In the construction of a lunar base using robots, the subject

of this research, robots perform tasks such as carrying cargo,
constructing facilities, and maintaining roads. Therefore, it is
necessary to optimize task allocation, that is, which task is
allocated to which robot. Path planning for each robot is also
necessary to ensure route efficiency.

When robots are used to construct a lunar base, changes in
the environment may occur as a result of the task execution,
as shown in Fig. 2. In this study, we assumed that when the
robot executes a task to build a road, the environment changes
such that an aisle that was unusable before the task execution
becomes usable. If the task allocation and path planning are
optimized without considering such an environment change,
the robot will execute the task in a roundabout manner,
as shown in Fig. 2 (b). On the contrary, if such environment
changes are taken into account in advance, the robot can wait
until the environment changes and is ready to move, as shown
in Fig. 2 (a), before making an efficient plan to execute the

FIGURE 1. Lunar base construction process.

task. However, in conventional research, it is difficult to plan
for such environment changes in advance. In fact, there are
many current studies that optimize task allocation and path
planning; however, because these methods do not consider
changes in the environment, they either result in inefficient

VOLUME 11, 2023 21161



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

FIGURE 2. Changes in the environment in which the robot can move as it
performs the task.

planning or can only plan to cope with changes by replanning
after a change.

Therefore, the contribution of this study is that it achieves
efficient task allocation and path planning by considering
in advance the changes in environment associated with the
execution of tasks by multiple robots. We developed a
multi-agent action graph to optimize planning considering
the changes in environment. A multi-agent action graph
consists of multiple layers, in which environment changes
associated with task execution are represented by changes
in the layers. Specifically, the lower layer represents the
environment state before task execution, while the upper
layer represents the environment state after task execution.
In this study, task allocation and path planning were
formulated as a combinatorial optimization problem on the
graph and optimized via mixed-integer programming. In the
formulation, when one robot executes a task that causes
an environment change, the other robots also transition to
the post-change environment state. Additionally, to realize
a task execution plan that assumes the construction of a
lunar base, the types of tasks that can be executed by each
robot and the execution time required to complete each task
must be considered in the two plans. For cargo transport
tasks, the number of packages that can be simultaneously
transported by robots (capacity constraints) is considered.
In addition, path planning must avoid collisions between
robots. We developed an efficient approach to minimize the
total travel time of the robot and, consequently, reduce the

energy consumed by the robot on the Moon, while taking the
above considerations into account in the task allocation and
path planning processes. Therefore, we optimized the task
allocation and path planning simultaneously to minimize the
total travel time of the robot, instead of separately optimizing
them, which is an approach adopted in many previous studies.
As described above, the proposed method takes into account.

From the simulations, we confirmed that the proposed
method achieves task allocation and path planning that takes
into account changes in the robot’s mobility in advance,
which was difficult to achieve with previous methods. In fact,
the proposed method significantly reduces the total travel
time of robots and task completion time compared to the
conventional state-of-the-art methods by taking environment
changes into account in advance. On the other hand, we found
that the computational performance of the proposed method
needs to be improved.

The remainder of this paper is organized as follows: Sec-
tion II describes previous related works; Section III describes
the multi-agent action graph, the graphical representation of
the proposed method; Section IV describes the formulation
of the proposed method using multi-agent action graphs;
Section V confirms the effectiveness of the proposed method
through simulations; and Section VI concludes the paper.

II. RELATED WORKS
This section describes previous studies on task allocation and
path planning for multiple robots. These can generally be
solved as a combinatorial optimization problem.

A. STUDIES THAT CONSIDER ENVIRONMENT CHANGES
Although previous studies on task allocation and path
planning that consider environment change into account
exist, the environment changes addressed by them are
defined differently. Park et al. [11] performed task allocation
for a robot that collects garbage, treating changes in the
amount of garbage as changes in the environment. They
responded to this environment change by modifying the
tasks already allocated to the robots. To reduce the need for
coordination among robots when modifying task allocation,
a game-theoretic approach was used, in which each robot
independently selects its own task. As described earlier, this
approach is easily adaptable to changes in the environment;
however, it does not plan in advance for changes in the
environment associated with task execution, as is the case
in this study. Yu et al. [12] performed task allocation and
path planning in an environment with unknown obstacles,
dealing with environment changes that increase or decrease
the number of targets. They adopted a flexible path-finding
approach by dynamically reallocating tasks to reach multiple
dynamically changing targets. Specifically, they proposed a
method that reallocates tasks to each other when finding
dynamically changing paths, because of the possibility of a
particular target appearing or disappearing during a mobile
mission. However, this study also did not consider the
environment changes that accompany task execution.

21162 VOLUME 11, 2023



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

Semiz et al. [13] proposed a multi-agent path search that
treats environment changes as changes in the available nodes
of the environment represented as a graph. The environment
change treated here is the closest to the definition this study
dealt with, in that the available nodes change. They also noted
that there are no previous studies that deal with this type of
environment change. They take the approach of avoiding the
replanning of agents that are not affected by environment
changes when they occur. However, it is difficult to achieve
planning that considers environment changes in advance,
as in our study, because the agents affected by the change are
replanned. Kawasaki et al. [14] proposed a robot navigation
system that considers the environment changes associated
with task execution. Similar to our work, this work can plan in
advance considering environment changes; however, because
of the structure of the graph, it can only be applied to single-
robot planning. To apply it to planning for multi-robots,
it is necessary not only to propose a new graph but also to
formulate it as a combinatorial optimization problem and plan
efficiently.

As described above, there have been several studies on
task allocation and path planning that consider environment
changes in the past, but they have difficulty planning in
advance to consider the changes. These approaches can only
respond to environment changes through re-planning, so it
is not possible to plan efficiently, where one robot waits
for environment changes caused by another robot’s task
execution before executing the task.

B. STUDIES THAT DO NOT CONSIDER ENVIRONMENT
CHANGES
Tai et al. [15] classified robot states into normal, delayed, and
state in which the robot can recover from a delay, whereas
Huang et al. [16] considered features such as the different
types of tasks that can be performed for different types of
robots. Xu et al. [17] aimed to keep the battery consumption
of robots as small as possible, while Liu et al. [18] aimed
to keep the battery consumption of robots as small as
possible and to prevent overlapping paths between robots.
Liu et al. [19] proposed a task allocation scheme that
simultaneously considers time and capacity constraints with
the aim to accommodate new tasks as they arise. Zhang
et al. [20] proposed an approach that focuses not only on
collisions between robots on a common cell but also on
path conflicts between robots when they exchange positions
in adjacent grid cells. This approach clearly prevented
overlapping work paths between robots. Zhang et al. [21]
provided four collision classifications and three solutions to
achieve collision-free path planning among robots. In this
study, collision avoidance was determined based on a rule
basis. Lyu et al. [22] proposed an approach that aims to
minimize the number of robots used, taking into account the
transport time and avoidance of collisions between robots.
Chen et al. [23] proposed an approach that simultaneously
considers capacity constraints and collision avoidance. This

study also utilized the cost of path planning after task
allocation and path planning to again perform task allocation
and path planning. As many of these conventional methods
take the approach of optimizing task allocation and path
planning separately, they may not be able to derive a globally
optimal solution in some situations; or even if they can, it may
take a long time to do so. In this study, we formulated amixed-
integer programming method that can derive a solution,
optimize task allocation and path planning for each robot
simultaneously in a single plan, and derive the globally
optimal solution, thereby achieving an optimal solution with
a smaller total robot travel time than current methods.
While the above studies employ metaheuristics, such as
genetic algorithms and annealing methods, there are also
conventional studies that utilize mixed-integer programming.
Poltena et al. [24] limited the number of robots allowed
in the aisle and prohibited all possible collision types as a
constraint. However, this study does not consider collisions
outside the corridor. In addition, planning becomes inefficient
because a large number of robots cannot enter the corridor.
Zhonga et al. [25] used a method that limits the number of
robots allowed in the same corridor. However, this study did
not consider collisions between robots in the corridor, nor did
it perform task allocation. Unlike these approaches, which
utilize mixed-integer programming, we can achieve more
rigorous collision avoidance because we consider collisions
between robots on the same grid and collisions caused by
passing each other between grids as constraints just like our
previously proposed method [26]. Therefore, the total travel
time of the robot can be reduced.

As described above, there have been several studies on task
allocation and path planning that do not consider environment
changes in the past. These studies are effective in other
situations but become inefficient in situations where the
robot’s mobility changes.

III. MULTI-AGENT ACTION GRAPH
This section describes the multi-agent action graph. Unlike
conventional graphical representations that can only rep-
resent a single environmental state, multi-agent action
graphs can simultaneously represent multiple environmental
states and transitions between them in a single graph.
As explained previously, the proposed graph expresses
changes in the mobility of robots in the environment and
enables simultaneous optimization of task allocation and path
planning considering the changes caused by multi-robot task
execution.

A. GRID MAP
To graphically represent the environment, the environment in
which the robot moves is first represented by a grid map.
For example, the environment in Fig. 2 is represented by
a grid map as shown in Fig. 3. In Fig. 3, the red grid
represents the depot from which the robot departs. The blue
grid represents the location of the lunar base facilities or the
planned construction sites of the facilities. The white grid

VOLUME 11, 2023 21163



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

FIGURE 3. Environment represented by a grid map.

FIGURE 4. Conflict of robots.

represents the aisles along which the robot can move. The
number of robots per grid is limited to one. Each robot can
only move to the grid adjacent to the grid it is currently on or
stay on the grid.

Utilizing the above grid map, two collisions are assumed
in this study. The first is when multiple robots collide on a
common grid, as shown in Fig. 4 (a). Since this study assumes
that there can be only one robot for each grid, cases like
Fig. 4 (a) are considered collisions. The second is a collision
between the robots exchanging positions in adjacent grids,
as shown in Fig. 4 (b). In this case, there is only one robot
in each grid; however, in a real situation, robots can collide
with each other. In this study, we developed an approach that
assumes these two types of collisions and prohibits them as
constraints.

B. GRAPHICAL REPRESENTATION
The proposed multi-agent action graph consists of multiple
layers, where changes in the environment are represented by
changes in the layers. For example, the environment change
shown in Fig. 2 is represented by the multi-agent action
graph shown in Fig. 5, based on the grid-mapped environment
in Fig. 3. As shown in Fig. 5, a multi-agent action graph
is a graph representation consisting of nodes and edges,
where each layer represents a different environment state.
The lower layer represents the environment state before the
change, while the upper layer represents the environment
state after the change, corresponding to Fig. 2 (b) and 2 (a),
respectively.

The red nodes represent depots, blue nodes represent
facilities, and black nodes represent aisles. The light-blue
and yellow-green nodes indicate the presence of a task

FIGURE 5. Environment represented by a multi-agent action graph.

FIGURE 6. Environment represented by a multi-agent action graph with
reduced number of edges.

location. Only one robot exists for each node. The edges
drawn between nodes indicate that the robot can move. Each
node in a layer has edges in the upper, lower, left, and
right directions. However, the number of edges connecting
to the depots and facilities is reduced, considering the
environment shown in Fig. 3. In particular, the edges between
the blue nodes are not drawn, considering the possibility
that the robot cannot move within the facility. Fig. 5 shows
that the edges that were not present in the lower layer
are present in the upper layer, indicating that the mobility
of the robot has changed. This graphical representation
allows for the representation of the increase in the number
of passable aisles after the road maintenance task is
performed.

The orange edges drawn between the layers represent the
robot moving to another layer when the environment changes.
Fig. 6 shows only the orange edges between the nodes where
the task causing the environment change is located. When
a robot moves this edge on the graph, it means that an
environment change occurred when the robot performed a
task.When a robot performs a task that causes an environment
change and transitions its environment state, other robots
must also transition to the environment state after the change
occurs. Therefore, the orange edge shown in Fig. 6 is
insufficient, and many orange edges are drawn, as shown in

21164 VOLUME 11, 2023



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

FIGURE 7. A multi-layer multi-agent action graph.

Fig. 5. By utilizing the graph shown in Fig. 5, robots can
transition between environment states at any given position.
In other words, when a robot performs a task that causes an
environment change, all robots move from the layer before
the change to the layer after the change using the orange
edges shown in Fig. 5. However, orange edges are drawn only
between nodes that have the same position in the grid map
shown in Fig. 3 because they represent only transitions in the
environment state and not positional movement. In addition,
because all robots must exist in the same environment state,
they always exist in the same layer of the graph.

C. MULTI-LAYER MULTI-AGENT ACTION GRAPH
If there are multiple tasks that cause changes in the
environment, the number of layers must be multiplied. For
example, if there are three tasks that cause environment
changes, the environment is represented by a multi-layer
multi-agent action graph consisting of eight environment
states, as shown in Fig. 7. Assuming that the tasks that
cause environment changes are a, b, and c, and that the
layers are L0–L7 from the bottom, the tasks completed in
each layer are as listed in Table 1. As shown in Table 1,
the number of completed tasks in each layer is 0 for L0,
1 for L1–L3, 2 for L4–L6, and 3 for L7, and the layer
height is determined by the number of completed tasks. The
connection of each layer is shown in Fig. 8, with orange edges
in Fig. 7. In Fig. 8, the bold lines indicate the overlapping
lines. Note that the orange edges drawn between the layers
represent only transitions in the environment state and not
positional movements. In addition, the edges between the
layers are drawn considering the case where multiple tasks
that cause environment changes are executed simultaneously.
For example, when tasks a, b, and c are executed in sequence,
all the robots transition their environment states in the order
of layers L0, L1, L4, and L7. However, when tasks a and b
are executed simultaneously, followed by task c, all robots
transition their environment state in the order of layers L0,
L4, and L7. Thus, the multi-layer multi-agent action graph can

FIGURE 8. Connection of each layer of the multi-layer multi-agent action
graph.

TABLE 1. Completed tasks in each layer.

represent the changes in environment caused by the execution
of multiple tasks by multiple robots.

IV. FORMULATION FOR OPTIMIZATION
This section describes the formulation for simultaneous
optimization of task allocation and path planning in a multi-
agent action graph. The proposed formulation allows for
optimization that takes into account the fact that multi-robot
transitions between environmental states simultaneously.
Unlike conventional formulations, which can only respond
to environment changes by re-planning, this enables efficient
planning considering changes in the robots’ mobility in
advance. Therefore, the proposed optimization achieves a
multi-robot coordinated plan in which one robot waits for
another robot to perform a task that causes a change and then
performs the task with a smaller travel time.

As alluded previously, we used mixed integer program-
ming for optimization and utilized Gurobi as our mathemati-
cal optimization solver. In mixed-integer programming, the
optimization objectives and constraints of the optimization
problem are first formulated. Then, the optimal solution
of the formulated problem is derived by enumerating all
solutions. However, when dealing with a problem with
many constraints, as in this study, it is difficult to derive
a solution through full enumeration because of the large

VOLUME 11, 2023 21165



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

TABLE 2. Nomenclature.

number of case divisions. Therefore, in this study, the branch-
and-bound method was used to reduce the computational
complexity [27], [28].

Table 2 lists the variables and sets of variables used to
express the objective function and constraints in the math-
ematical expressions. Using these variables, the objective

function is formulated as (1) and constraints (2)–(21).

minimize
∑
r∈R

∑
i∈N

∑
j∈Ji

∑
k∈K

ckijx
k
rij (1)

subject to
∑
i∈N

∑
j∈Ji

xkrij = 1 ∀r ∈ R, ∀k ∈ K (2)

∑
j∈Ji

xkrji −
∑
j∈Ji

xk+1
rij = 0 ∀r ∈ R, i ∈ N ,

k ∈ K (k ̸= Kend ) (3)∑
ds∈Ds

∑
j∈Jds

xKstartrdsj = 1 ∀r ∈ R (4)

∑
de∈De

xKendrdede = 1 ∀r ∈ R (5)

∑
de∈De

∑
j∈Jde ;
j̸=de

∑
k∈K

xkrjde = 1 ∀r ∈ R (6)

∑
r∈R

∑
j∈Jds

xKstartrdsj ≤ 1 ∀ds ∈ Ds (7)

∑
r∈R

∑
j∈Jde ;
j̸=de

xKendrjde ≤ 1 ∀de ∈ De (8)

∑
r∈Rtra

∑
t∈Ttra,n

∑
j∈Jt ;
j/∈Ttra,n

∑
k∈K

xkrjt = 1 ∀n ∈ TN (9)

∑
r∈Rtra

∑
t∈Ttra,n

∑
k∈K

xkrtt ≥ TEtra ∀n ∈ TN (10)

∑
r∈Rcon

∑
t∈Tcon,n

∑
j∈Jt ;

j/∈Tcon,n

∑
k∈K

xkrjt = 1 ∀n ∈ CN

(11)∑
r∈Rcon

∑
t∈Tcon,n

∑
k∈K

xkrtt ≥ TEcon ∀n ∈ CN (12)

∑
r∈Rmain

∑
t∈Tmain,n

∑
j∈Jt ;
j̸=t

∑
k∈K

xkrjt ≥ 1 ∀n ∈ MN

(13)∑
r∈Rmain

∑
ts∈Tmain,n

∑
te∈Jts ;
hte>hts

∑
k∈K

xkrtste ≥ 1 ∀n ∈ MN

(14)∑
r∈Rmain

∑
t∈Tmain,n

∑
k∈K

xkrtt ≥ TEmain ∀n ∈ MN

(15)∑
t∈Ttra

∑
j∈Jt ;
j̸=t

∑
k∈K

qtxkrjt ≤ Qr ∀r ∈ Rtra (16)

∑
r∈R

∑
j∈Ji

xkrij ≤ 1 ∀i ∈ N , ∀k ∈ K (17)

∑
r∈R

(xkrij + xkrji) ≤ 1 ∀i ∈ N ,

21166 VOLUME 11, 2023



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

∀j ∈ Ji(i ̸= j), ∀k ∈ K (18)∑
i∈Ln

∑
j∈Ji;
j/∈Ln,
hj>hi

∑
k∈K

xkrij ≤ 1 ∀r ∈ R, ∀n ∈ LN (19)

∑
i∈Ln

∑
j∈Ji;
j/∈Ln,
hj<hi

∑
k∈K

xkrij = 0 ∀r ∈ R, ∀n ∈ LN (20)

∑
i∈Ln

∑
j∈Ji;
j/∈Ln

xkr1ij −
∑
i∈Ln

∑
j∈Ji;
j/∈Ln

xkr2ij = 0

∀r1, r2 ∈ R(r1 ̸= r2), ∀k ∈ K , ∀n ∈ LN

(21)

Equation (1) is the objective function that minimizes the
total travel time of all robots to achieve the most efficient
approach while satisfying the constraints. Equations (2)–(21)
are numerical representations of the constraints. Equation (2)
is a constraint that states that each robot must be located
at some node at all times. Equation (3) is a constraint that
states that, at all times, each robot can only move to the
current node, to the adjacent node on the same layer, or to
a node representing the same position on another layer.
Equations (4)–(8) are constraints for each robot to depart
from and return to the depot. Equation (4) represents the
constraint for each robot to depart from the depot. Equation
(5) represents the constraint that each robot eventually returns
to the depot in the top layer. Equation (6) represents the
constraint that each robot can only enter the depot in the top
layer once. Equation (7) represents the constraint that only
one robot can depart from each depot in the lowest layer.
Equation (8) represents the constraint that only one robot
can return to each depot in the highest layer. Equations (9)
and (10) represent the constraints on the baggage-transport
task. Equation (9) represents the constraint that each transport
task must be performed once by one of the transport robots.
Equation (10) is the constraint that considers the execution
time of the transportation task. The execution time of a task
is the minimum time that a robot must stay at the node
where the task exists to execute it. Equations (11) and (12)
are the constraints on facility construction tasks. Equation
(11) represents the constraint that each construction task
must be executed once by one of the construction robots.
Equation (12) is a constraint that considers the execution
time of the construction task. Equations (13)–(15) represent
the constraints on the road maintenance task. Equation (13)
represents the constraint that each maintenance task must be
performed once by one of the maintenance robots. Equation
(14) represents the changes in environment that occur when
eachmaintenance task is performed. Specifically, it states that
the robot must move from the lower layer to the upper layer at
least once between nodes representing twomaintenance tasks
that are in different layers in Fig. 5 and in the same position in
Fig. 3. Equation (15) represents the constraint for considering
the execution time of the maintenance task. Equation (16)

FIGURE 9. Simulation environment.

FIGURE 10. Simulation environment represented by a grid map.

represents the capacity constraint, which indicates that each
transport robot can only simultaneously execute transport
tasks that are less than or equal to its load capacity. Equations
(17) and (18) are the constraints for avoiding collisions
between robots. Equation (17) is the constraint that prohibits
robots from colliding at the same node, as shown in Fig. 4(a).
Equation (18) is the constraint that prohibits robots from
colliding with each other by passing each other at adjacent
nodes, as shown in Fig. 4 (b). Equations (19)–(21) are
the constraints for all robots to simultaneously transition
environment states when a task that causes a change in the
environment is executed. Equation (19) is the constraint that
each robot can move from one layer below to one above
less than once. Equation (20) is the constraint that states that
each robot cannot move from the upper layer to the lower
layer. That is, the environment cannot return from the state
after the maintenance task is executed to the state before the
maintenance task is executed. Equation (21) is the constraint
that all robots move to other layers simultaneously, and all
robots are always in the same layer.

This formulation makes it possible to optimize at once
which nodes of the multi-agent action graph each robot will
move between at each discrete time. In other words, it is
possible to plan at once which robot will perform which task,
when, and along what path.

VOLUME 11, 2023 21167



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

TABLE 3. Execution time for each task.

V. SIMULATION
In this section, we describe the simulations performed to
verify the effectiveness of the proposed method. By utilizing
multi-agent action graphs, we confirmed that the proposed
approach is more efficient than conventional methods taking
into account the changes in environment associated with task
execution.

A. SIMULATION 1
We first confirm that the proposed method is more effective
than conventional methods in a simulation environment
where changes may occur with task execution.

1) PURPOSE
In this simulation, the following two points were confirmed.

First, the proposed method realizes task allocation and
path planning that considers the changes in environment
associated with task execution in advance. Specifically,
we confirmed that the proposed method realizes a plan
that considers the fact that corridors that were impassable
before the execution of a road maintenance task will become
passable after the execution of the task. Second, the use of
the proposed multi-agent action graph contributes to efficient
planning. Specifically, as shown in Fig. 2 (a), we confirmed
that the total travel time of the robot is kept small by planning
environment changes in advance.

2) METHOD
This simulation was performed using the environment shown
in Fig. 9, which assumes a part of a lunar base, referring to
the lunar base envisioned in the literature [4]. To realize the
construction of the lunar base, the robot was responsible for
transporting cargo, building facilities, and maintaining roads.
The simulation environment is represented by a grid map,
as shown in Fig. 10. The position of each task is indicated
by a light-blue circle for the transportation task, a purple
inverted triangle for the construction task, and a yellow-green
triangle for the maintenance task. To perform these tasks,
we assumed a situation in which two transportation robots,
one construction robot, and two maintenance robots are used;
we also considered the types of tasks that can be performed
by each robot. As a capacity constraint, we assumed that a
maximum of two transportation tasks can be simultaneously
executed. The execution time for each task is shown in Table 3
and is expressed based on the time it takes the robot to
move one grid, where 1 is the time required to move. The
simulation was repeated 10 times under these conditions.
Because the position of each task was set randomly, the

FIGURE 11. Simulation environment represented by a conventional
graphical representation.

positions of the tasks shown in Fig. 10 also changed
randomly.

We used two comparison methods, comparison methods
A and B. Both methods adopt an approach that simul-
taneously optimizes task allocation and path planning by
utilizing conventional graphical representations, as shown
in Fig. 11. Comparison method A is based on reference
[13] and reproduces a state-of-the-art method that accounts
for changes in the environment, which we have updated
to fit the simulation environment. Therefore, it cannot plan
the environment changes associated with task execution
in advance but can respond by re-planning as changes
occur. Specifically, when a change occurs, the graphical
representation shown in Fig. 11 is updated to match the
environment, and the robot’s position at the time of the
change is used as its initial position for optimization once
again. Comparison method B is based on reference [26] and
reproduces a state-of-the-art method that does not account for
changes in the environment, which we have updated to fit
the simulation environment. Therefore, it cannot respond the
environment changes associated with task execution. In both
methods, other constraints, such as the types of tasks that
can be executed by the robots, task execution time, capacity
constraints, and avoidance of collisions between robots, are
considered in the same way as in the proposed method, and
optimization is performed usingmixed-integer programming.
The comparison of these methods allows us to confirm
whether the proposed optimization using multi-agent action
graphs is more effective than other state-of-the-art methods
in a simulation environment where changes in the mobility
of robots may occur with task execution.

Two performance metrics were established to determine
the efficiency of task allocation and path planning. The
first is the task completion time. This is the difference
between the time when the first robot leaves the depot
and the time when the last robot returns to the depot.
By comparing the task completion times, it is possible to
evaluate how quickly the construction of the lunar base can
be completed. The second factor is the total travel time

21168 VOLUME 11, 2023



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

FIGURE 12. Results of the comparison method A.

FIGURE 13. Results of the comparison method A.

of the robots. This is the sum of the time spent by each
robot from when it leaves the depot to when it returns.
By comparing the total travel times of the robots, we can
evaluate the amount of energy they consumed. The efficiency
of the approach is determined by comparing the results of
10 simulations performed by the comparison method A, the
comparison method B, and the proposed method using these
indicators.

3) RESULT
Among the 10 simulation results, Figs. 12 and 13 show
an example of the results of the comparison method A,
Figs. 14 and 15 show an example of the results of the
comparison method B, and Figs. 16 and 17 show an example
of the results of the proposed method. From Figs. 12 and
13, we confirmed that the comparison method A responds
to the fact that the number of passages available for traffic
increases but does not consider it before task executions.
From Figs. 14 and 15, it can be seen that the comparison
method B does not consider the transition of the environment
state and fails to consider the fact that the number of passages
available for traffic increases even after the execution of the
maintenance task. However, Fig. 16 shows that the proposed
method plans for the transition of the environment from
a state in which none of the tasks that cause environment
changes are executed to a state in which two tasks are
executed, and then to a state in which three tasks are
executed. Fig. 17 also shows that the proposed method
considers the fact that a corridor that was impassable before
the execution of the maintenance task becomes passable
after the execution of the maintenance task. From the

FIGURE 14. Results of the comparison method B.

FIGURE 15. Results of the comparison method B.

above, we confirmed that the proposed method realizes task
allocation and path planning that considers the changes
in environment associated with task execution in advance,
which is the first item to be verified.

Next, Table 4 shows the comparison results of the three
methods in terms of two indices: task completion time and
total travel time of the robot. The results are the averages
of 10 simulation runs, rounded to the first decimal place.
Table 4 shows that the proposed method reduces the task
completion time by approximately 16.4% and the total travel
time of the robots by approximately 16.0% comparedwith the
comparison method A, and reduces the task completion time
by approximately 26.8% and the total travel time of the robots
by approximately 22.2% compared with the comparison
method B. These results confirm the second validation item;
that is, the use of multi-agent action graphs contributes to the
realization of efficient planning.

4) DISCUSSION
The simulation results confirmed that the use of multi-
agent action graphs enables a more efficient approach than
other state-of-the-art methods, considering the environment
changes associated with task execution in advance. In partic-
ular, the results of the evaluation of the two indices, the task
completion time and total travel time of the robots, indicate
that the planning is significantly more efficient than the
conventional methods. In fact, comparing Figs. 18, 19 and 20,
which represent the results shown in Figs. 13, 15 and 17
in multiple steps, it can be seen that each method responds
differently to changes in the environment. The comparison

VOLUME 11, 2023 21169



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

FIGURE 16. Results of the proposed method.

FIGURE 17. Results of the proposed method.

method A responds to changes by re-generating paths after
changes have occurred, and the comparison method B
generates paths regardless of the changes. The proposed
method considers the changes in advance and generates paths
that allow each robot to wait for environment changes and
perform its tasks on efficient paths. In this example, the
comparison method A required 42 task completion time
and 142 total travel time of the robots, the comparison
method B required 44 task completion time and 174 total
travel time of the robots, and the proposed method required
32 task completion time and 118 total travel time of the
robots. In other words, the proposed method reduced the
task completion time by approximately 23.8% and the total
travel of the robots by approximately 16.9% compared to
the comparison method A, and reduced the task completion
time by approximately 27.3% and the total travel of the
robots by approximately 32.2% compared to the comparison
method B.

B. SIMULATION 2
Computational performance is also important in order to
implement the proposed method in practice. Therefore,
we secondly investigate the computational performance of
the proposed method.

TABLE 4. Comparison of efficiency.

1) PURPOSE
In this simulation, we examined the computational time
required to optimize task allocation and path planning using
multi-agent action graphs. In particular, we investigated
the relationship between the size of the environment in
which the optimization is performed and computation time.
By examining this relationship, we can obtain an index for
determining the size of one compartment when dividing the
environment into compartments, as shown in Fig. 1 (b), when
actually constructing the lunar base.

2) METHOD
Three transportation tasks, one construction task, and three
maintenance tasks were executed by two transportation
robots, one construction robot, and two maintenance robots,
respectively. To investigate the relationship between the
number of nodes and computation time required for opti-
mization, the number of nodes in the environment was
varied from 376 to 1504. Because the number of nodes
indicates the size of the environment, the relationship
between the size of the environment and computation time
can be determined by examining the relationship between
the number of nodes and computation time. To accurately
examine the relationship between the number of nodes and
computation time, the type and number of tasks and the
type and number of robots are fixed for all environments.
In other words, because the number of maintenance tasks is
fixed at three, the proposed method performs optimization
by utilizing an 8-layer multi-agent action graph. The
simulation was performed on a PC with Intel (R) Core (TM)
i7-10700FCPU@2.90GHz, with 32.0 GBRAM, andGurobi
9.5.0 was utilized as the mathematical optimization solver.

3) RESULT
The relationship between the number of nodes and compu-
tation time is shown in Fig. 21. The figure shows that the
computation time required for optimization increases as the
number of nodes increases. In particular, if the number of
nodes increases excessively, the computation time increases
extremely. In fact, the computation time for the case with
1504 nodes was approximately 8.8 times longer than that for
the case with 1120 nodes. This result confirms that there is
no simple proportional relationship between the number of
nodes and computation time.

4) DISCUSSION
To determine the size of the environment to be divided into
compartments, as shown in Fig. 1 (b), it is necessary to inves-
tigate the relationship between the size of the environment

21170 VOLUME 11, 2023



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

FIGURE 18. Results of the comparison method A.

VOLUME 11, 2023 21171



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

FIGURE 19. Results of the comparison method B.

21172 VOLUME 11, 2023



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

FIGURE 20. Results of the proposed method.

VOLUME 11, 2023 21173



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

FIGURE 21. Relationship between the number of nodes and computation
time.

and computation time, as shown in this simulation. As shown
in the results, the larger the size of a compartment, the larger
is the size of the environment that can be optimized; however,
the computation time increases. Therefore, when applying
the proposed method to an actual system, the designer must
first determine the number of nodes that can be optimized
within the desired computation time. Then, the designer
determines the size of the environment for a compartment
based on the number of nodes. The size of one node is the size
of one robot. It should also be noted that increasing the size
of the environment increases not only the computation time
but also the size of the environment to be replanned when
modifications to the plan are necessary. For example, in the
case shown in Fig. 21, it is better to select an environment
size of 1120 nodes, which is the number of nodes before
the computation explodes. Of course, better performance
can be obtained if optimization is performed using a CPU
with superior processing speed, so it is also necessary to
select the performance of the CPU according to the desired
computation time. In particular, it is possible to use CPUs
with higher computing performance if the assumption is
made that calculations can be performed on the ground in
advance. The results for the computing machines used in this
study are for reference only.

The results also show that when planning in a large-scale
environment or when the number of layers in the multi-
agent action graph increases as the number of tasks causing
the environment changes increase, the number of nodes in
the graph that the proposed method handles in optimization
increases, which may cause computational performance
problems. Therefore, it is necessary to propose an optimiza-
tion method that improves computational performance with
as little loss of solution accuracy as possible. Specifically,
the first step is to improve the solution derivation process
of mixed-integer programming. In recent years, methods
that dramatically improve the computational performance of
mixed-integer programming by convexifying the model or
using the decomposition adjustment method instead of the
branch-and-bound method have been proposed [29], [30].
These studies do not degrade the accuracy of the solutions

derived using mixed-integer programming. It is also possible
to apply optimization methods other than mixed-integer
programming. As described in Section II, there are several
cases where metaheuristics such as genetic algorithms have
been applied in conventional research. We will consider
applying these methods in the future in this study as well.
However, to apply metaheuristics, it is necessary to develop a
neighborhood searchmethod and a solution-updating strategy
suitable for optimization using multi-agent action graphs.
In recent years, there has also been increasing interest in using
deep reinforcement learning as an optimization method [31].
Deep reinforcement learning is expected to derive solutions
with higher accuracy than metaheuristics. However, there are
few examples of its application to constrained real-world
problems; thus, the method needs to be developed to be
applied to this research. As described above, we will apply
various methods in the future to investigate the most suitable
optimization method for this study.

VI. CONCLUSION
Herein, we proposed a task allocation and path planning
method using a multi-agent action graph to consider changes
in the mobility of robots in the environment. Conventional
methods can respond to changes in the number of tasks
through replanning; however, they cannot plan in advance
considering the changes in environment upon a task’s
execution. Our proposed optimization method overcomes
this challenge using a multi-agent action graph, thereby
reducing a robot’s overall energy consumption. Multi-agent
action graphs and the proposed formulation enable efficient
planning considering changes in the robots’ mobility in
advance. Simulations confirmed that the proposed method
achieves significantly more efficient planning than con-
ventional methods for two indices: task completion time
and total travel time of robots. This indicates that the
proposed method achieves more efficient planning, with
completion of the lunar base construction earlier and with
less energy consumed by the robots. However, the results
of the proposed method also show that planning in a
large-scale environment cause computational performance
problems. Therefore, future prospects include developing an
optimization method suitable for utilizing multi-agent action
graphs to realize planning in large-scale environments that
require higher computational performance.

REFERENCES
[1] M. N. Janardhanan, ‘‘Review on state-of-the-art dynamic task allocation

strategies for multiple-robot systems,’’ Ind. Robot, Int. J. Robot. Res. Appl.,
vol. 47, no. 6, pp. 929–942, Sep. 2020.

[2] S. Lin, A. Liu, J. Wang, and X. Kong, ‘‘A review of path-planning
approaches for multiple mobile robots,’’Machines, vol. 10, no. 9, pp. 1–27,
2022.

[3] A. Austin, B. Sherwood, J. Elliott, A. Colaprete, K. Zacny, P. Metzger,
M. Sims, H. Schmitt, S.Magnus, T. Fong,M. Smith, R. P. Casillas, A. Scott
Howe, G. Voecks, M. Vaquero, and V. Vendiola, ‘‘Robotic lunar surface
operations 2,’’ Acta Astronautica, vol. 176, pp. 424–437, Jan. 2020.

[4] B. Sherwood, ‘‘Principles for a practical moon base,’’ Acta Astronautica,
vol. 160, pp. 116–124, Jul. 2019.

21174 VOLUME 11, 2023



T. Okubo, M. Takahashi: Multi-Agent Action Graph Based Task Allocation and Path Planning

[5] M. Y. Marov and E. N. Slyuta, ‘‘Early steps toward the lunar base
deployment: Some prospects,’’ Acta Astronautica, vol. 181, pp. 28–39,
Apr. 2021.

[6] A. Fursova and E. Nikolaev, ‘‘Thermal deformation analysis of a 3D
printed Kingdon ion trap for the moon environment,’’ Adv. Space Res.,
vol. 70, no. 1, pp. 211–222, Jul. 2022.

[7] D. C. Turkoglu and M. E. Genevois, ‘‘A comparative survey of service
facility location problems,’’ Ann. Oper. Res., vol. 292, no. 1, pp. 399–468,
Sep. 2020.

[8] S. T. W. Mara, R. J. Kuo, and A. M. S. Asih, ‘‘Location-routing problem:
A classification of recent research,’’ Int. Trans. Oper. Res., vol. 28, no. 6,
pp. 2941–2983, Nov. 2021.

[9] M. Tomczak and P. Jaśkowski, ‘‘Scheduling repetitive construction
projects: Structured literature review,’’ J. Civil Eng.Manage., vol. 28, no. 6,
pp. 422–442, May 2022.

[10] J. Rosłon, M. Ksia̧żek-Nowak, and P. Nowak, ‘‘Schedules optimization
with the use of value engineering and NPV maximization,’’ Sustainability,
vol. 12, no. 18, p. 7454, Sep. 2020.

[11] S. Park, Y. D. Zhong, and N. E. Leonard, ‘‘Multi-robot task allocation
games in dynamically changing environments,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2021, pp. 8678–8684.

[12] W.-Y. Yu, X.-Q. Huang, H.-Y. Luo, V.-W. Soo, and Y.-L. Lee, ‘‘Auction-
based consensus of autonomous vehicles for multi-target dynamic task
allocation and path planning in an unknown obstacle environment,’’ Appl.
Sci., vol. 11, no. vol. 11, p. 5057, 2021.

[13] F. Semiz and F. Polat, ‘‘Incremental multi-agent path finding,’’ Future
Gener. Comput. Syst., vol. 116, pp. 220–233, Mar. 2021.

[14] Y. Kawasaki, S. Mochizuki, and M. Takahashi, ‘‘ASTRON: Action-
based spatio-temporal robot navigation,’’ IEEE Access, vol. 9,
pp. 141709–141724, 2021.

[15] R. Tai, J. Wang, and W. Chen, ‘‘A prioritized planning algorithm of
trajectory coordination based on time Windows for multiple AGVs with
delay disturbance,’’ Assem. Autom., vol. 39, no. 5, pp. 753–768, Nov. 2019.

[16] Y. Huang, Y. Zhang, and H. Xiao, ‘‘Multi-robot system task allocation
mechanism for smart factory,’’ in Proc. IEEE 8th Joint Int. Inf. Technol.
Artif. Intell. Conf. (ITAIC), May 2019, pp. 587–591.

[17] W. Xu, S. Guo, X. Li, C. Guo, R. Wu, and Z. Peng, ‘‘A dynamic scheduling
method for logistics tasks oriented to intelligentmanufacturingworkshop,’’
Math. Problems Eng., vol. 2019, pp. 1–18, Apr. 2019.

[18] Y. Liu, S. Ji, Z. Su, and D. Guo, ‘‘Multi-objective AGV scheduling in an
automatic sorting system of an unmanned (intelligent) warehouse by using
two adaptive genetic algorithms and a multi-adaptive genetic algorithm,’’
PLoS ONE, vol. 14, no. 12, pp. 1–21, 2019.

[19] Z. Liu, H.Wang,W. Chen, J. Yu, and J. Chen, ‘‘An incidental delivery based
method for resolvingmultirobot pairwised transportation problems,’’ IEEE
Trans. Intell. Transp. Syst., vol. 17, no. 7, pp. 1852–1866, Jul. 2016.

[20] H. Zhang, H. Luo, Z. Wang, Y. Liu, and Y. Liu, ‘‘Multi-robot cooperative
task allocation with definite path-conflict-free handling,’’ IEEE Access,
vol. 7, pp. 138495–138511, 2019.

[21] Z. Zhang, Q. Guo, J. Chen, and P. Yuan, ‘‘Collision-free route planning
for multiple AGVs in an automated warehouse based on collision
classification,’’ IEEE Access, vol. 6, pp. 26022–26035, 2018.

[22] X. Lyu, Y. Song, C. He, Q. Lei, and W. Guo, ‘‘Approach to integrated
scheduling problems considering optimal number of automated guided
vehicles and conflict-free routing in flexible manufacturing systems,’’
IEEE Access, vol. 7, pp. 74909–74924, 2019.

[23] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
‘‘Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,’’ IEEE Robot. Autom. Lett., vol. 6, no. 3,
pp. 5816–5823, Jul. 2021.

[24] L. Poltena and S. Emde, ‘‘Scheduling automated guided vehicles in very
narrow aisle warehouses,’’ Omega, vol. 99, pp. 1–20, Mar. 2021.

[25] M. Zhonga, Y. Yangb, Y. Dessoukyc, and O. Postolache, ‘‘Multi-
AGV scheduling for conflict-free path planning in automated container
terminals,’’ Comput. Ind. Eng., vol. 142, pp. 1–11, Apr. 2020.

[26] T. Okubo andM. Takahashi, ‘‘Simultaneous optimization of task allocation
and path planning using mixed-integer programming for time and
capacity constrained multi-agent pickup and delivery,’’ in Proc. 22nd Int.
Conf. Control, Autom. Syst. (ICCAS), Busan, South Korea, Nov. 2022,
pp. 1088–1093.

[27] T. Fujieda, ‘‘Branch- and cut algorithm for mixed integer programming,’’
J. Soc. Instrum. Control Eng., vol. 42, no. 9, pp. 770–775, 2003.

[28] M. Kubo, ‘‘Introduction to mathematical optimization,’’ in New Math-
ematical Optimization: Solving with Python and Gurobi. Tokyo, Japan:
Kindaikagakusya, 2012, pp. 1–40.

[29] M. Nozarian, A. H. Nikoofard, and A. Fereidunian, ‘‘Efficient MILP
formulations for AC optimal power flow to reduce computational effort,’’
Int. Trans. Electr. Energy Syst., vol. 30, no. 8, Aug. 2020, Art. no. e12434.

[30] A.-B. Liu, P. B. Luh, M. A. Bragin, and B. Yan, ‘‘Ordinal-optimization
concept enabled decomposition and coordination of mixed-integer linear
programming problems,’’ IEEE Robot. Autom. Lett., vol. 5, no. 4,
pp. 5051–5058, Oct. 2020.

[31] Q. Wang and C. Tang, ‘‘Deep reinforcement learning for transportation
network combinatorial optimization: A survey,’’ Knowl.-Based Syst.,
vol. 233, Dec. 2021, Art. no. 107526.

TAKUMA OKUBO received the B.S. degree from
the Department of System Design Engineering,
Keio University, Yokohama, Japan, in 2021, where
he is currently pursuing the degree. His primary
research interests include combinational optimiza-
tion, task allocation, and path planning.

MASAKI TAKAHASHI (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in engineering
from Keio University, Yokohama, Japan, in 2000,
2002, and 2004, respectively. In 2004, he was a
Research Assistant with the 21st Century COE
Program. From 2005 to 2008, he was a Research
Assistant with the Department of System Design
Engineering, Keio University, where he became
an Associate Professor in 2009 and a Professor
in 2019. His primary research interests include

human–robot interaction, motion and vibration control, and sensor fusion.

VOLUME 11, 2023 21175


