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ABSTRACT This paper proposes a deep highlight removal method based on the dichromatic model
under alternating current (AC) light sources with a new diffuse prior on temporal domain, temporal dark
prior. An input image is decomposed into specular and diffuse components using a deep network. Due to
AC powered lights, both incident and reflected lights are time-varying. We exploit the periodic variation
property of the specular and diffuse reflections as a prior for dichromatic model based image decomposition.
In addition, we propose a new temporal dark prior as a pseudo-diffuse reflection. Unlike the conventional
prior in the spatial domain, to the best of our knowledge, this is the first study to utilize a diffuse prior on the
temporal domain for highlight removal. The blurred version of the temporal dark prior is additionally fed
to the network to alleviate hole artifacts. It is demonstrated through diverse experiments that these temporal
priors can strongly contribute to accurate image decomposition, leading to better highlight removal.

INDEX TERMS Dichromatic model, highlight removal, high-speed camera.

I. INTRODUCTION
The dichromatic reflection model assumes that the reflection
of an object is represented as a linear combination of specular
and diffuse reflections. This means that the pixel intensity of a
captured image is the sum of the specular and diffuse reflec-
tion, as illustrated in Fig. 1. Shafer [1] defined the specular
and diffuse reflection as interface and body reflection. When
the light strikes a surface, it first passes through the interface
between the air and the surface medium. Because the medium
and the air have different refraction index, some of the light
is reflected at the interface and produces interface reflection.
The amount of interface reflection is determined by Fresnel’s
law that relates interface reflection to the angle of incidence,
the refraction index of the material, and the polarization of
the incoming illumination. Interface reflection is assumed
to be constant with respect to wavelength, and it has the
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FIGURE 1. Image formation scenario based on the dichromatic model
under alternating current(AC) light sources.

same color as the illuminant. The light that penetrates through
the interface passes through the medium, and it undergoes
scattering from the colorant. It is absorbed by the colorant or
re-emitted through the interface, producing body reflection.
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FIGURE 2. (a) input image, (b) sine fitted curves for highlight and
highlight-free regions.

The color of the body reflection is generally different from
the illumination, because interactions with colorant particles
result in absorption with a probability depending on wave-
length. The dichromatic reflection model has been widely
used for estimating illumination chromaticity and highlight
removal. Estimating the model from image signals, however,
is a highly ill-posed problem with four unknown parameters
(chromaticity and intensity of specular and diffuse reflec-
tion). Thus, it is frequently assumed in many conventional
methods that the illuminant is known in advance.

The specular component can be an important clue for both
illumination estimation and separation. There have been a
number of studies on color constancy and highlight removal
using the dichromatic model. Since most vision tasks exploit
the color information, it is important to restore the origi-
nal reflectance color from highlight and saturated regions
[2], [3], [4]. Highlights can cause failure in stereo matching,
object recognition (e.g., face), and road segmentation which
plays a significant role in advanced driver assistance systems
(ADAS) [2], [5]. [2] showed the performance improvement
with highlight removal in road segmentation. Reference [3]
removed highlight especially on text image, and improved the
performance of text detection and recognition. Also, in face
recognition and iris segmentation, highlight removal is an
important preprocess [6], [7].

Since the invention of electric bulbs, we have been liv-
ing under various electric light sources. Because these light
bulbs are supplied with alternative current (AC) power, their
intensity varies sinusoidally with double the AC standard
frequency [8], [9], [10]. Because the variations are faster than
a capability of human eyes to capture the flicker, we cannot
observe the intensity fluctuations of AC light sources. How-
ever, with a high-speed camera, the intensity variations can be
easily captured. These variations can be beneficial temporal
features, in addition to spatial features. Fig. 2 shows high
speed frames, and the red and green boxed regions belong to
highlight and highlight-free regions, respectively. The fitted
sine curve with average intensity of each region is shown.

Because of AC-power variation, the intensities of both high-
light and highlight-free regions vary sinusoidally. The ampli-
tude of the highlight region is larger than the highlight-free
region in both closed and open scenes.We propose leveraging
this temporal fluctuation for highlight removal.

This paper proposes a novel deep highlight removal
method based on a dichromaticmodel underAC light sources.
A frame captured with high-speed camera is decomposed into
specular and diffuse components using a deep network, and
highlight removal is easily achieved by simply discarding the
specular component in the dichromatic model. Fig. 1 shows
the scenario of image formation considered for highlight
removal under AC powered light. We exploit the periodic
variation property of specular and diffuse reflections as a
prior for dichromatic based image decomposition. However,
it is difficult to get ground truths for the specular and diffuse
components. This makes it significantly challenging to train
an image decomposition network.

Several previous studies on highlight removal have used a
prior for specular reflection. To determine pseudo specular
reflection, they studied a threshold for Value or intensity
[11], [12], [13], [14] and used the minimum of RGB chan-
nels [15], [16]. In this paper, a new prior for the diffuse com-
ponent is proposed for stable convergence and accuratemodel
estimation. The minimum luminance is taken on high-speed
temporal frames, named as temporal dark prior (TDP). It can
be assumed that the TDP is less affected by the light source,
and thus, it is close to a specular free image. In other words,
it can be regarded as a pseudo diffuse reflection. The novel
temporal prior can contribute to more accurate diffuse com-
ponent generation at the network output, leading to higher
dichromatic decomposition.

The blurred version of the TDP is also proposed as a
prior for diffuse chromaticity under the assumption that the
chromaticity of the highlight would be similar to that of its
surroundings. It can play an important role in filling the holes
in highlight regions, which often occur at highlight removal.

In this paper, we propose a novel highlight removal method
that exploits temporal features. The main contributions of the
paper are summarized as follows:

• In our previous works [8], [10], [17], we firstly proposed
to exploit the variation of AC lights for illuminant esti-
mation and highlight removal. This paper extends the
previous AC light based dichromatic decomposition by
adding TDP for highlight removal.

• We propose TDP which is extracted from the temporal
variations of AC light images, and it is a temporal exten-
sion of the conventional spatial dark channel prior for
highlight removal [15], [16].

• We built a new highlight removal dataset which con-
tains high-speed video frames acquired under AC lights
(indoor and closed laboratory environments).

The rest of the paper is organized as follows. Section II
describes the previous studies of highlight removal. The
details of the proposed method are presented in Section III.
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Experiment results are shown in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORKS
The highlight removal is based on the dichromatic reflection
model. This model assumes that the reflected light consists of
specular and diffuse reflections as their linear combination:

i = md3 + ms0 (1)

where i denotes the luminance of a pixel, 3 and 0 are diffuse
and specular chromaticity, respectively. Also, md and ms are
weight coefficients, and are defined as:

md = wd
∑

Bc,ms = ws
∑

Gc (2)

where wd and ws are geometrical parameters that depend on
the geometric structure. Both

∑
Bc and

∑
Gc depend on the

intensity of incident light, and they represent diffuse albedo
and Fresnel reflectance, respectively [18]. So, the intensity of
diffuse and specular reflection vary by the fluctuation of AC
light source. Highlight removal is equivalent to separating the
specular reflection from the input image. Previous studies on
highlight removal can be divided into two groups according
to the number of input images: single image and multiple
images.

A. A SINGLE-IMAGE APPROACH
Because finding diffuse and specular reflection is a highly
ill-posed problem, most single image methods rely on con-
straints, including the white illuminant assumption. Many
single-image methods start with pseudo specular reflection
and iteratively solve the inverse problem using optimization
techniques. Xu and Zhou [11] and Xia et al. [13] obtain a
pseudo specular reflection by thresholding input pixels with
the Value in the HSV color space. Kim et al. [15] and Ramos
et al. [16] proposed that the minimum intensity among the
RGB channels for each pixel can be used as a prior of specular
reflection. However, these methods detect gray pixels as fully
specular reflection and fail to reconstruct the diffuse color.
The proposed method generates pseudo diffuse reflection to
help the reconstruction of intrinsic color on specular regions.
Tan and Ikeuchi [19] proposed the relation between the dif-
fuse reflection and maximum diffuse reflection chromaticity,
and Shan et al. [12] used it to obtain pseudo diffuse com-
ponent. However, the prior still shows artifacts on saturated
regions and it leads to failure of diffuse reconstruction. The
priors are compared in Fig. 13. Several methods use cluster-
ing to recover the chromaticity of the diffuse components.
Suo et al. [20] defined the l2 chromaticity and used material
clustering on an illuminant orthogonal subspace to find pixels
with the same diffuse reflectance. Yang et al. [21] and Shen
and Zheng [22] obtained a specular free image by pixel
clustering based on hue and intensity ratio. The clustering
based methods [20], [21], [22] have limitation in recovering
various colors. In these works, all the previous priors are
extracted in the spatial domain. However, we propose a new
temporal prior, which is the first trial in the temporal domain.

Deep-learning based single-image methods [23], [24]
require a ground truth specular or diffuse reflection for super-
vised learning. These methods contain structural similarity
loss with a ground truth image in the loss function. They
usually use synthetic images with ground truths for train-
ing. However, it is difficult to obtain ground truth specular
and diffuse reflection components for real images. Although
ground truth reflection components can be obtained with
images captured with different degrees of polarization filter
[25], [26] or controlling illumination and a sensor mask [27],
it is complicated to acquire additional polarization images
or masked images for ground truth. Also, Unlike previous
methods, the proposed network is trained in an unsupervised
way without ground truth. The TDP and AC light variations
make it possible to learn it using real images.

B. MULTI-IMAGE APPROACH
There are two types of previous studies using multiple
images: different directions of a light source [28], [29], [30]
and different viewpoints [31], [32]. These methods focus
on the spatial information of the images. References [28],
[29], [30] used images taken from the same viewpoint with
different illuminant positions. The datasets of [31] and [32]
were obtained with different vantage points. These methods
require additional experimental settings for different posi-
tions of a light source and camera that is not suitable for
real world situations. However, our proposed method does
not require additional constraints for position settings, and the
only constraint for the proposed method (AC light sources)
is common in indoor environments. Therefore, our proposed
method is more practical than previous studies [28], [29],
[30], [31], [32]. In addition, it utilizes temporal correlation,
while the previous methods with multiple images still rely on
spatial information.

Few studies have exploited temporal information for high-
light removal [17], [33], [34]. Tsuji [33] also exploited the
fluctuation of AC lights. The specular reflection is removed
by assuming that the min/max luminance of a high-speed
video is a linear prior for the diffuse reflection. However,
it has a limitation that the result is highly dependent on the
configuration of a parameter (α in [33]) that determines the
amount of specular reflection to be removed. Prinet et al. [34]
proposed a temporal prior with normal speed frames for the
enhancement of specular highlight, unlike specular removal
and high-speed in this paper. Yoo et al. [17] proposed a deep
network for estimating the dichromatic model under AC light
sources. It aims to obtain all the parameters of the dichro-
matic model and the estimated parameters are exploited for
color constancy and highlight removal. It is similar to our
proposed method in that it considers AC lights. However,
it estimates the dichromatic model itself (i.e., four model
parameters) by leveraging the property of AC lights, which
is a significantly ill-posed problem. In this paper, this strict
model estimation problem is alleviated, primarily aiming at
highlight removal. The dichromatic model is regarded as
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FIGURE 3. The proposed network architecture. The proposed network consists of three encoders (Target, TDP and Blur encoder) and two decoder that
generate specular and diffuse reflection.

an image decomposition problem. In other words, an input
image is decomposed into the specular and diffuse com-
ponents, instead of the estimation of the four dichromatic
parameters.

III. THE PROPOSED METHOD
The proposed network uses a high-speed video as an input
and generates specular and diffuse reflection components at
its output. Fig. 3 illustrates the overall network structure of
the proposed network. The input image It is the t th frame
of the input video, and all frames are sequentially fed into
the target encoder one by one. The diffuse reflection It,d , and
specular reflection It,s are the network output for the input It .
N denotes the number of input frames. The proposed network
consists of two subnets designed for both specular and diffuse
generation. The lower diffuse subnet in Fig. 3 includes two
encoders that accept important prior information useful for
the estimation of diffuse reflection. The inputs to the two
diffuse encoders are the temporal dark prior and its blurred
version. The former corresponds to a pseudo diffuse com-
ponent for image decomposition, while the latter provides
the prior to alleviate the hole artifact that commonly occurs
in highlight regions. Unlike conventional works that propose
specular prior on the spatial domain, this study is the first
to utilize diffuse priors in the temporal domain. Leveraging
the colors of surrounding pixels for hole-filling of highlight
removal has already been studied in the non-deep-learning
approach [6], [13]. The blur encoder was originally inspired
by this conventional method. As demonstrated in the ablation
study of the experimental results section, these two inputs
contribute significantly to image decomposition.

The encoder of each subnet is VGG 16 network [35]
without fully connected layers. Convolution and max pooling
layers encode the input image (H × W × 3) to H/32 ×

W/32 × 512 features. The decoder is composed of ‘1 × 1

FIGURE 4. (a) a target frame, (b) its estimated diffuse reflection with the
proposed method, (c) temporal dark prior (TDP) from five frames, (d) TDP
from three frames, (e) blurred TDP.

Conv + 4 × 4 Deconv’ and skip connection that transfers
the feature of each level in the encoder to the decoder.
The subnets adopt a convolutional auto-encoder based on
VGG 16 network [36]. The features of the target encoder
are transferred to the diffuse decoder as well as the spec-
ular decoder. Each hierarchical spatial feature of the target
encoder is concatenated with the corresponding feature of the
diffuse decoder, as shown in sky blue in Fig. 3. To accurately
reconstruct the diffuse reflection, the features of the TDP and
blur encoders are combined, and the results are decoded by
concatenating hierarchically with the features of the target
encoder.

A. TEMPORAL DARK PRIOR
The proposed method can improve the reconstruction per-
formance of diffuse reflection using the proposed temporal
dark prior (TDP). We considered a high-speed video under
AC light sources, whose brightness variations over time can
be observed easily. Due to the sinusoidal intensity variations
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FIGURE 5. The generation of TDP.

of AC power, there will probably be a frame that is captured
when the power of the light sources is minimum. Since this
frame is generated by weaker illumination than any other
frame, it is assumed that the frame is the closest to the true dif-
fuse reflection in high-speed video. It is regarded as a pseudo
diffuse reflection, and is named as temporal dark prior (TDP)
in this paper. It is practically difficult to find a video frame
captured at the minimum AC power due to severe noises in
high-speed video and small AC signal amplitudes. Thus, the
minimum was taken from the temporal signals. Fig. 4 (a) is
a high-speed video frame, (b) is the diffuse reflection of (a)
estimated using the proposed method, and (c) shows the TDP
of the input video. As shown in Fig. 4, the TDP is similar to
the diffuse reflection, and it is reasonable to use the TDP as
a pseudo diffuse reflection. In addition, TDP can be a clue
for restoring diffuse chromaticity, which is already lost by
dominant specularity, as shown in the red boxed region.

Fig. 5 shows how the TDPwas obtained. Theminimum at a
fixed location of the input video is taken as the TDP (denoted
by Itdp), which is given by

Itdp,c(i) = min{I1,c(i), I2,c(i), · · · , IN ,c(i)},
where c ∈ {r, g, b}

(3)

where c and i denote the r, g, b channels and ith pixel of the
input frames, respectively. N is the total number of frames
in the input video. The min{·} operation is applied for every
channel, and consequently, we can obtain a temporal dark
prior image.

The TDP can provide image details on saturated regions
where the diffuse colors of a surface are lost by excessive
illumination. These regions are highly challenging to estimate
intrinsic colors. According to the time-varying intensity of
AC light sources, it could be possible to extract the infor-
mation of intrinsic colors from the high-speed frames. For
example, for the red boxed region in Fig. 4, the target frame
(a) lost image details because of strong illumination, while
the details are still preserved to some extent in the TDP (c).
Therefore, the TDP can be a useful prior for the estimation of
diffuse chromaticity, and this is experimentally confirmed in
the ablation study in the next section.

In addition, the blurred TDP is fed into the proposed
network. The saturated pixels of an object are sparse, and
diffuse chromaticity is locally constant [37], [38]. Therefore,
it can be assumed that the chromaticity of the surrounding
pixels is similar to that of the saturated pixels. In the blue
boxed region of Fig. 4, it is confirmed that the chromaticity
of the saturated region is recovered with the blurred TDP.
Reference [6] claims that Gaussian blurred prior can be a
helpful cue for the reduction of saturation artifacts and noises
in the image. These previous studies show that the surround-
ing pixels contribute to alleviating hole artifacts. Also, [39]
mentioned the importance of the receptive field size. The
large highlight region cannot be filled with small receptive
field, while small highlight region may not be detected with
large receptive field. By using the blurred image as an input,
the larger receptive field can be used in the former layer, and
this can contribute to improve the hole-filling. Based on this
property, the blurred TDP is obtained by applying average
filtering to the TDP. It is expected to fill holes in highlight
regions with their surrounding pixel colors.

B. LOSS FUNCTIONS
To train the network, we design a couple of losses that reflect
the characteristics of the specular and diffuse components.
The network is trained to minimize the weighted sum of
losses as follows:

Ltot = Lrecon + w1Lsat + w2Ldiff + w3Lspec. (4)

The sub-losses Lrecon,Lsat ,Ldiff , and Lspec represent the
reconstruction, saturation, diffuse reflection, and specular
reflection losses, respectively.

The reconstruction loss Lrecon is L1 loss between the input
frame and the reconstructed frame with diffuse and specular
components. Based on the dichromatic model, the reflectance
is represented as the sum of two reflection components. For
our proposed network, a target frame It should be equal to
the sum of the specular Is,t and diffuse Id,t generated as the
network outputs of It , and is given by

It = It,d + It,s, t = 1, · · · ,N . (5)

For saturated pixels, the sum of the specular and diffuse
reflection components is greater than 255. This causes the
network to be trained with an inaccurate reconstruction
loss. Therefore, the reconstruction loss is calculated only on
non-saturation regions as follows:

It,recon(i) =

{
It,d (i) + It,s(i), It,d (i) + It,s(i) < 255
255, otherwise.

(6)

where i denotes the pixel index of the image. The reconstruc-
tion loss, Lrecon, is given by

Lrecon =
1
N

N∑
t=1

∥ It − It,recon ∥1 . (7)
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It is expected that for saturated pixels, specular reflection
is much stronger than diffuse reflection. This relation is for-
mulated as the saturation loss, Lsat . We define the ratio of the
diffuse coefficient to the specular coefficient as the saturation
loss for saturated pixels, Isat , as follows:

Lsat =
1
N

N∑
t=1

∑
i∈Isat

∥ It,d (i) ∥1

∥ It,s(i) ∥1
. (8)

To find a saturated pixel, previous studies [11], [12], [13],
[14] threshold the intensity of a pixel, while the proposed
method imposes an additional temporal constraint on it.
Under AC light sources, the intensity in the non-saturated
regions is sinusoidally varying with time, but the intensity in
the saturated region is constant. Thus, these saturated pixels
have zero temporal gradients. In this study, pixels within
a prescribed threshold of the temporal gradient TG(i) were
selected as saturated pixels. In addition, a saturated pixel is
strongly illuminated, and its intensity should be high. Thus,
a saturated pixel is determined by

Isat (i) = {i|I (i) > Th1, TG(i) < Th2} , (9)

where Th1 and Th2 are threshold values of intensity and
temporal gradient, respectively.

The loss for the diffuse reflection, Ldiff , consists of invari-
ant loss Ld,invar , blur loss Ld,blur , smooth loss Ld,smooth, and
AC fitting loss Ld,AC :

Ldiff = Ld,invar + α1Ld,blur + α2Ld,smooth + α3Ld,AC (10)

If an object and the camera are static in the input video, the
diffuse chromaticity along all frames should be constant. This
property is reflected as an invariant loss, which is expressed
as follows:

Ld,invar

=

N−1∑
t=1

N∑
t ′=t+1

∥
It,d∑

c∈{r,g,b} I
c
t,d

−
It ′,d∑

c∈{r,g,b} I
c
t ′,d

∥1

(11)

Saturated pixels commonly lead to hole artifacts in the
diffuse reflection component, whichmakes highlight removal
more challenging. The blurred TDP can provide a clue for the
intrinsic color of a saturated pixel, and the similarity between
the blurred TDP, Iblur , and the estimated diffuse reflection is
used as the blur loss:

Ld,blur =
1

Msat

N∑
t=1

∑
i∈Isat

∥ Id,t (i) − Iblur (i) ∥
2
2, (12)

whereMsat means the number of saturated pixels.
The diffuse chromaticity is piecewise constant [38] and

edge preserving, and it is applied as the TV-L1 loss for diffuse
reflection:

Ld,smooth =

N∑
t=1

∥ ∇It,d ∥1 (13)

This loss can contribute to restore diffuse chromaticity on
highlight regions.

Under AC light sources, the intensity of the reflected light
varies sinusoidally [8], [17]. The periodic variation is fit with
a sine curve, and the regression errors are measured using the
AC fitting loss. Instead of the regression of temporal pixels,
the mean values of all the frames are fit with g(t, 2):

g(t, 2) = A sin(4π f0t/fcam + φ) + off , (14)

where A denotes the amplitude of a fitting function, f0 is the
standard frequency of the AC current, fcamis the video frame
rate, and off is an offset value. The diffuse reflection esti-
mated with the proposed network should be fit with g(t, 2),
and the regression errors are defined as the AC fitting loss:

Ld,AC =

N∑
t=1

(
Id,t − g(t, 2)

)2
(15)

For specular reflection, there exist smooth loss Ls,smooth
and AC fitting loss Ls,AC :

Lspec = Ls,smooth + w1Ls,AC (16)

The specular reflection is spatially smooth on smooth sur-
faces [38], and this property is reflected as the TV-L2 loss:

Ls,smooth =

N∑
t=1

∥ ∇It,s ∥
2
2 (17)

With this smooth loss, we can extract the specular reflection
closer to the ground truth. Identical to the diffuse reflection,
the specular reflection also varies sinusoidally; accordingly,
the AC fitting loss is also used for the specular reflection:

Ls,AC =

N∑
t=1

(
Is,t − g(t, 2)

)2
(18)

C. NETWORK TRAINING
Among N frames of the input high-speed video, each frame
is sequentially fed into the proposed network, consequently
generatingN frames of diffuse and specular components. Our
proposed network exploits two types of losses for training:
temporal loss and spatial loss. The temporal loss (e.g., Ld,AC
and Ls,AC ) is calculated from all frames of the input video,
and the spatial loss is calculated from each input frame.
Therefore, the network is updated at every scene (N frames
in total), not by a single frame during training. For spatial
loss, the average from N frames is used for training. So, the
total loss used for updating the network (the weighted sum of
the average spatial losses of N frames and temporal losses) is
calculated every N frames. Algorithm 1 shows the process of
calculating loss and updating the proposed network.

IV. EXPERIMENTAL RESULTS
The proposed network was trained with our proprietary
dataset captured with a high-speed camera. The Adam opti-
mizer was used for training with a batch size of 16. The initial
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Algorithm 1 Network Training
Input video, I = {I1, · · · , IN }

Generate Itdp and Iblur
Initialize Ltot = 0
for t in (1,N ) do

It,d , It,s = model(It , Itdp, Iblur )
Ltot = Ltot + Lsat (It,d , It,s)
Ltot = Ltot + Ld,blur (It,d , Itdp)
Ltot = Ltot + Ld,smooth(It,d ) + Ls,smooth(It,s)

end for
D = {I1,d , · · · , IN ,d }, S = {I1,s, · · · , IN ,s}

Ltot = Ltot + Lrecon(I ,D, S)
Ltot = Ltot + Ld,invar (D)
Ltot = Ltot + Ld,AC (D) + Ls,AC (S)
update the network with Ltot

FIGURE 6. (a1) the darkest input image and (a2) the brightest one among
input video, (b-d) the diffuse reflection of (b) the proposed method,
(c) Akashi and Okatani [41], (d) Yamamoto and Nakazawa [42].

learning rate was 1 × 10−3, and the learning rate is decayed
with epochs. The number of frames (N in Section III) used
for training was 5. The performance of highlight removal was
evaluated qualitatively from the aspects of hole artifacts and
the separation of diffuse and specular reflection components.
Since we do not have ground truth reflection components of
our dataset, several no-reference image quality assessments
are compared. Also, we conducted evaluation with WHU-
Specular [40] and SHIQ [39] datasets.

A. DATASET
Because there is no public dataset built under AC light
sources, we used our own dataset, which contains diverse and
general scenes in both closed and open environments. The
scenes are captured with Sentech STC-MCS43U3V high-
speed vision camera. The camera frame rate was 150 FPS,
and the exposure time was 1/300 sec. The resolution of the
video frames is 740 × 540. The closed scenes are captured
under incandescent and fluorescent light sources in a labora-
tory environment that can control external lighting. The open
scenes are taken in public indoor spaces such as hospitals,
schools and library. The scenes were additionally captured
with a color checker to obtain ground truth illuminant. The
images in indoor spaces occupy 66% of the dataset, and the
number of closed scenes is 33%. A total of 150 and 75 scenes
were used for training and testing, respectively. To evaluate

our method for diverse materials, our dataset contains various
object colors and surfaces such as ceramic, wood, and plastic.
We captured static scenes with a fixed camera, and assumed
there is no movement in the scenes.

B. COMPARISONS WITH CONVENTIONAL METHODS
The performance was compared with several conven-
tional methods. Akashi and Okatani [41], Yamamoto and
Nakazawa [42], Yang et al. [43], Fu et al. [44] and
JSHDR [39] are single-image approaches that exploit only
spatial features, and Tsuji [33] and Yoo et al. [17] are
a multiple-image approach using a high-speed video as
an input. As shown in Fig. 6, the performance of the
single-image method varies according to the intensity of the
input image. Although our proposed method performs well
for both bright and dark frames, single-image methods show
better performance with darker images. For this reason, TDP
was used as the input of Akashi and Okatani [41], Yamamoto
and Nakazawa [42], Yang et al. [43] and Fu et al. [44] for fair
comparison. Since the result of Tsuji [33] varies by param-
eter α, the optimal result is chosen experimentally. Since
JSHDR [39] and JSHDR-Trans [45] are supervised methods
and there is no ground-truth in the proposed dataset, the
model is trained with the same loss as the proposed method in
an unsupervised manner. Network structure in [39], [45] was
not changed. Note that the learning-based models (JSHDR,
JSHDR-Trans [45] and the proposedmethod) are trained with
the proposed dataset.

Fig. 7 compares the proposed method with the conven-
tional methods, whose results are noisy, particularly for
saturated regions. Our proposedmethod performswell in sep-
arating the diffuse and specular reflections and obtains accu-
rate diffuse chromaticity. As shown in the input image (a1)
(with outstanding highlight) in Fig. 7, the proposed method
greatly reduces hole artifacts, while the highlight still remains
for Tsuji [33], Fu et al. [44] and Yoo et al. [17]. Also, Akashi
and Okatani [41], Yamamoto and Nakazawa [42] and Yang
et al. [43] extravagantly removed the specular reflection, and
failed to reconstruct clean diffuse chromaticity, resulting in
severe color distortion. Also, the proposed method performed
better than the conventional methods for the complex col-
ored scene as (a2) in Fig. 7. JSHDR [39] extracts a feature
with a single encoder-decoder, which is used to estimate
both specular and diffuse reflection. The proposed method,
however, exploits different sub-networks for specular and
diffuse reflection. Our proposedmethodworkswell for public
indoor scenes, as shown in (a3) and (a4) of Fig. 7. For the
boxed regions, our proposed method successfully separates
diffuse chromaticity, whereas the conventional methods have
hole artifacts. There is no ground truth for the diffuse and
specular reflection of dataset. To confirm the performance of
our proposed method, the TDP is shown in Fig. 7 (b1-b4).
The TDP is less affected by illuminant and contributes to
the realistic and clean visual quality of the proposed method.
As shown in Fig. 7, the diffuse reflection of the proposed
method has similar chromaticity with the TDP.
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FIGURE 7. (a1-a4) input image, (b1-b4) TDP, (c-j) the diffuse reflection of (c) Akashi and Okatani [41], (d) Yamamoto and Nakazawa [42], (e) Yang
et al. [43], (f) Tsuji [33], (g) Fu et al. [44], (h) JSHDR [39], (i) Yoo et al. [17], (j) JSHDR-Trans [45], (k) the proposed method.

TABLE 1. Non-reference image quality assessment metrics comparison. Smaller BRISQUE, NIQE, and PIQUE indicates better image quality.

The proposed method performs well at reconstructing
image details in the diffuse reflection, as demonstrated in
(a1) of Fig 7. The image details of the blue boxed region in

the input frame are lost because of strong illumination. The
proposed method restores the image details by successfully
separating the specular component from the input. In contrast,
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FIGURE 8. (a) color illuminant image, (b) white balanced image with the estimated illuminant of Yoo et al. [17] and its angular error, the
diffuse reflection of (c) Yoo et al. [17] and (d) the proposed method.

FIGURE 9. Evaluation with WHU-Specular dataset [40]. (a) input image, (b-h) the diffuse reflection of (b) Akashi and Okatani [41], (c) Yamamoto and
Nakazawa [42], (d) Yang et al. [43], (e) Fu et al. [44], (f) JSHDR [39], (g) JSHDR-Trans [45], (h) the proposed method.

the conventional methods fail to remove highlights due to
their poor intrinsic image decomposition.

Fig. 8 compares the proposed method with Yoo et al. [17]
which is a closely related work. In this paper, we assume
that the input image has been already white-balanced. For
fair comparison, the estimated illuminant of [17] is used for
white-balancing in the proposed method. Since [17] exploits
the diffuse chromaticity dictionary for modeling the diffuse
reflection, it has limitation in representing various diffuse
colors and artifacts occur in saturated regions. As shown in
the first row of Fig. 8, the colors of the three reddish objects in
the proposedmethod are closely restored to (b), while they are
distorted in [17]. Also, the proposed method performs better
in separation of diffuse and specular reflection, compared
with [17] as shown in the second row.

Since there is no ground truth reflection of the pro-
posed dataset, performance comparison is made with several
no-reference image quality metrics. Table 1 shows quan-
titative comparison with BRISQUE [46], NIQE [47], and
PIQUE [48]. The proposed method achieved the best per-
formance for BRISQUE and PIQUE. Although JSHDR-
Trans [45] achieved lower NIQE than the proposed method,
it suffers from blurred and color distortions as in Fig.7.

The performance comparison is made with the real image
datasets, WHU-Specular dataset [40] and SHIQ [39]. It is
shown in Fig. 9, Fig. 10 and Table 2. Since WHU-Specular
dataset [40] and SHIQ are a single image dataset, the
multi-image based methods, Tsuji [33] and Yoo et al. [17]
cannot be evaluated. Although the proposedmethod is trained
with multiple frames, the network can be evaluated with

20144 VOLUME 11, 2023



J.-W. Ha et al.: Deep Highlight Removal Using Temporal Dark Prior in High-Speed Domain

FIGURE 10. Evaluation with SHIQ [39]. (a) input image, (b) ground truth, (c-i) the diffuse reflection of (c) Akashi and Okatani [41], (d) Yamamoto and
Nakazawa [42], (e) Yang et al. [43], (f) Fu et al. [44], (g) JSHDR [39], (h) JSHDR-Trans [45], (i) the proposed method.

TABLE 2. PSNR and SSIM comparison for the real dataset, SHIQ [39].

a single frame. However, TDP cannot be generated with a
single image dataset, and input image is used instead of TDP.
Although TDP is not available for the evaluation, the per-
formance of the proposed method exceeds the conventional
methods in both qualitative and quantitative aspects. The
proposed method achieved the highest PSNR and SSIM.

C. ABLATION STUDY
Ablation studies were performed to demonstrate the effec-
tiveness of the local modules in the proposed network. Note
that the proposed dataset is used for training and test in the
ablation studies. First, the TDP andBlur encoders in the lower
subnet of Fig. 3 were removed to evaluate the effect of the
TDP and its blurred version. As shown in Fig. 11, we can
observe the color distortion and the larger hole artifacts
around the saturated regions in (b) and (c). In the blue boxed
region in Fig. 11, the specularity is significantly reduced by
the addition of TDP encoder. It means that TDP plays an
important role for performance improvement, and it is the pri-
mary contribution of the proposed method. However, the red
boxed region, which indicates highly saturated regions, still
shows hole artifacts. Since fully saturated regions do not show
AC variation, they result in hole artifacts and poor specularity
removal. To alleviate these hole artifacts, Blur encoder is
also proposed. The green boxed regions that have small hole

artifacts caused by saturation are reduced by adding the Blur
encoder. The results show the role and importance of the TDP
and Blur encoders. The proposed method reconstructs the
diffuse chromaticity to some extent in the region, as expected,
while the others still suffer from hole artifacts. As shown in
the zoomed-in portion in the first row of Fig. 11, the colors of
the saturated regions are filled closer to the ground truth in the
proposed method, while the others are incorrectly restored,
leading to color distortion. It is confirmed that the TDP and
its blurred image help reconstruct the diffuse chromaticity on
highlight regions.

Second, our proposed method exploits sinusoidal temporal
variations as a constraint on the network outputs (diffuse
and specular generations). This is reflected in the AC fitting
loss, and its usefulness is evaluated. If the AC fitting loss
is removed in the loss function, the diffuse component is
inaccurately separated and color distortions occur in some
regions, as shown in Fig. 12 (c). It is thought that the sinu-
soidal property plays a strong role in constraining the diffuse
component. The smooth losses (eq (13) and eq (17)) that
assume the smooth surface and uniform chromaticity are
commonly used in highlight removal. To confirm the effect
of this assumption, the proposed method is trained without
smooth losses (Fig. 12 (e)). The proposed method shows
better color recovery on saturated regions.
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FIGURE 11. (a) input image, (b-d) the estimated diffuse component by using (b) Target encoder, (c) Target and TDP encoder, (d) Target, TDP, and Blur
encoder (the proposed method).

FIGURE 12. (a) input image, (b-d) the diffuse reflection of (b) the
proposed method, (c) without AC fitting loss, (d) with three input frames
(e) without smooth losses.

Third, to evaluate the effect of the number of the input
frames, we conducted an experiment with three frames, and
the results are shown in Fig. 12 (d). Decreasing the input
frames probably affects the temporal features directly, which
can specifically degrade the performance of the separation.
This hypothesis was confirmed experimentally. The color
distortion of the highlight region appears in the diffuse com-
ponent, as shown in the red box in Fig. 12 (d). In another
analysis, it is assumed that the TDP would be more simi-
lar to the true diffuse chromaticity with more input frames.

As shown in Fig. 4, the TDP obtained from three frames (d)
is less accurate than that obtained from five frames (c). This
result demonstrates the importance of an accurate TDP in
dichromatic image decomposition.

To confirm the superiority of the TDP, other priors
were used for comparison. First, conventional priors in
Kim et al. [15] and Shan et al. [12] are evaluated. In [15]
and [16], the dark channel prior was used as a pseudo specular
component and a pseudo diffuse component was obtained
by subtracting the dark channel prior from the input image.
Shan et al. [12] proposed highlight removal using a pseudo
diffuse component based on [19]. Also, mean, median and
max frames among the input video are exploited instead of
TDP. They are generated with mean, median, and max opera-
tors instead of min operator in eq (3). Instead of the proposed
prior, the diffuse priors in Kim et al. [15], Shan et al. [12],
mean, median, and max frame and their blurred versions are
fed into the proposed network. Fig. 13 shows a performance
comparison between the TDP and the other diffuse priors in
the proposed network. The conventional diffuse priors [12],
[15] have large color differences in strong specular regions
and white objects. This leads to severe color distortion of
the diffuse component. This shows that the proposed TDP is
relatively more useful for recovering the diffuse component.
Compared with mean, median and max frames, the pro-
posed TDP showed better recovery performance especially
on strong specular region, where the estimation of intrinsic
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FIGURE 13. (a) input image, (b1-g1) the diffuse prior and (b2-g2) the estimated diffuse component using prior. (b1, b2) Kim et al. [15], (c1, c2) Shan
et al. [12], (d1, d2) mean prior, (e1, e2) median prior, (f1, f2) max prior, (g1, g2) TDP.

FIGURE 14. (a) input image, (b) phase map, (c) dominant phase (blue) map, and highlight removal result with (d) three phases model,
(e) dominant phase model, (f) single phase model (proposed).

FIGURE 15. (a) input image, (b) phase map, (c) sine curve fit for each
phase. Red: φ = 0, Green: φ = 2π/3, Blue: φ = 4π/3, Black: proposed
(single phase model).

chromaticity is very challenging. It indicates that TDP con-
tains more information about inherent chromaticity rather
than the other priors.

Since the open scenes contain multiple bulbs whose fluctu-
ations are different, we evaluate the accuracy of the proposed
single phase model. Each pixel is fitted with a sine curve, and
the phase is modelled by the optimal one among the group
{0, 2π /3 and 4π /3} as in [9]. This is visualized as the phase

map in Fig. 15. The color indicates the optimal phase, and
the sine curves fit with average intensity for each phase are
shown. As shown in Fig. 15, the optimal phase is spatially
varying. The dominant phase (which has the largest amplitude
among the sine curves fit with three phases) is chosen, and
its AC model is compared with the other two phases and the
proposed single phase model. The other two phases models
(red and green in Fig. 15) have relatively small sinusoidal
variations than the dominant. Thus, the dominant phase is
representative in the scene. Also, there exists very marginal
phase difference between the proposed and the dominant
phase model. This means that the proposed single phase
model is quite reasonable. To consider the variations of mul-
tiple bulbs, we trained the proposed network by calculating
AC fitting loss for both the optimal phases on the phase map
and the dominant phases only (no AC loss for the other two
phases), and the result are shown in Fig. 14. Considering all
three phases (three phases model) produces some artifacts
around highlight regions. For weak AC variation with small
amplitude, the determined optimal phase tends to be incorrect
due to the difficulty of modelling the AC variation. This
causes color distortion as shown in the red boxes. Thus,
dominant phase model is superior to three phases model.
In case of using the only dominant phase (dominant phase
model), the variations of the other two phases are not reflected
to the AC loss.
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V. CONCLUSION
We proposed a deep highlight removal method based on the
dichromatic model under AC light sources. It is an ill-posed
problem to decompose an image into diffuse and specular
components in the dichromatic model. To overcome this
challenge, we propose to utilize the TDP, which corresponds
to a pseudo diffuse component. Unlike the existing methods
with specular priors, the proposed diffuse prior contributes to
reducing the hole artifacts in highlight regions. In addition,
the AC variations of incident light can be used as a strong
constraint on both the diffuse and specular outputs of the
network, resulting in more accurate image decomposition.
The experimental results show that incorporating the tempo-
ral feature (the TDP and the AC fitting loss) can improve the
separation capability of the dichromatic components and alle-
viate hole artifacts, outperforming state-of-the-art methods in
terms of dichromatic decomposition and highlight removal.

The proposed method exploits the temporal variation of
the AC illuminants. Thus, its performance is fundamentally
limited, depending on the available temporal variation. For
instance, signal variation is hardly observed in strongly satu-
rated regions, leading to poor decomposition of specular and
diffuse components. In addition, small illuminant regions are
errorneously treated as strong specularities and the network
tries to fill them. They are filled with chromaticity similar to
surrounding pixels like real saturation region, as confirmed in
the yellow boxed region of Fig. 7 and Fig. 8. These limitations
have been also quite challenging to the existing methods, and
further study is required.

Our previous work [17] is successful in estimating the
dichromatic model which is very challenging. It, however,
still shows some limitations such as color distortion and
highlight removal performance in saturated regions as illus-
trated in Fig. 8. In this paper, the model estimation problem
is alleviated by image decomposition and the assumption
of white illuminant, primarily concentrating on highlight
removal. Thanks to these two points, we could obtain more
accurate diffuse reflection. It would be interesting to perform
both highlight removal and color constancy via image decom-
position without the assumption of white illuminant.
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