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ABSTRACT Speech enhancement (SE) aims to improve the intelligibility and perceptual quality of speech
contaminated by noise signals through spectral or temporal changes. Deep learning models achieve speech
enhancement and estimate the magnitude spectrum. This paper proposes a novel and computationally
efficient deep learning model to enhance noisy speech. The model pre-processes the noisy speech magnitude
by redistributing energy from high-energy voiced segments to low-energy unvoiced segments using an
adaptive power law transformation while maintaining the total energy of the speech signals constant.
A U-shaped fuzzy long short-term memory (UFLSTM) estimates the magnitude of a
time-frequency (T-F) mask by using the pre-processed data. Residual connections to the similar-shaped
layers are added to avoid gradient decay. Attention process is adopted by modifying the forget gate
of UFLSTM. To make a causal speech enhancement system, the processing does not include any future
audio frames. We compare the proposed speech enhancement to other deep learning models in different
noisy environments with signal-to-noise ratios of 0 dB, 5 dB, and 10 dB. The experiments show that the
proposed SE system outscores the competing deep learning models and considerably improves speech
intelligibility and quality. In terms of STOI and PESQ, the LibriSpeech database improves results by
(0.211) 21.1% and (0.95) 36.39%, respectively, over noisy speech in seen noisy conditions, and by (0.199)
19.9% and (0.94) 35.69% over noisy speech in unseen noisy conditions. Further, the cross-corpus analysis
shows that proposed SE system performs better when trained with the DNS dataset as compared to the
LibriSpeech, VoiceBank, and TIMIT datasets.

INDEX TERMS Energy redistribution, LSTM, residual connections, speech enhancement, and time-
frequency masking.

I. INTRODUCTION

The SE recovers the components of clean speech from
the noise degraded speech in a single microphone set-
ting. SE systems mostly improve the quality of speech
for real-time communication systems, multimedia content
that has already been recorded, and better intelligibility
to help automatic speech recognition systems and people
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listen better. SE methods such as spectral subtraction [1],
[2], Wiener filtering [3], and statistical [4], [S] have been
proposed in the last few decades. These methods were
computationally efficient but inadequate in dealing with
nonstationary noises. Broadly there are two main classes
of speech enhancement, that is, Single-Channel (micro-
phone) SE and Multi-Channel SE [70], [71]. The process
that enhances a target’s speech signal corrupted by back-
ground interferences with multiple microphones is termed as
the Multi-Channel Speech Enhancement. One of the main
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advantages of multi-channel speech enhancement is that are
able not only to attenuate the background noise but also
attain spatial filtering. However, this study focuses on the
Single-Channel SE.

In recent years, deep learning has evolved into a main-
stream method for SE, addressing the problems of conven-
tional SE methods. The deep learning-based speech enhance-
ment systems use models for speech and noise, where training
of speech and/or noise signals estimates the model parame-
ters. With a deep structure of hidden layers between input and
output layers, deep learning constructs complex models for
nonlinear relations and enables feature representation from
the lower layers to model the complex input data. Given a
speech dataset of the clean-noisy pairs, a neural model learns
to transform the noisy magnitude spectra to their clean coun-
terparts (mapping-based SE) or estimates the time-frequency
masks (masking-based SE), such as the ideal binary mask
(IBM) [6], [7], ideal ratio mask (IRM) [8], [9], and spectral
magnitude mask (SMM) [10]. In spectral mapping, the mod-
els are trained using a direct mapping rule, where the noisy
spectral features are learned to estimate the clean spectral
features. But, over-smoothed spectrum are observed in the
output speech. On the other hand, spectral-masking are more
successful learning methods where gain parameters of target
speech are multiplied to input noisy magnitude spectrum.

Many deep learning models, such as feed-forward DNNs
(FDNNs) [11], [12], [13], convolutional neural networks
(CNNs) [11], [14], [15], recurrent neural networks (RNNs)
[16], [17], [18], [19], gated recurrent units (GRUs) [20],
[21], and generative adversarial networks (GANs) [22], [23],
[24], are used for SE. To learn the temporal dependencies
of speech signals, FDNNs have been extended to RNNs.
However, RNN undergoes gradient exploding and vanishing
during back propagation through time (BPTT) and impul-
sively stops to learn the long-term dependencies. A gradi-
ent clipping approach can be used to solve the problem.
Long-Short-Term Memory (LSTM) [25], [26], [27] enhances
gradient vanishing by providing a memory cell framework
that facilitates information flow across network layers. In the
recent past, LSTM-based SE has gained much attention [25],
[28], [29], [30]1, [31], [32], [33], [34]. The internal structure
of LSTM went through various modifications in order to
boost its ability to process data in a particular application.
A peephole connection is proposed to improve past infor-
mation learning ability by using the previous cell status as
input [35]. To control the data flow between the memory cells,
a depth gate is introduced to connect memory cells between
network layers [36]. But the aforesaid LSTM variants usually
increase the computational complexity.

Fuzzy logic systems, primarily type-2 fuzzy systems, have
gained attention in high-order uncertainty applications dur-
ing the last few years, particularly for prediction challenges
including dynamic and non-stationary problems [37].Various
sorts of study have been described to represent uncertainty
using fuzzification [38], [39]. They have also been used
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in real-world applications through type-2 fuzzy logic sys-
tems, such as in modelling uncertainty, control, and predic-
tions [40]. RNNs have also been used to model, estimate,
and model time series data. It has been shown that RNNs,
particularly the LSTM, are very capable of handling complex
problems. The multi-layered interrelationships between short
and long time series may be learned using the LSTM [41],
[42], [43]. The advantage of an LSTM cell over a traditional
recurrent unit is its cell memory [44].The cell vector of
LSTM can capture the concept of forgetting a proportion
of its previously recorded memory as well as a proportion
of its new information. These characteristics can be applied
to non-stationary problems such as SE [29]. Aside from the
usual advantages of utilising RNN s for time series prediction,
the LSTM network can also learn the temporal dependency
from data. As a result, by definition, the LSTM may learn
an arbitrary complex mapping from inputs to outputs, much
as traditional nonlinear prediction algorithms. It faces diffi-
culties, however, to represent the related uncertainty in non-
stationary features [72].

This paper proposes a speech enhancement system with
LSTM architectural changes. The UFLSTM with skip con-
nections achieves improved SE performance. The proposed
work is inspired by the recent success of the fuzzy-based
LSTM network in nonstationary learning tasks. The study
uses UFLSTM since we believe that such an arrangement
shows better performance in SE. The proposed deep learn-
ing framework for SE estimates the time-frequency mag-
nitude spectra. Usually, noise signals strongly mask the
weak-energy speech components, which become indistin-
guishable, resulting in intelligibility and quality deterioration.
Therefore, energy in noisy speech is redistributed from the
rich energy voiced components to the weak-energy unvoiced
components by applying adaptive power law transformation
while maintaining the total energy of the speech signals
constant. The energy redistribution increases the energy of
weak components before actual magnitude estimation. The
redistributed speech signals are fed to UFLSTM with residual
(skip) connections to avoid gradient decay over the layers.
Attention process is adopted by modifying the forget gate
of UFLSTM. The speech spectra contain formant-frequencies
that are leading in low-frequency segments and demonstrate
a sparse distribution in the high-frequency segments. Thus,
it is vital to distinguish the different spectral regions with
different attention weights. Attention weights are computed
to distinguish various spectral segments. No future informa-
tion is used in the context vector used to train the LSTM
model, which leads to a causal SCSE system suitable for
real-time signal (speech) processing. The contributions of this
study are summarized as. (i) a speech enhancement method
is proposed with LSTM architectural changes, applying skip
connections to avoid gradient decay and an attention process
to differentiate various spectral regions. The ablation study
suggested that the LSTM architectural change has improved
the intelligibility and quality of noisy speech. (ii) The analysis
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has suggested that preprocessing with energy redistribution
considerably improved the magnitude estimation, thereby
increasing the speech intelligibility and quality.

The remaining paper is organized as follows. Section II
explains the proposed SE based on the UFLSTM with resid-
ual (skip) connections and the attention process. Section III
explains the preprocessing of noisy speech using energy
redistribution. The experiments are presented in Section IV.
Results and discussions are provided in Section V. And
finally, the conclusions of this study are drawn in Section VI.

Il. THE PROPOSED SPEECH ENHANCEMENT SYSTEM
For a given clean speech x; and noise signal d;, the noisy
speech signal y; is formed by the additive mixing as follows:

Ve =X +d; (1

where {x,y,d} € RV*! and N shows number of speech
frames. The SE systems aims to recover an estimate x; of
the clean speech x; given y;. The inputs to the UFLSTM
are: Y = [y1,.., Y, .., yn], where y; indicates the spectral
magnitudes of the noisy speech at frame ¢. The high-level
features & are extracted by the encoder from the input speech
frames as:

W&, he = FLSTMEncoder(y;) )

where 7% and h€ stand for the key and query, respectively.
In this study, unidirectional LSTMs are modified, which
shows a strong ability to model sequential data, leading to
improved performance in speech enhancement. The attention
process is applied with key and query as the input to create
fixed-length context vectors:

C' = Attention(h¥ , h9) (3)

The output w; is a recovered enhanced speech signal x;
which takes the context vectors C’, output of the encoder he,
and the noisy speech y;, respectively.

w(t) = FLSTMDecoder(C', th, Vi) “)

The proposed SE system based on UFLSTM is depicted
in Fig. 1.

A. REVIEW OF THE LSTM NETWORK

The LSTMs were created to solve the shortcomings of tradi-
tional RNNs by improving gradient decay in a deep network.
A cell state ¢; of LSTM saves long-term memory according
to following expressions as input gate, output gate, and forget
gate, respectively [45]:

ir = o(Wy) X [Cr—1, b1, X ] + b; ©)
Oy = oW, x [Cr1, hy—1, %] + by (6)
Jo = o(Wyg) x [Cr—1, he—1, Xe] + by N

The gates adjusting the states and hidden cells of the LSTM
can be expressed as:

ki = tanh(W¢ x [Ci_1, hy—1, X1 + be¢) ®
C=/®C-1+i Q+k 9)
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where W;, Wy, W,,, are weight matrices of input, forget, and
output gate associated with hidden states, x; is input to the
current timestamp, /;_1 is hidden state of the previous times-
tamp, C,—; and C; are the previous and current timestamps,
respectively; whereas b;, b, and b, are the biased terms of
the input, forget, and output gates, respectively.

B. TYPE-2 FUZZY SYSTEM
A type-2 fuzzy system can be represented as B which can be
characterized by a type-2 mean function, up, , where k € K
andv € Jkg[O,l] [46], [47]1

B = (k,v), upy.,,|Viek, VY € Jkcio.1] (10)

where 0 < By = 1, K and J; are the domains of the fuzzy
set and the secondary mean function at k. The B is given as
according to [48]:

_ fkeK fv

€Jk ILB(k,v) C 0.1 11
T < [0, 1] (11)

B

where [ shows union of overall admissible k and v [49]. The
model considers the Takagi-Sugeno-Kang (TSK) fuzzy rule
class, which has higher accuracy than the Mamdani rule [50].
The singleton fuzzifier was used in this study [51]. The
Karnik-Mendel (K.M.) approach [52] was used for defuzzifi-
cation.

C. TYPE-2 FUZZY LSTM CELL STRUCTURE
The sigmoid squashing function is applied to all gates of the
FLSTM cell structure in this study, as outlined below:

1
c=——
14+ek

The inputs to the cell can be described as:

Netc, = D Wyt — 1) (13)

The cell inputs pass through a non-linear function f;. The
primary mean functions for all antecedents are defined using
a Gaussian distribution with undetermined income as follows:

3

i 1| Ni —n;c

W (My) = exp | —= |: . (14)
[

12)

where nﬁ( S [”21 ”22] shows an uncertain mean, k is the

number of antecedents, N indicates the number of fuzzy
rules, and oli shows the standard deviation, respectively.
Figure 2 demonstrates the cell structure of the FLSTM. The
cell state in FLSTM can now be defined as:

Ci =i;Ci—1 + i + i1g(Netc,)) 15)
The output gate follows the expression, given as:
G
Netou D Wouy"(t = 1)+ D WouC; (16)
n j=1
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FIGURE 2. The cell structure of FLSTM.

The activation applied at the output gate is given as:

Activation = f, (Netous) (17)
Finally, the cell output is given as:
Output“ (t) = Netoury,, Car) (18)

D. UFLSTM

It is challenging to formulate deep RNNs due to satura-
tion in the activation functions, which results in decaying
gradients over the layers. LSTMs with gated mechanisms
are able to capture sequential information in speech wave-
forms. The proposed FLSTM model can effectively deal with
the limitations of RNN using new approaches. Firstly, the
FLSTM model follows a U-shaped architecture, moving from
left to right. For the left side, the time-steps are decreasing
whereas the units are increasing. Similarly, on the right side,
the time-steps are increasing while the units are decreasing.
With this architecture, the FLSTM model can control the
high-resolution features without memory overflow and with
fewer network parameters. Secondly, residual connections
are added to the similar-shape layers from the left to the
right-side of the model. Therefore, the decaying gradient
over the layers is improved. Thirdly, Attention process is
added to the forget gate. The speech spectra contain formant
frequencies that are dominant in low-frequency segments
and demonstrate a sparse distribution in high-frequency seg-
ments. Therefore, it is important to distinguish the different
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FIGURE 3. The UFLSTM architecture.

spectral regions with different attention weights. Attention-
weights are estimated to differentiate various spectral regions.
The FLSTM model consists of five layers and two residual
connections. Figure 3 illustrates the architecture of FLSTM.
The FLSTM model learns a non-linear relation and trans-
forms the noisy speech into a clean speech signal by estimat-
ing a magnitude of a time-frequency mask.

The normalized attention weight can be learnt in the atten-
tion parameter vector v using following expression:

exp(vyq)
T
Zr:] exp(va(,))

where «(;) and 4 are the weights for output at
and H is a transpose operator, respectively.

Q@) = (19)

™ time step y'

IIl. ENERGY REDISTRIBUTION

The SE system estimates a clean magnitude spectrum from
a noisy speech spectrum. The noise signals completely or
partially mask the weak segments of the speech signals, and
according to differences in the energy levels, the weak speech
segments can get attenuated. This leads to deteriorated speech
intelligibility and quality. Unvoiced stops and fricatives are
mainly composed of low-energy segments. In noisy con-
ditions, these low-energy segments undergo further energy
degradation and become indistinguishable from noise seg-
ments. Thus, the energy levels of the weak speech segments
need to be increased prior to magnitude spectrum estimation
such that the low energy segments become distinctive from
the noise segments. Speech signals are usually nonstationary;
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therefore, a uniform amplification of the frames with different
SNR levels may result in an annoying loudness level. As a
result, energy is redistributed from the rich energy segments
to the weak energy segments in such a way that the total
energy of the signal remains intact. A threshold is computed
from the average estimated noise energy to obtain noise-only
frames such that energy redistribution is avoided in these
frames. Here, energy is redistributed in a noisy signal using
adaptive power law transformation [53].

The magnitude spectrum of the noisy speech |Y(w)]| is
first segmented into 32 millisecond frames and 8 millisecond
overlap is added to the segmented frames. An energy redis-
tribution function is applied to the signal, given as:

Enew(m) = BI1 + d(m))]Eiq(m)! ~€*d@min— 50)

where d(m) indicates energy deviation between the mean
energy value u of a noisy speech signal and old energy E,;q
of a speech signal. The parameters 8 and n control the signal
energy in Ep,,. The d(m) and E,;; are given as:

d(m) = Eola(m) — ju(m) @1)
N—-1
Eoua(m) = D [y(m)? (22)
n=0
k
p(m) = D" Epla(m) (23)
m=1

The adaptive power law transformation function compen-
sates the deviation between w and E,;; such that it transforms
the old energy values to the new energy values. For a large
deviation, the value of new energy is higher than old energy
value, and vice versa. To estimate the energy controlling
parameters (8 and n), particle swarm optimization is applied
to maintain the total energy of the noisy speech after distribu-
tion. Parameters 8 and # are initialized in the [0, 1] interval
for all audio frames. The redistributed noisy speech signal is
given as:

EVLEW (m)
Eoiqa(m)

The energy redistributed noisy speech is fed to the FLSTM
for estimating a magnitude of time-frequency mask. Figure 4
demonstrates the speech spectrograms degraded by white
noise at 5 dB SNR. The energy redistribution in the noisy
speech signal is highlighted (with red boxes). The spectro-
grams clearly indicate that weak energy parts are boosted
after energy transformation.

y(n) = y(n) * (24)

IV. EXPERIMENTS AND SETTINGS

A. DATASETS

The data during experiments was prepared from the Lib-
riSpeech dataset [54]. The LibriSpeech dataset is divided
into three subsets of 100/360/500 hours, respectively. In the
experiments, a 100-hour clean subset is selected, which is
uttered by 251 speakers (125 male and 126 female speakers).
The clean subset of data is divided into training and testing

20818

Frequency (kHz) F‘requency (kHz)

Time, t seconds

FIGURE 4. Impact of energy redistribution. The spectrogram of a noisy
utterance: (A) before energy redistribution and (B) after energy
redistribution. The red and blue boxes indicate the impacts of energy
redistribution.

sets. The clean subset is mixed with noise sources during
training. To evaluate the performance of the proposed SE
system in various noisy environments, 15 seen noise types
are selected from the DEMAND database [55]. The types of
noise seen include; N1: Airport, N2: Babble, N3: Buccaneer,
N4: Car, N5: Destroyerengine, N6: Destroyerops, N7: Exhi-
bition hall, N8: Factory, N9: Restaurant, N10: Street, N11:
Subway, N12: Coffee Shop, N13: White, N14: Volvo, and
N15: Pink Noise, respectively. In addition, two unseen noise
types (factory2 and cafeteria noise) are also used to examine
the SE system. The trained network is tested with factory2
and cafeteria noise, which are unknown to the trained model.
During experiments, the noisy utterances are generated by
mixing noises with clean utterances at three SNR levels,
that is, 0 dB, 5 dB, and 10 dB, with a 5 dB step size. For
model training, 2000 clean sentences uttered by 200 speakers
(male and female) have been duplicated three times for each
SNR level and mixed with 15 noise types. Therefore, a total
of 12000 noisy utterances are used to train the SE model.
Besides, a set of 2000 utterances from 100 speakers is used
to test the SE model.

B. EVALUATION METRICS
To evaluate the performance of SE methods, we have used
four objective metrics including Short-time objective intelli-
gibility (STOI) [56], extended STOI (ESTOI) [57], Percep-
tual evaluation of speech quality (PESQ) [58] and Source-to-
distortion ratio (SDR) [59].

C. NETWORK ARCHITECTURE

The proposed UFLSTM model consists of input layer, five
unidirectional FLSTM layers with N units followed by a
fully connected output layer with 257 units. From the input
to the output layer, the quantity of neurons in the UFLSTM
layers is given as: [1230/ 512/ 256/ 128/ 256/ 512/ 257]
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neurons. The number of epochs and learning rate are set
to 100 and 0.001, respectively. All weights were randomly
initialized and trained with mini-batches of 32 sequences by
back-propagation through time with the Adam optimizer.

D. ACOUSTIC FEATURES

The input feature sets are composed of 15-d AMS (Ampli-
tude Modulation Spectrogram, 31-d MFCC (Mel-Frequency
Cepstral Coefficients), 13-d RASTA-PLP (Relative Spectral
Transformed Perceptual Linear Prediction Coefficients) and
64-d GFE (Gammatone Filter-bank Energies). The GFE fea-
tures are extracted from the Cochleagram, a T-F represen-
tation usually used in CASA (computational auditory scene
analysis). A Cochleagram explains the working of the human
auditory system. A 64-channel Gammatone Filter-bank is
used for GFE features. Furthermore, delta feature coefficients
are calculated and appended with the features. RASTAMAT
toolbox is used to extract acoustic features.The acoustic fea-
tures are extracted from the input speech at frame level.
The frame length and shift are set to 20 millisecond and
10 millisecond, respectively. Auto-regressive moving aver-
age (ARMA) filter is used to further improve the temporal
trajectories of features. A context window of eleven (11)
frames is used to enclose temporal information. No future
frames are used, thereby formulated a causal system which
is appropriate for real-time speech processing. A 2706-d
(246-d x 11) feature vector is applied to the FLSTM model.
Zero mean and unit variance normalization is applied to all
feature vectors before applying to the FLSTM.

E. LOSS FUNCTION AND SPECTRAL MASKS

Speech enhancement systems based on the spectral-masking
estimate the masking parameters in order to restore the clean
speech components by suppressing the background noise
components in all time-frequency units. Spectra- masking is
more effective as compared to the spectral-mapping since a
time-frequency mask follows a bounded dynamic range; as a
result, achieves fast convergence. There are several methods
to learn the parameters of time-frequency mask which are
based on the training-targets or optimization domain [73].
In mask approximation, a time-frequency mask is estimated
such that MSE (mean square error) between reference and
estimated mask is minimized, given as:

1 B—-1 R
MSEgua) = 5 > [(M(@) = M(@))’] (25)
t=1

where M, (w) is a reference time-frequency mask whereas
M (o) is the estimated time-frequency mask, respectively.

This study estimated the ideal ratio mask (IRM) and ideal
amplitude mask (IAM), given as:

_ / X(@)P 06)
VX (@) + ID(w)?

IAM __ X (w)]
* Y ()]

IRM
M X

27)
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where |X (w)|? and |D(w)|? show the magnitude spectrums of
the clean speech and noise signals, respectively. The dynamic
range of the IRM is R = [0, 1] whereas R > 0 for IAM in all
time-frequency units.

V. RESULTS AND DISCUSSIONS

A. SPEECH ENHANCEMENT IN SEEN CONDITIONS

We first examine the performance of the proposed SE,
denoted by UFLSTM. Table 1-2 shows the average STOI
and ESTOI, PESQ, and SDR test scores for various noise
types and SNR levels. The results are averaged over all
noise types. It can be observed that the proposed SE sys-
tem obtained better results as compared to other RNN
models. The proposed UFLSTM with energy redistribution
and architectural changes shows the highest test scores in
terms of STOI, ESTOI, PESQ, and SDR in all noisy con-
ditions. While compared to the baseline LSTM [60] and
Attention-LSTM [25], the proposed UFLSTM obtained the
best SE results. UFLSTM leads to the highest STOI, ESTOI,
PESQ, and SDR improvements over the unprocessed noisy
speech (UnP).

TABLE 1. Average STOI and ESTOI (in percentage) test scores in five seen
noise types and SNR levels. The proposed SE system is denoted as
UFLSTM.

Noise Methods STOI [57] ESTOI [58]
0dB  5dB 10dB | 0dB 5dB  10dB
Airport Noisy (UnP) 62.7 695 783 | 30.8 38.8 507

Att-LSTM[25] | 858 885 91.7 | 689 741 80.2
LSTM [60] 819 878 916 | 653 722 784
UFLSTM 886 913 941 | 714 768 835

Babble Noisy (UnP) 56.6 635 73 238 345 432
Att-LSTM [25] | 78.2 86.8  89.1 523 644 765

LSTM [60] 80.3  85.1 88.6 | 541 672 771

FLSTM 84.6 832 911 583 711 80.2

Factory Noisy (UnP) 46.6  53.1 683 | 21.7 314 402

Att-LSTM [25] | 72,5 793 862 | 463 565 68.3
LSTM [60] 713 79.1 856 | 472 558 679
UFLSTM 74.8 834 91 504 593  71.1
Street Noisy (UnP) 614  68.1 77.1 303 373 49.2
Att-LSTM [25] | 843 869 905 | 674 728 79.1
LSTM [60] 80.5 874 913 | 66.1 705 769
UFLSTM 87.1 90.7 934 | 70.6 744 822
Car Noisy (UnP) 648 71.6 804 | 329 40 52.6
Att-LSTM [25] | 87.9 897 926 | 70.1 752  82.1
LSTM [60] 84 889 909 | 674 734 797
UFLSTM 89.7 924 946 | 735 779 844

The best STOI and ESTOI scores at low SNRs are
obtained at car noise at SNR>0dB, i.e. STOI> 89%, and
ESTOI>73%, respectively (Table 1). Similarly, the best
PESQ and SDR test scores at low SNRs are achieved at car
noise at SNR>0dB, i.e. PESQ>2.6, and SDR>5.4, respec-
tively (Table 2). During the analysis of results, it is examined
that STOI test score with babble noise is improved from
56.6% with noisy speech (UnP) to 84.6% with UFLSTM
and achieved (0.28) 28% improvement in STOI at 0 dB
SNR. Similarly, ESTOI test score with babble noise is
improved from 52.30% with Attention-LSTM to 58.30%
with UFLSTM and achieved (0.06) 6% improvement in
ESTOI at 0 dB SNR. At airport noise, the STOI test score is
improved from 87.8% with LSTM to 91.3% with UFLSTM
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TABLE 2. Average PESQ and SDR test scores in five seen noise types and
SNR levels. The proposed SE system is denoted as UFLSTM.

Noise Methods PESQ [59] SDR [60]
0dB  5dB  10dB | 0dB 5dB 10dB
Airport Noisy (UnP) 155 176 201 | -3.70 -0.80  3.09

Aw-LSTM [25] | 237 258 287 5.07 6.86 9.38
LSTM [60] 228 258 285 4.98 6.71 9.27
UFLSTM 263 276 299 5.38 7.21 9.62
Noisy (UnP) 1.49  1.69 1.92 | -3.70 -0.80 3.11
Att-LSTM [25] | 231 252 277 2.21 4.64 8.75
LSTM [60] 236 254 280 2.29 4.70 9.31
UFLSTM 255 277 294 2.44 4.94 9.49
Noisy (UnP) 132 151 1.76 | -3.90 -090  3.01
Aw-LSTM [25] | 1.74 206 245 3.93 6.09 8.96
LSTM [60] 1.71 200 241 3.88 6.01 8.87
UFLSTM 198 223 265 4.11 6.33 9.20
Street Noisy (UnP) 130  1.50 1.72 | -410 -1.00  3.00
Aw-LSTM [25] | 1.72  2.00 2.43 3.89 6.00 8.90

Babble

Factory

LSTM [60] 1.69 199 239 3.83 5.96 8.81
UFLSTM 196 220 261 4.02 6.29 9.14
Car Noisy (UnP) 1.58 1.78 208 | -3.50 -0.60 3.12

At-LSTM [25] | 241 261 290 | 510 691 943
LSTM[60] | 232 259 288 | 502 678 9.3l
UFLSTM | 269 279 298 | 541 725 9.69

and achieved (0.35) 3.5% improvement in STOI at 5 dB
SNR. Also, ESTOI test score is improved from 74.1% with
LSTM to 76.8% with UFLSTM, thereby achieved (0.27)
2.7% improvement in ESTOI at 5 dB SNR. The proposed
SCSE achieved the best test STOI and ESTOI scores in
factory noise at all SNRs.

The PESQ and SDR test results show that the PESQ test
score at babble noise is improved from 2.36% with LSTM to
2.55% with UFLSTM and achieved 0.19 (8.05%) improve-
ment in PESQ at 0 dB SNR. Similarly, the SDR test score
at babble noise is improved from 2.21 dB and 2.29 dB with
Attention-LSTM and LSTM to 2.44 dB with UFLSTM and
achieved 0.23 dB and 0.25 dB improvements in SDR at
0 dB SNR. In factory noise, the PESQ test score is improved
from 1.51 with the noisy speech to 2.23 with UFLSTM and
achieved 32.28% improvement in PESQ at 5 dB SNR. Also,
the SDR test score is improved from 3.01 dB with noisy
speech to 9.20 dB with UFLSTM and achieved 6.19 dB
improvements in SDR at 10 dB SNR. The proposed SE
system achieved the best PESQ and SDR test scores in airport
noise at all SNRs.

B. SPEECH ENHANCEMENT IN UNSEEN CONDITIONS

To evaluate the generalization performance of the proposed
SE model, Table 3 provides STOI, ESTOI, PESQ, and SDR
results for two unseen noise types (factory2 and cafete-
ria). The proposed SE model outscored the baseline and
competing models with significant margins in unseen noisy
conditions. We observed that UFLSTM achieved the best
STOI, ESTOI, PESQ, and SDR scores because of its modi-
fied network architecture and energy distribution. Since the
proposed LSTM model is treated with robust feature sets
and residual connections, therefore, the performance is not
drastically altered in unseen noisy conditions. For example,
the average STOI test scores are improved from 65.4% to
86.5% with UFLSTM, thereby improved the STOI by (0.211)
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21.1% over the noisy speech. At SNRs such as 0dB and
5dB, UFLSTM improved the STOI by (0.45) 4.50% and
(0.23) 2.30% over the Atten-LSTM. Also, the average PESQ
test scores are improved from 1.57 to 2.51 (37.69%) with
UFLSTM, thereby improved the PESQ significantly over
the noisy speech in unseen noisy conditions. The proposed
LSTM model improved the STOI by 2.90% and 3.70%
over Att-LSTM and LSTM. In addition, the proposed model
improved the PESQ by factors 0.21 (8.33%) and 0.24 (9.52%)
over Att-LSTM and LSTM. Finally, the proposed model
for the SE improved the SDR by 0.31 dB and 0.30 dB
over Att-LSTM and LSTM. The proposed FLSTM achieved
the best performance in unseen noise types at various
input SNRs.

C. COMPARISON WITH SOTA DL MODELS

To showcase the performance of the proposed SE system,
several state-of-the-art (SOTA) deep learning models are
selected, which include baseline LSTM (Chen et al.) [60],
Attention-LSTM (Liang et al.) [25], CNN (Kounovsky
and Malek) [61], GAN (Shah et al.) [62], DNN (Wang
and Narayanan) [63], Transformer-DNN (DNN-TGSA by
Kim et al.) [64], DeepResGRU (Saleem et al.) [21], LSTM-
KF (Yu et al.) [65], and Deepxi (Zhang et al.) [66].

The average STOI and ESTOI test scores over 15 noise
types and SNR levels are given in Table 4. In contrast to
the competing DL models, the UFLSTM provides the highest
STOI and ESTOI scores in all noisy conditions. For example,
the STOI score with noisy speech increased from 66.13%
to 87.17% with the proposed model and achieved a (0.21)
21.04% gain in STOI. Also, STOI scores with GAN, CNN,
and DNN improved from 83.83%, 84.16%, and 79.59% to
87.17% and achieved (0.334) 3.34%, (0.301) 3.01%, and
(0.758) 7.58% improvements, respectively. It is clear from
the average scores that UFLSTM largely improved the PESQ
and SDR test scores. For example, the PESQ score with
noisy speech is increased from 1.66 to 2.61 with UFLSTM
and improved the PESQ by 0.95 (35.71%). Moreover, PESQ
scores with GAN, CNN, and DNN are improved from 2.40,
2.43, and 2.29 to 2.61, and improved PESQ test score by
0.21 (8.04%), 0.18 (6.89%), and 0.32 (12.26%), respectively.
Finally, the SDR scores use to measure the distortion in
the reconstructed speech suggested that the proposed model
successfully attenuated the noise signals with better speech
quality and intelligibility. For illustration, the SDR test score
with noisy speech is increased from —0.47 dB to 6.52 dB with
UFLSTM and improved SDR by 6.99 dB. In addition, SDR
test scores with GAN, CNN, and DNN are improved from
6.17 dB, 6.29 dB, and 6.06 dB to 6.52 dB and improved SDR
test scores by 0.35 dB, 0.23 dB, and 0.46 dB, respectively.
The average STOI scores with DeepResGRU, DeepXi, and
LSTM-KF are improved from 86%, 86.8%, and 84.1% to
87.2%, thereby obtained 1.2%, 0.40%, and 3.1% improve-
ments over the recent deep learning models, respectively.
On other hand, the average PESQ scores with DeepResGRU,
DeepXi, and LSTM-KF are improved from 2.49, 2.43, and
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TABLE 3. Average test scores in two unseen noise types (factory2 and cafeteria).

Methods STOI ESTOI PESQ SDR
0dB  5dB 10dB  Avrg | 0dB 5dB 10dB  Avrg | 0dB 5dB 10dB Avrg | 0dB 5dB  10dB  Avrg
Noisy (UnP) 577 64.6 74 654 | 255 334 452 34.7 1.36  1.52 1.82 1.57 | 43 -1.3 272  -0.96
Att-LSTM [25] | 779 842 88.6 83.6 | 552 64.5 74.6 648 | 205 226 262 231 | 3.07 541 8.65 5.71
LSTM [60] 76.9 83.3 88.2 82.8 | 549 646 739 645 | 2.02 225 2.61 229 | 3.05 535 8.77 5.72
UFLSTM 814 86.5 91.7 86.5 | 59.2 68.6 777 68.5 | 2.28 245 2.78 251 | 331 571 9.05 6.02
TABLE 4. Comparison with SOTA deep learning models.
Methods STOI (in percentage) ESTOI (in percentage) PESQ SDR (in dB)
SNRs 0dB 5dB 10dB  Avrg | 0dB 5dB 10dB Avrg | 0dB 5dB 10dB Avrg | 0dB 5dB 10dB  Avrg
Noisy (UnP) 586 653 745 662 | 26.1 339 457 352 | 145 1.65 1.89 166 | -370 -0.80 3.10 -0.47
Att-LSTM [25] 78.8 849  89.0 843 | 558 650 75.0 653 | 2.14 238  2.69 2.40 3.73 5.86 9.03 6.21
LSTM [60] 778 84.0 88.6 83.5 | 555 65.1 74.4 65.0 | 2.11 237  2.68 2.39 3.71 5.80 9.15 6.22
CNN [61] 80.0 848 87.7 842 | 562 660 75.0 65.7 | 2.17 241 2.70 243 3.75 5.90 9.21 6.29
GAN [62] 777 84.6 892 83.8 | 559 659 758 659 | 2.13 239 267 2.40 3.69 5.84 8.98 6.17
DNN [63] 754  80.2  83.1 79.6 | 52.0 63.1 72.5 62.5 | 206 226 254 2.29 3.64 5.72 8.84 6.06
DNN-TGSA [64] 764 812 84.1 80.6 | 51.0 62.1 73.5 60.5 | 2.00 231 2.58 2.30 3.68 5.70 8.81 5.96
DeepResGRU [21] | 81.8 85.5 90.7 86.0 | 573 654 776 66.7 | 229 249 271 249 | 3.73 5.89 9.29 6.30
LSTM-KF [65] 80.3 82.8 89.3 84.1 56.1 647 754 654 | 2.13 236 2.67 2.38 | 3.43 5.33 9.16 5.97
DeepXi [66] 81.2 847 90.2 86.8 | 569 651 773 66.3 | 221 240 2.68 243 | 3.86 5.66 9.24 6.25
UFLSTM 823 872 920 872 | 59.8 69.1 78.1 69.0 | 238 258 2.86 2.61 3.97 6.16 9.43 6.52

TABLE 5. Statistical analysis of average STOI and PESQ test scores at 95% confidence interval with F¢,jsicq is 3.09 and Pcjicqs is 0.05.

SE Models STOI PESQ
0dB 5dB 0dB 5dB

PValue FValue PValue FValue PValue FValue PValue FValue

Proposed — Noisy (UnP) <0.0001 126.1 <0.0001 131.1 <0.0001 128.2 <0.0001 125.5
Proposed — Att-LSTM [25] <0.0001 89.8 <0.0005 27.56 <0.0001 75.71 <0.0001 58.22
Proposed — LSTM [60] <0.0001 95.13 <0.0005 26.22 <0.0001 85.12 <0.0001 80.91
Proposed — CNN [61] <0.0016 19.71 <0.0005 27.03 <0.0002 37.94 <0.0021 18.23
Proposed — GAN [62] <0.0001 89.43 <0.0005 28.11 <0.0001 65.09 <0.0001 62.03
proposed — DNN [63] <0.0001 65.59 <0.0001 44.35 <0.0001 45.82 <0.0022 15.37
proposed — DNN-TGSA [64] | <0.0001 54.22 <0.0001 48.64 <0.0001 51.13 <0.0015 20.01

2.38 to 2.61%, thereby obtained 4.59%, 6.89%, and 8.81%
improvements over the recent deep learning models, respec-
tively. The SDR is improved by 0.22 dB, 0.27 dB, and 0.55 dB
over DeepResGRU, DeepXi, and LSTM-KEF, respectively. All
the deep learning models for SE present better SDR test
scores, indicating that deep learning models are successful in
speech denoising. The SDR test scores are further improved
by the proposed model. In comparison, the proposed model
largely improved PESQ and STOI scores.

D. STATISTICAL ANALYSIS

The test scores suggested that the proposed SCSE method
performed better at all SNR levels. However, to verify the
effectiveness of the results, we conducted one-way ANalysis-
of-VAriance (ANOVA) statistical tests. All the statistical tests
are conducted at 95% confidence interval. The differences
between test scores are deemed statistically significant if the
probability is smaller than 0.05 (p < 0.05) and fyyy,,e is greater
than the critical value of f-distribution fi,iue > fcriricar- Table 5
indicates the statistical tests at 95% confidence interval with
fcriticar €qual to 3.09. It is clear from the tables that Pygjes
of the proposed model are smaller than 0.05 and fcyirical
is greater than 3.09. The statistical analysis suggested that
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the results achieved with the proposed models are statistical
significant at all input SNRs.

E. COMPLEXITY ANALYSIS

Figure 5 shows the quantity of trainable parameters in the
proposed LSTM model. With the U-Shaped strategy, the
trainable parameters are reduced and our proposed UFLSTM
is using 30% fewer parameters than conventional LSTM.
Table 6 shows the general performance of the four training
DL models in terms of time consumption. It can be stated
that the implementation of 5-layered UFLSTM model is
considerably faster than other three DL models. The training
time can be increased with depth of the models; still, we find
optimum results with depth of the proposed model. The
time consumption was measured on the Intel Core i15-6500T
Processor with NVIDIA GeForce GTX 1050. In addition,
to measure inference time for a model, we have calculated
the total number of computations the model in terms of
FLOPs (Floating Point Operations). The FLOPs provide the
complexity of the model, as given in Table 6.

F. SPECTRO-TEMPORAL ANALYSIS
To visualize the spectral regions of a speech processed by
DL models, we show spectro-temporal plots. The clean
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FIGURE 5. Model complexity in terms of trainable parameters.

TABLE 6. Complexity of the models.

DL Models | Training Time | FLOPs (Training) | FLOPs (Testing)

LSTM 19276 sec 0.262 x (3.1e16) | 0.230 x (7.1e10)
Att-LSTM 20382 sec 0.243 x (3.1e16) | 0.222 x (7.1e10)
UFLSTM 13265 sec 0.222 x (3.1e16) | 0.213 x (7.1e10)

speech (Fig. 6A) is degraded by the street noise at 0dB
SNR to generate the noisy speech (Fig. 6B). Principally,
this is a challenging noisy condition since the noise signals
emerge from various sources to degrade the target speech.
The DNN enhanced speech is depicted in Fig. 6C, where
background noise is notably reduced. The LSTM enhanced
speech (Fig. 6D) shows less residual noise and distortion as
compared to DNN. Figure 6E illustrates the enhanced speech
produced by the Atten-LSTM where additional low distortion
and residual noise is visible. The enhanced speech produced
by the UFLSTM is plotted in Fig. 6F. It can be observed
that less residual noise and speech distortion is present in the
spectrogram of speech produced by the proposed model.

G. ABLATION STUDY

We conduct ablation studies to comprehend the proposed SE
system. We have evaluated the full model (U-Shaped-FLSTM
with Skips and energy redistribution) with (a) model using
U-Shaped-FLSTM without skips and no energy redistribution
(denoted by Proposed-1); (b) model using U-shaped FLSTM
with skips but no energy redistribution (denoted by Proposed-
2); (c) model using U-Shaped-FLSTM without skips but
with energy redistribution (denoted by Proposed-3). To exam-
ine four models (Full model, Proposed-1, Proposed-2, and
Proposed-3), we have used separate noise types selected
from the DEMAND [55] database and trained each model
on different noise type, also different utterances are used to
train the models, that is, the training data for all three models
is different for fair comparison. Table 7 shows the results
(averaged over all SNRs) of various models for SE. The
preprocessing with the energy redistribution performed better
since energy levels of the weak speech segments are increased
prior to the magnitude spectrum estimation such that low
energy segments became distinctive to the noise segments.
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FIGURE 6. Spectro-temporal analysis. (A) Clean speech, (B) Noisy speech
by adding babble noise at 0 dB SNR, (C) FDNN, (D) LSTM, (E) Atten-LSTM,
and (F) Proposed UFLSTM.

TABLE 7. Ablation analysis of the proposed model.

Proposed Models | STOI (%) | ESTOI (%) | PESQ | SDR (dB)
Noisy Speech 70.16 40.11 1.77 -0.47
Proposed-1 81.23 63.14 2.28 5.04
Proposed-2 81.66 64.23 231 5.11
Proposed-3 82.33 66.47 2.35 5.19
Full Model 85.72 68.45 247 5.33

The full model has performed the best since preprocess-
ing and architectural changes; we have observed significant
improvements in the STOI, ESTOI, PESQ, and SDR with
full model over noisy speech and other models. Figure 7
shows the STOI, ESTOI and SDR improvements for four
proposed models. It is clear that with the energy redistribution
and architectural changes, the proposed LSTM outscored at
all SNRs.

H. CROSS CORPUS ANALYSIS

We have performed an experimental study to examine the
cross-corpus generalization of neural models. The datasets
including DNS [51], TIMIT [68], LibriSpeech [41], and
VoiceBank [69] are examined for the speech quality and
intelligibility. A speech dataset usually composed of different
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FIGURE 7. The STOI, ESTOI and SDR improvements for four proposed
models.

TABLE 8. Cross-corpus analysis of the proposed model.

Datasets STOI [57] | ESTOI [58] | PESQ[59] | SDR [60]
LibriSpeech [41] 83.72 66.45 2.37 5.24
VoiceBank [53] 83.61 65.29 2.25 5.03

DNS [51] 84.01 65.62 2.53 5.6

TIMIT [52] 83.58 64.55 2.26 5.06

Average 83.73 65.48 2.35 5.23

TABLE 9. Cross-training target analysis.
Datasets IRM 1AM

STOI | PESQ | SDR | STOI | PESQ | SDR
LibriSpeech [41] | 83.72 2.37 5.24 | 83.98 2.46 5.31
VoiceBank [53] 83.61 2.25 5.03 83.8 232 5.14

DNS [51] 84.01 2.53 5.6 84.32 2.64 5.74
TIMIT [52] 83.58 2.26 5.06 | 83.75 2.32 5.24
Average 83.73 2.35 5.23 | 83.96 2.44 5.36

utterances uttered by various speakers. The recording of the
speech utterances is carried out in controlled environments
for clean recordings and are appropriate for speech appli-
cations. The utterances are recorded in different controlled
environments for different dataset which can lead to changed
components in the speech utterances. For instance, an utter-
ance recorded with different microphones by the same person
can be very different in quality. To examine the influence
of different speech datasets on the performance of the pro-
posed model, we present Table 8 which shows the average
PESQ and STOI values over all noise types and SNRs. The
cross-corpus results indicate that proposed deep model per-
formed better when trained with the DNS dataset as compared
the LibriSpeech, VoiceBank, and TIMIT datasets.

I. CROSS TRAINING-TARGET ANALYSIS

In a set of experiments, we have examined the performance of
two training-targets that is IRM and TAM. Table 9 shows the
results of IRM and IAM in terms of STOI, PESQ, and SDR
using four training datasets. In many noisy conditions, IAM
training-target reasonably outperformed the IRM in terms
of STOI, PESQ, and SDR, respectively. The average results
indicate that the proposed model with IAM as training-target
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outperformed with DNS dataset. The average STOI, PESQ,
and SDR with IAM are improved over IRM.

VI. SUMMARY AND CONCLUSION

The proposed deep learning-based SE system in this paper
estimated the magnitude spectra from the noisy speech
spectra using a U-Shaped-FLSTM framework with skips,
attention process, and energy redistribution. The proposed
system is compared with several deep learning SE mod-
els for performance comparison. Assessments are con-
ducted under various noisy conditions for three SNR lev-
els. The PESQ and SDR test scores indicated that the pro-
posed method achieved improvements of (1.02-1.05) and
(7.87-6.08) dB, respectively for airport and babble noisy
conditions with reference to the noise contaminated speech.
Similarly, STOI and ESTOI test scores indicated that the pro-
posed method maintains the intelligibility under all situations,
and STOI and ESTOI achieved large gains of (21.2-23.6)%
and (37.13-36)%, respectively. The statistical analysis also
indicated that the proposed method improved the quality
without degrading intelligibility. The U-shaped LSTM model
reduced the computational complexity of the usual LSTM
by reducing the trainable parameters. Also, the replacement
of the forgetting gate with attention- gate has improved
the model performance. Regardless those DNNs outscore
in SE application with their complex network models, yet
require computationally less complex and efficient models
for better performance. No future information was used by
the proposed LSTM model which made it a causal speech
enhancement system, appropriate for the real-time speech
processing. Our proposed model has demonstrated reduced
computational complexity in terms of the trainable parame-
ters and outperformed the SOTA models used for comparison
in this study. It is concluded that implementation of 5-layer U-
Shaped-FLSTM model is considerably faster than other RNN
models. The proposed DL model has improved the quality
without degrading the speech intelligibility in adverse noisy
conditions. Note that the proposed U-Shaped-FLSTM and
related DL models showed repeated performance in terms
of PESQ, STOI and SDR test scores in reference to the test
scores of noisy speech, suggesting the potentials of DL for
speech enhancement task. It is concluded from the spectro-
gram analysis that residual noise and speech distortions are
reduced in the speech generated by the proposed DL model
for SE. The cross-corpus results indicate that proposed deep
model performed better when trained with the DNS dataset as
compared the LibriSpeech, VoiceBank, and TIMIT datasets.
In many noisy conditions, IAM training-target reasonably
outperformed the IRM in terms of STOI, PESQ, and SDR,
respectively. The average results indicate that the proposed
model with IAM as training-target outperformed with DNS
dataset. Based on the STOI, ESTOI, PESQ, and SDR results,
the following inferences can be made.(1) Under various seen
and unseen noisy conditions, the PESQ test scores stipulate
that the proposed SE system achieved the highest improve-
ments in quality compared to other deep learning models
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under all noisy conditions. (2) The STOI and ESTOI test
scores over various seen and unseen noisy conditions indicate
that the proposed SE system maintained the intelligibility to
a greater extent as compared to all SE models under all noisy
conditions. (3) The SDR test scores indicate that the proposed
SE system minimized the distortion to a greater extent as
compared to other models under various seen and unseen
noisy conditions.

Our future research will focus on further improving the
speech quality and intelligibility by using computationally
less complex models in strong noisy conditions. In addition
more robust features can further improve the performance.
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