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ABSTRACT In this paper, we propose a control approach for the robust stabilization of linear time-
invariant (LTI) systems with non-negligible sensor and actuator dynamics subject to time-delayed signals.
Our proposition is based on obtaining an augmented model that encompasses the plant, sensor, and actuator
dynamics and also the time-delay dynamic effect. We make use of the Padé Approximation for modeling the
time-delay impact on the feedback loop. Since the actual plant state variables are not available for feedback,
the sensor outputs, which represent a subset of the augmented system state variables, are used for composing a
static output-feedback control law. The robust controller gains are computed bymeans of a two-stage strategy
based on linear matrix inequalities (LMI). For obtaining less conservative conditions we consider the use of
homogeneous-polynomial Lyapunov functions (HPLF) – and other decision variables – of arbitrary degree.
In our proposition, we also take into account the inclusion of a minimum decay rate criterion in order to
improve closed-loop system transient response. Disturbance rejection is also addressed through extensions
to H2 guaranteed cost minimization. The effectiveness of the proposed strategy is attested in the design of
a controller for the lateral axis dynamics of an aircraft and other academic examples.

INDEX TERMS Robust control, time-delay, linear time-invariant systems, static output feedback, linear
matrix inequalities.

In some situations, automatic control systems are com-
posed of sensors and actuators with non-negligible dynam-
ics as, for instance, in embedded controllers of modern
light-weight aircraft [1]. Due to the intrinsic aeroelastic
nature of such systems, we observe a strong interaction
between the aircraft structure and its control and actuator
systems. Such interconnection is referred in the specialized
literature as aeroservoelasticity [2]. As a consequence, for
properly representing the system in order to achieve desired
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aeroelastic characteristics, these additional dynamics must be
considered in system modeling [3], [4], [5].

In face of such practical issue, one may note that the
actual plant state variables are not available for composing
the feedback loop, but only the sensors outputs, hence hin-
dering the implementation of standard state-feedback control
techniques. Therefore, the employment of additional sensors,
which may also present non-negligible dynamics, might be
demanded. Moreover, ignoring such parasitic dynamics may
incur in performance loss and, in the worst case, compro-
mise the closed-loop stability, as been long known [6], [7].
This fact motivated the development of studies for robust
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control designs that may address the problem of actuators
and sensors dynamics. We may cite, for instance, contribu-
tions regarding observed-based design [8], [9], sliding mode
control (SMC) [10], and output feedback control [11].

In this paper, we particularly discuss the output-feedback
control and how it emerges as a convenient approach, which
can be employed by considering an augmented system rep-
resentation encompassing the plant, sensors, and actuators
dynamics. Then, only the sensor output signals are used in
the feedback loop, as presented in [12].

Output feedback is a relevant field of research in control
theory on its own, especially concerning the static output-
feedback (SOF) framework, which is still considered as a
major open problem [13]. No closed solution is available,
even in the case where the plant model is assumed to be
accurately known. In fact, the SOF stabilization is an NP-hard
problem [14]. Such challenging nature motivated the devel-
opment of studies on this subject over the past decades,
addressing several control problems, as the reader may see
in the survey [15] and references within. Notably, most of
the available contributions are based on severe restrictions
over the problem variables or even on the system model
matrices. It is not rare to find sufficient design conditions
in the literature that were obtained through the imposition
of restrictions on the system output matrix format [16], [17].
Conversely, in this paper we are focused on a design strategy
based on a two-stage method [18], [19] that does not impose
such constraints. We also consider that the output matrix
can be dependent on an uncertain parameter, which is also a
feature that is not available inmany papers on the SOF control
[20]. Furthermore, the SOF design consists in a more simple
and direct solution when compared to observer-based control
systems. Indeed, SOF is based on the computation of a single
feedback gainmatrix, which entails a simpler implementation
setup in practice [15].

However, the problem gets even more involved when the
sensor and actuator dynamics involve time-delay. Due to its
relevance, the effects of time delay have been investigated in
several areas of engineering, such as power [21], communica-
tion [22], and control systems [23]. In particular, the research
on network communication delay has been flagged as a rele-
vant issue for advanced aircraft data exchange systems [24].
Even more complicated problems arise in the case of uncer-
tain delays. As a matter of fact, the huge amount of data flow
in aircraft network buses implies in the uncertain behavior
of such systems. Furthermore, the relationship between time
delay and actuator dynamics have also raised interest to the
development of research on the stability margin in fighter
aircraft [25], for instance.

The practical relevance of the effects of time delay in
dynamic systems motivated the research on modeling and
control design strategies that are able to guarantee robustness
over the above mentioned issues [26], [27]. Many of the
available methods are related to predictor-like techniques
[28], [29], [30], which are intended to compensate the delay

effect through the transformation of the delayed system into
a delay-free model through finite integrals over past control
input values. Predictor-based control results can be found
in the linear time-invariant scenario with [31] and without
considering model uncertainty [32]. Methods for nonlinear
systems can also be found, such as input delay and additive
disturbance compensation [33], and dealing with arbitrarily
large time delay [34].

Despite the fact that predictor-like techniques are consoli-
dated for addressing input delay (i.e., delay affecting the con-
trol input), they struggle to handle systems affected by state
delay, as the problem gets considerably more complicated to
be modeled in this particular framework. For instance, recent
works on this subject [35] managed to consider dynamic actu-
ators via backstepping control with input delay, but does not
include state delay nor sensor dynamics in the control design.
Also, the dependence on integral terms might be sensitive to
parametric uncertainty and delay mismatches [36].

The sliding mode control (SMC) [37], [38], [39] is also an
example of technique for dealing with time delay in control
systems, being particularly known for its robustness char-
acteristics. However, as a drawback, the presence of time
delay has a severe destabilizing effect in conventional SMC
systems. For amore complete background, we refer the reader
to the survey paper [36].

A more simple yet interesting approach is based on the
development of an approximation model of the delayed
dynamics. In such method, the infinite-dimension delayed
system is treated as a finite-dimensional one by means of the
truncation of an infinite series given in terms of a rational
polynomial [36]. The main downside of this approach is
that in some cases the rational approximation must be of
high order to obtain a good representation. However, finite-
dimension approximation has led to important contributions,
specifically for linear systems [21], [40], [41], [42].

Upon the presented background, we propose in this work a
control design strategy for dealing with uncertain linear time-
invariant (LTI) systems whose state information and control
input signals are obtained and applied by means of sensors
and actuators with non-negligible dynamics, differently from
most of the available strategies in the literature. Moreover,
we assume that the communication channels between sen-
sors, actuators and controller are susceptible to a delay in
time, which is also a novelty, since the literature is usually
concerned with the effects of either input or state delay,
and not the joint effect of both types of delay. Furthermore,
investigations on the synthesis of controllers for systems with
time delays and also non-negligible dynamics in sensors and
actuators are relatively scarce. In our paper, such practical
issues are handled by defining an augmented system, where
the time-delay effect is modeled using the Padé Approxi-
mation [43], [44]. The resulting overall system encompasses
the plant, sensors, actuators, and time-delay dynamic states.
By assuming that only the sensor outputs are available for
feedback, we employ a two-stage-based SOF design method
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defined in terms of a homogeneous-polynomial Lyapunov
function (HPLF) [45], [46]. Employing the SOF control for
addressing time-delayed systems with actuators and sensors
dynamics through an augmented system is a simple and
direct, yet innovative approach that, to the best of the authors’
knowledge, has not been considered so far. The new proposed
controller synthesis strategy is formulated in the linear matrix
inequalities (LMI) framework for including the specification
of a minimal performance index in terms of a lower bound on
the closed-loop system decay rate, with the purpose of achiev-
ing enhanced transient performance. Robustness in terms of
disturbance rejection is also taken into account by means of
the closed-loopH2 normminimization. The validity and effi-
cacy of the proposed strategies are evaluated on illustrative
aircraft control design examples.

In the sequence, we summarize the main technical contri-
butions of the present paper:

• New system modeling for encompassing non-negligible
dynamics in both sensors and actuators, and also the time
delay over sensors measurements and control command
signals via Padé approximation. The new system model
consists in an augmented state-space representation that
can be employed in an LTI–SOF design encompassing
all the mentioned practical issues, differently from most
of the available works on the subject.

• New LMI-based two-stage SOF controller synthe-
sis strategy for robust stabilization and transient per-
formance improvement of uncertain LTI systems in
terms of a lower bound on the closed-loop system
decay rate and H2 norm minimization, considering
homogeneous-polynomial Lyapunov functions.

• Study of the influence of the homogeneous polyno-
mial decision variables degree when considering the
SOF control design through the two-stage method. Our
investigation results show that despite the use of higher
polynomial degree in the second stage might improve
feasibility, it promotes a negative effect when consid-
ering parameter-dependent state-feedback design in the
first stage.

The notation is fairly standard: M > 0 (M < 0) implies
that M is a positive definite (negative definite) matrix; (T )
denotes the transpose of a matrix; R denotes the set of the
real numbers; M + (•)T = M + MT ; and (M∗) represents
the complex conjugate of matrix M. Otherwise, when alone
in a partitioned matrix, (∗) denotes the opposite symmetric
block.

I. PRELIMINARIES
In this section, we define the problem addressed in the present
paper. Important definitions for the development of the pro-
posed contributions are also presented.

A. PROBLEM STATEMENT
Consider the uncertain linear system described as

ẋ(t) = A(α)x(t) + B(α)z(t) (1)

where x(t) ∈ Rn is a vector with system states and
z(t) ∈ Rm is a vector with control input signals. The
parameter-dependent matrices A(α) ∈ Rn×n and B(α) ∈

Rn×m belong to a polytopic domain D parametrized in terms
of a vector of uncertain time-invariant parameters α =

(α1, . . . , αN ) such as

D =

{
(A,B)(α) : (A,B)(α)=

N∑
r=1

αr (Ar ,Br ), α∈∧N

}
, (2)

where (Ar ,Br ) denotes the r-th polytope vertex, and

∧N =

{
α ∈ Rn

:

N∑
r=1

αr = 1; αr ≥ 0; r = 1, . . . ,N

}
. (3)

The state information is measured through q sensors, with
dynamics described by

v̇i(t) = av,ivi(t) − av,i

 n∑
j=1

ci,jxj(t)

 , (4)

where vi(t) are the sensor outputs, composing the vector
v(t) =

[
v1(t) · · · vq(t)

]T , av,i < 0 are time-invariant (but
possibly uncertain) parameters for i = 1, 2, . . . , q, and ci,j
are known constants for j = 1, 2, . . . , n.

Also, consider the existence of m actuators whose dynam-
ics are described by

żk (t) = az,kzk (t) − az,k

( p∑
l=1

dk,luDl (t)

)
, (5)

composing the vector of control signals z(t) = [z1(t) · · ·
zm(t)]T . Moreover, in (5), uDl (t) are the actuator input com-
mands, forming the vector uD(t) =

[
uD1 (t) · · · uDp (t)

]T ,
az,k < 0 are time-invariant (but possibly uncertain) param-
eters for k = 1, 2, . . . ,m, and dk,l are known constants for
l = 1, 2, . . . , p.
The overall control system block diagram, represented in

Figure 1, helps to illustrate the considered system and control
structure.

FIGURE 1. Closed-loop block diagram.

Note that we assume that each sensor output vi(t), used in
feedback, is available for the controller with time delay, τsi ,
in terms of a delayed sensor output signal vDi (t). Likewise,
each command signal produced by the controller, ul(t) is
received by the actuator with time delay τal , in terms of a
delayed actuator command signal uDl (t).
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Under these definitions, the problem addressed herein con-
sists in designing a control law u(t) = LvD(t) where vD(t) ∈

Rq is the vector of time-delayed sensor outputs and L ∈

Rp×q is a gain matrix to be determined in order to ensure
the closed-loop asymptotic stability of the overall system.
Moreover, considering that the closed-loop system decay rate
is defined as the highest positive real scalar σ such that

lim
t→∞

eσ t∥x(t)∥ = 0 (6)

holds for all trajectories x(t) ̸= 0 of the system states [47],
the controller L must be designed in order to ensure that the
decay rate σ is greater than a given lower bound γ .
Remark 1: Note that, for an stable system, ||x(t)|| con-

verges to zero as t → ∞. In that sense, the system decay
rate is related to the highest scalar σ > 0 such that the
convergence of ||x(t)|| to zero is faster than the growth of
the exponential function eσ t , as t → ∞. Therefore, by the
enforcing a lower bound γ , such that σ > γ we can ensure
that the actual decay rate is greater than γ . In these terms, γ
represents a design parameter that establishes a performance
criteria regarding the closed-loop system settling time. With
a higher bound γ , we have a higher system decay rate, and
thus a faster state convergence to zero. We refer the reader to
works [47] and [48] for a more complete background on the
decay rate definition.

B. IMPORTANT DEFINITIONS
The Finsler’s Lemma is crucial for obtaining the synthesis
conditions presented in this work and, therefore, it is formally
stated in the sequence.
Lemma 1 [49]: Consider w ∈ Rn, S ∈ Rn×n, and R ∈

Rm×n with rank (R) < n, and R⊥ with columns forming a
basis for the null space of R (i.e. RR⊥

= 0).
Then, the following conditions are equivalent:
(i) wTSw < 0, Rw = 0, ∀ w ̸= 0,
(ii) R⊥

T
SR⊥ < 0,

(iii) ∃η ∈ R : S − ηRTR < 0,
(iv) ∃X ∈ Rn×m

: S + XR + RTXT < 0,
where η and X are additional variables (or multipliers).
The employment of Lemma 1 in our work is based on

deriving an equivalent stability and performance certificate
for (1). Such alternative representation allows for circum-
venting non-convex constraints, and then leading to tractable
convex conditions. For further reference in the text, Lemma
2 presents stability and performance certificate regarding the
minimum system decay rate.
Lemma 2: A sufficient condition for the robust stability of

A(α) is that there exist a positive-definite symmetric matrix
P(α) and matrices F(α) and G(α) such that[
A(α)TF(α)T + (•)T+2γP(α) ∗

P(α) − F(α)T + G(α)A(α) −G(α) − G(α)T

]
< 0, (7)

holds for every α ∈ ∧N . Additionally, the system decay rate
has a lower bound γ , i.e., max σ > γ in (6).

Proof: Note that (7) can be rewritten as[
F(α)
G(α)

] [
A(α) −I

]
+ (•)T +

[
2γP(α) ∗

P(α) 0

]
< 0, (8)

which corresponds to condition (iv) of Lemma 1 with

X =

[
F(α)
G(α)

]
, S =

[
2γP(α) ∗

P(α) 0

]
, RT

=

[
A(α)T

−I

]
. (9)

Hence, by defining w =
[
x(t)T ẋ(t)T

]T in condition (i) of
Lemma 1, we have that (7) implies1

wTSw =
[
xT ẋT

] [2γP(α) ∗

P(α) 0

] [
x
ẋ

]
= ẋTP(α)x + xTP(α)ẋ + 2γ xTP(α)x < 0, (10)

with Rw = 0 since, ẋ(t) = A(α)x(t). By defining V (x) =

xTP(α)x, (10) becomes V̇ (x) < −2γV (x), i.e., the Lya-
punov’s constraint for stability and minimum decay rate
γ > 0 [47].

II. PROPOSED STRATEGY
In this section, we present the contributions of our work
which are related to a system representation that allows
for encompassing plant and additional dynamics in a single
model, and a control synthesis strategy based on LMIs for
designing an SOF controller that guarantees closed-loop sta-
bility and minimum decay rate.

A. SYSTEM AUGMENTATION
For dealing with this control problem, we propose the def-
inition of an augmented system that encompass the plant,
actuators, and sensors dynamics, and also the time delay
effect. To this end, we first consider that the time delay is
modeled using the Padé approximation [43].

When analyzed in the frequency domain, a time delay τ can
be represented by the transfer function e−τ s. Using the Padé
method, e−τ s can be approximated by a rational polynomial
function R(s) as

e−τ s
≈ R(s) =

b0 + b1τ s+ · · · + bc(τ s)c

a0 + a1τ s+ · · · + ak (τ s)k
, (11)

where usually c = k , and k denotes the order of the approxi-
mated model.

Considering that every sensor output signal vi(t), i =

1, . . . , q, is received by the controller with time delay τ = τs
(possibly uncertain), the function R(s) in (11) can be trans-
formed into an equivalent state-space model of order k = ks
that represents the delay effect on the sensor output signal by
using the following realization [43]:{

δ̇sd i (t) = Asd (α)δsd i (t) + Bsdvi(t)

vDi (t) = Csd (α)δsd i (t) + Dsdvi(t)
, (12)

1Note that in (10) the time dependence (t) was omitted for shortening the
notation.
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where δsd i (t) ∈ Rks is the vector of phase variables, vDi (t) is
the i-th time-delayed sensor output, and

Asdi (α) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0τ

−ks
s

aks
−a1τ

−ks+1
s
aks

−a2τ
−ks+2
s
aks

· · ·
−aks−1τ

−1
s

aks

 ,

(13)

Bsdi =
[
0 0 0 · · · 1

]T
, (14)

Csdi (α) =
1

a2ks

[
(aksb0 − a0bks )τ

−ks
s (aksb1 − a1bks )τ

−ks+1
s

· · · (aksbks−1 − aks−1bks )τ
−1
s
]
, (15)

Dsdi =
bks
aks

, (16)

with

aj =
(cs + ks − j)!ks!

j!(ks − j)!
, bf = (−1)f

(cs + ks − f )!cs!
f !(cs − f )!

,

(17)

for j = 1, . . . , ks, and f = 1, . . . , cs, where cs is the
numerator degree for the sensor delay model approximation
in (11).

In that sense, we can model the sensor dynamics affected
by a time delay τ = τs by defining an augmented vector s(t) ∈

Rq(1+ks) defined as

s(t) =
[
v(t)T δsd (t)T

]T
,

with δsd (t) =
[
δsd1 (t) · · · δsdks (t)

]T , which combines the sen-
sor dynamics (4) subject to a time-delay effect (12), yielding
the following augmented state-space model{

ṡ(t) = As(α)s(t) + Bs(α)x(t)

vD(t) = Cs(α)s(t)
, (18)

where

As(α) =

[
Av(α) 0q×qks
Bsd Asd (α)

]
, Bs(α) =

[
−Av(α)C
0qks×n

]
,

Cs(α) =
[
Dsd Csd (α)

]
with

Av(α) = diag
{
av,1, av,2, . . . , av,q

}
,

C =


c1,1 c1,2 . . . c1,n
c2,1 c2,2 . . . c2,n
...

...
. . .

...

cq,1 cq,2 . . . cq,n

 ,

and

(A,B,C,D)sd (α) = diag
{
(A,B,C,D)sd1 ,

(A,B,C,D)sd2 , . . . , (A,B,C,D)sdq
}
,

(19)

with (A,B,C,D)sdi as in (13) - (16) (with the subindex
‘‘s’’ referring to the sensor time-delay), implying in Asd ∈

Rqks×qks , Bsd ∈ Rqks×q, Csd ∈ Rq×qks , and Dsd ∈ Rq×q.
Similarly, we can model the actuator dynamics affected by

time-delayed command signals by considering a ka-th order
Padé approximation, incorporated in an augmented vector
a(t) ∈ Rm(1+ka)

a(t) =
[
z(t)T δad (t)T

]T
,

with δad (t) =
[
δad1 (t) · · · δadka (t)

]T , combining the actuator
dynamics (5) subject to a time-delay effect modeled as in
(12) (now with k = ka and τ = τa), yielding the following
augmented state-space model{

ȧ(t) = Aa(α)a(t) + Ba(α)uD(t)

z(t) = Ca(α)a(t)
, (20)

where

Aa(α) =

[
Az(α) −Az(α)DCad
0mka×m Aad (α)

]
,

Ba(α) =

[
−Az(α)DDad

Bad

]
,

Ca(α) =
[
Im×m 0m×mka

]
Az(α) = diag

{
az,1, az,2, . . . , az,m

}
,

D =


d1,1 d1,2 . . . d1,p
d2,1 d2,2 . . . d2,p
...

...
. . .

...

dm,1 dm,2 . . . dm,p

 ,

and

(A,B,C,D)ad = diag
{
(A,B,C,D)ad1 ,

(A,B,C,D)ad2 , . . . , (A,B,C,D)adm
}
,

(21)

with (A,B,C,D)adi as in (13) - (16) (with the subindex ‘‘a’’
referring to the actuator time-delay), implying in Aad ∈

Rmka×mka , Bad ∈ Rmka×m,Cad ∈ Rm×mka , andDad ∈ Rm×m.
Remark 2: In this work, for simplifying the notation and

without loss of generality, we considered that every sensor
output signal is subject to the same amount of time delay
τs, likewise assumed for the actuator commands, with a time
delay τa. Therefore, the matrices in (12) will be the same
for each of the q sensor output signals and each of the m
actuator commands, respectively. However, note that a more
general approach can be directly employed by assuming that
the time delay τ , and also its approximation model order k,
are different for every considered signal, defining parameters
such as τsi and ksi , i = 1, . . . , q, and τal and ksl , for
l = 1, . . . , p.

Next, to incorporate the time-delayed sensor and actuator
dynamics in the LTI system (1), we promote a system aug-
mentation, by defining the augmented state vector w(t) ∈

Rn+q(ks+1)+m(ka+1) as

w(t) =
[
x(t)T s(t)T a(t)T

]T
. (22)
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Then, we have the following augmented state-space repre-
sentation {

ẇ(t) = Ā(α)w(t) + B̄(α)u(t)

y(t) = C̄(α)w(t)
, (23)

where

Ā(α) =

 A(α) 0n×q(ks+1) B(α)Ca(α)
Bs(α) As(α) 0q(1+ks)×m(1+ka)

0m(1+ka)×n 0m(1+ka)×q(1+ks) Aa(α)

 ,

B̄(α) =

 0n×p
0q(k+1)×p
Ba(α)

 ,

and

C̄(α) =
[
0q×n Cs(α) 0q×m(1+ka)

]
.

The output vector y(t) corresponds to the delayed-sensor
output vD(t) in (18), which is available for feedback, in con-
trast to the actual system state vector x(t). Therefore,
the aforementioned problem may be addressed as a static
output-feedback control design with u(t) = LvD(t) = Ly(t).
Remark 3: At this point, we give emphasis to the first

main contribution of this paper. This new modeling strat-
egy, different from past results on this topic [12], is able to
represent, in a single set of matrices, not only the dynamics
associated to sensors and actuators but also the effect of delay
in the communication channels that deliver the information
generated in the sensors output and received in the actuators
input, respectively, enabling to address more complex and
general control problems.
Remark 4: It is also important to note that the polytopic

approach enables our strategy to easily cope with uncer-
tainties on sensors and/or actuators parameters, simply by
considering them as additional uncertain parameters along
with the plant uncertainties. The same procedure can be
employed to consider uncertain time delays τs and/or τa. This
is possible since these parameters will be part of the overall
system matrices, generating an augmented polytope encom-
passing plant, sensor, actuator and delay uncertainties.
Remark 5: Our method considers the Padé approximation

for modeling the time delay effect over the system dynam-
ics. The approximation error can be reduced by choosing a
higher-order rational polynomial function (11). With higher
values of ks we obtain a better approximation on the exact
dynamic effect of the delay e−τ s. Note that the order of
the delay approximation ks is directly incorporated in our
proposed system augmented model. Of course, the direct
trade-off is that a higher-order state-space model is needed,
as the parameter ks will define the dimension of the sensor
delay model matrices (13)-(16), and similarly in the actuator
delay model given in (21).

B. CONTROL DESIGN
For the SOF controller design, we consider the use of a
two-stage SOF controller synthesis strategy, based on the
pioneer works of [18] and [19].

The two-stage method employment in our work consists in
first computing a state-feedback gain K(α) such that

ẇ(t) = (Ā(α) + B̄(α)K(α))w(t),

i.e. the augmented system (23), is robustly stable in
closed-loop with u(t) = K(α)w(t). In the sequence, this gain
matrix K(α) is fed to a second-stage controller syntheses,
in which the desired SOF stabilizing robust gain L is effec-
tively computed.

1) FIRST-STAGE DESIGN
The first-stage state-feedback design can be performed using
any available strategy in the literature. In this work, we con-
sider well-known conditions [47], based on the existence of
matricesW = W′ > 0 and Z(α) such that

Ā(α)W + WĀ(α)T

+B̄(α)Z(α) + Z(α)TB̄(α)T + 2βW < 0 (24)

holds for every α ∈ ∧N . In the synthesis conditions,
K(α) = W−1Z(α) guarantees the robust state-feedback stabi-
lization of ẇ(t) = (Ā(α) + B̄(α)K(α))w(t) with lower bound
β on the closed-loop system decay rate.2

Clearly, the conditions presented in (24) are of infinite-
dimension, as they are dependent on the uncertain parameter
α. Therefore, some manipulation over these constraints have
to be performed to obtain an equivalent finite-dimension
problem. We leave this issue to be properly discussed more
ahead in the text, since the second-stage synthesis conditions
are also presented in terms of parameter-dependent LMIs.

2) SECOND-STAGE DESIGN
In this paper, we propose a generalization of the SOF syn-
thesis conditions proposed in [50] and adopted in [12] for
computing SOF gains for the stabilization of the augmented
system encompassing sensor and actuator dynamics. The
results in [50] are achieved by considering that the LMI
decision matrices have polytopic dependence on the uncer-
tain parameter α. In this work, we assume that the decision
variables have a homogeneous-polynomial dependence on
α of arbitrary degree g [45], and also extend the synthesis
conditions for enabling the enforcement of a minimum decay
rate criterion.

For applying such strategy, we first formally enunciate in
Theorem 1 a parameter-dependent LMI condition set that
encompasses the results presented in [50].
Theorem 1: Assuming that there exists a state-feedback

gain K(α) such that (Ā(α) + B̄(α)K(α)) is asymptotically
stable, then there exists a stabilizing static output-feedback
gain L such that Ā(α)+ B̄(α)LC̄(α) is asymptotically stable,
considering a decay rate greater than or equal to γ >

0, if there exist a symmetric parameter-dependent matrix

2Note that here the lower bound on the closed-loop decay rate was denoted
as β instead of γ , as defined in Section I. Due to the sufficient nature of the
two-stage method, different design constraints can be enforced in each stage,
as discussed at the end of this section.
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P(α) > 0, parameter-dependent matrices F(α), G(α), and
matrices H and J such that (F(α)Ā(α) + F(α)B̄(α)K(α)) + (•)T + 2γP(α)

P(α) − F(α)T + G(α)Ā(α) + G(α)B̄(α)K(α)
B̄(α)TF(α)T + JC̄(α) − HK(α)

∗ ∗

−G(α) − G(α)T ∗

B̄T(α)G(α)T −H − HT

 < 0. (25)

In the synthesis condition, the robust static output-feedback
gain is given by L = H−1J.
Proof: Readily note that (25) implies in H being invert-

ible [47]. In the sequence, applying a transformation on (25)
with T(α) and T(α)T [19], where

T(α) =

[
I 0 S(α)T

0 I 0

]
, (26)

by employing simple algebraic manipulation one can obtain[
91,1(α) 91,2(α)

∗ −G(α) − G(α)T

]
< 0, (27)

where

91,1(α) =

[
(Ā(α) + B̄(α)(K(α) + S(α)))TF(α)T

+S(α)T(JC̄(α) − H(K(α) + S(α)))
]

+(•)T + 2γP(α), (28)

and

91,2(α) = P(α) − F(α)

+(Ā(α) + B̄(α)(K(α) + S(α)))TGT(α) (29)

By defining S(α) = H−1JC̄(α)−K(α), and L = H−1J in
(28) and (29), and performing simple multiplication distribu-
tion, we have that (27) becomes[[

(Ā(α) + B̄(α)LC̄(α))TF(α)T
]
+ (•)T + 2γP(α)

∗

P(α) − F(α) + (Ā(α) + B̄(α)LC̄(α))TGT(α)
−G(α) − G(α)T

]
< 0,

(30)

which is a sufficient condition for the robust stabilization
with a lower bound γ on the system decay rate according to
Lemma 2, with ẇ(t) = (Ā(α) + B̄(α)LC̄(α))w(t).

The result presented in Theorem 1 deserves some remarks.
Firstly, it is worth noting that the SOF gain matrix L is
not parameter-dependent, even though Theorem 1 involves
matrix variables that depend on the parameter vector α. Sec-
ondly, as those in (24), the LMI conditions given in (25) are
of infinite dimension. In order to make them computation-
ally tractable, we need to convert them into a finite set of
LMI conditions, by imposing some particular structure to the
decision variables. Following previous works on the subject,
by assuming that the parameter-dependent matrices are mod-
eled as homogeneous polynomials of sufficiently large degree

g on the uncertain parameter α, we may obtain a finite set
of LMIs with no loss of generality [51]. This means that the
higher the degree g considered for the polynomial matrices,
the lesser is the conservatism introduced in the constraint
formulation. For a sufficient large g, the obtained finite set
of LMI will exactly represent the constraints in (25).

For an arbitrary degree g considered for the homogeneous
polynomial matrices in (25), we can obtain a finite set of
LMIs in order to solve the control design problem using
semidefinite programming tools. For the particular case of
g = 1, we have a polytopic parameter-dependent Lyapunov
function (PDLF) such as

P(α) = α1P1 + α2P2 + · · · + αNPN .

In this case, sufficient conditions for the LMIs in Theorem 1
can be obtained by checking a finite set of LMI constraints
over the vertices of the polytopic parameter-dependent matri-
ces. This result is formally stated in the following corollary.
Corollary 1: By assuming that P(α), F(α), and G(α) in

Theorem 1 are homogeneous-polynomial matrices of degree
g = 1, as well as the state-feedback first-stage gain matrix
K(α), then a sufficient condition for (25) to hold is that there
exist symmetric matrices Pi > 0, and matrices Fi,Gi,H, and
J such that(FiĀi + FiB̄iKi) + (•)T + 2γPi

Pi − Fi
T

+ GiĀi + GiB̄iKi
B̄T
i Fi

T
+ JiC̄i − HKi

∗ ∗

−Gi − GT
i ∗

B̄TiGT
i −H − HT

 < 0 (31)

holds for i = 1, 2, . . . ,N,Ξ
ij
11 ∗ ∗

Ξ
ij
21 −2(Gi + GT

i ) − (Gj + GT
j ) ∗

Ξ
ij
31 B̄T

i (G
T
i + GT

j ) + B̄T
j G

T
i −3(H + HT)

 < 0,

(32)

with

Ξ
ij
11 =

[
ĀTi (FT

i + FT
j ) + ĀTjFT

i + KT
i (B̄iTF

T
j + B̄jTF

T
i )

+KT
j B̄

TiFT
i

]
+ (•)T + 2γ (2Pi + Pj), (33)

Ξ
ij
21 = 2Pi + Pj − (2FT

i + FT
j ) + Gi(Āi + Āj)

+ GjĀi + Gi(B̄iKj + B̄jKi) + GjB̄iKi, (34)

and

Ξ
ij
31 = B̄iT (F

T
i + FT

j ) + B̄jTF
T
i + J(2C̄i + C̄j)

−H(2Ki + Kj), (35)

holds for i, j = 1, 2, . . . ,N and i ̸= j, andΞ
ijk
11 ∗ ∗

Ξ
ijk
21 Ξ

ijk
22 ∗

Ξ
ijk
31 Ξ

ijk
23 −6(H + HT)

 < 0, (36)
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with

Ξ
ijk
11 =

[
(ĀT

i + ĀT
j )F

T
k + (ĀT

i + ĀT
k )F

T
j + (ĀT

j + ĀT
k )F

T
i +

+(KT
i B̄

T
j + KT

j B̄
T
i )F

T
k + (KT

i B̄
T
k + KT

k B̄
T
i )F

T
j +

+(KT
j

¯BT
k + KT

k B̄
T
j )F

T
i

]
+ (•)T + 4γ (Pi + Pj + Pk),

Ξ
ijk
21 = 2(Pi + Pj + Pk) − 2(Fi + Fj + Fk)T

+(Gi + Gj)Āk + (Gi + Gk)Āj + (Gj + Gk)Āi

+Gi(B̄jKk + B̄kKj) + Gj(B̄iKk + B̄kKi)

+Gk(B̄iKj + B̄jKi),

Ξ
ijk
31 = (B̄T

i + B̄T
j )F

T
k + (B̄T

i + B̄T
k )F

T
j + (B̄T

j + B̄T
k )F

T
i

+2J (C̄i + C̄j + C̄k) − 2H(Ki + Kj + Kk),

Ξ
ijk
22 = −2(Gi + GT

i + Gj + GT
j + Gk + GT

k ),

Ξ
ijk
23 = (B̄T

i + B̄T
j )G

T
k + (B̄T

i + B̄T
k )G

T
j + (B̄T

j + B̄T
k )G

T
i ,

holds for i = 1, 2, . . . ,N − 2, j = i + 1, . . . ,N − 2, and
k = j+ 1, . . . ,N.
Proof:Note that bymultiplying (31) byαi and summing for

i = 1, . . . ,N , by multiplying (32) by αi and αj, and summing
for i, j = 1, 2, . . . ,N , i ̸= j, and by multiplying (36) by αi,
αj, and αk , and summing for i = 1, 2, . . . ,N − 2, j = i +
1, . . . ,N −2, and k = j+1, . . . ,N , bearing in mind that α ∈

∧N , we directly obtain the parameter-dependent form (25).
It is important to observe that both Theorem 1 and, con-

sequently, Corollary 1 encompass the conditions proposed
in [50], showing that this previous work is a particular case of
the LMI formulation proposed in the present work. Observe
that by considering a robust first-stage gain matrix (i.e.,
K(α) = K), the LMI conditions in Corollary 1 are reduced to
Theorem 2 in [50], as they will no longer have a cross-product
between three parameter-dependent matrices, and thus only
sums in i and j will be needed. This result is stated in
Corollary 2.
Corollary 2: By assuming that, in Theorem 1, P(α), F(α),

and G(α) are homogeneous polynomials of degree g = 1,
and that the state-feedback first-stage gain matrix is such that
K(α) = K, then a sufficient condition for (25) hold is that
there exist symmetric matrices Pi > 0, and matrices Fi, Gi,
H, and J such that(FiĀi + FiB̄iK) + (•)T + 2γPi

Pi − FT
i + GiĀi + GiB̄iK

B̄iTFTi +Ji
C̄i−HK

∗ ∗

−Gi − GT
i ∗

B̄T
i G

T
i −H − HT

 < 0 (37)

hold for i = 1, 2, . . . ,N,Ξ
ij
11 ∗ ∗

Ξ
ij
21 −(Gi + GT

i ) − (Gj + GT
j ) ∗

Ξ
ij
31 B̄T

i G
T
j + B̄T

j G
T
i −2(H + HT)

 < 0,

(38)

with

Ξ
ij
11 =

[
ĀTiFTj + ĀTjFTi +KT

(B̄T
i F

T
j + B̄T

j F
T
i )
]

+ (•)T + 2γ (Pi + Pj), (39)

Ξ
ij
21 = Pi + Pj − (FT

i + FT
j ) + GiĀj+GjĀi

+ GiB̄jK+GjB̄iK, (40)

and

Ξ
ij
31 = B̄T

i F
T
j + B̄T

j F
T
i + J(C̄i + C̄j) − H(Ki + Kj), (41)

hold for i = 1, 2, . . . ,N − 1 and j = i+ 1, i+ 2, . . . ,N .

Proof: Note that by multiplying (37) by αi and summing
for i = 1, . . . ,N , and by multiplying (38) by αi and αj,
and summing for i = 1, 2, . . . ,N − 1 and j = i + 1, i +

2, . . . ,N , bearing in mind that α ∈ ∧N , we directly obtain
the parameter-dependent form (25), with K(α) = K.

As mentioned before, one can find a finite set of LMI
conditions that ensure (25) by assuming that the decision
variables are homogeneous-polynomial parameter-dependent
matrices. Corollary 1 presents the sufficient conditions for
(25) to hold for the case of g = 1. Progressively less
conservative conditions might be obtained with higher order
polynomials in α. However, deriving such finite set of LMI
could be a laborious task, as can be seen from the complex-
ity associated to the case of g = 1. Fortunately, one can
employ computational packages available in the literature to
computationally generate the finite set of LMI, as for instance
the specialized parser ROLMIP [52], which is adopted in the
present paper.

A final remark need to be made on how to define the
degree of the polynomial variables in the first-stage design
conditions (24). Note that the two-stage method consists of
sufficient conditions, since the first-stage design is performed
independently from the second stage, as long as the obtained
feedback matrix K(α) is a stabilizing one. Therefore, the
designer can impose different restrictions in the first stage,
either on the decay rate or on the degree of the polynomial
variables. This means it is not mandatory to impose β = γ in
the design procedure, nor to specify the same degree on the
decision variables Z(α), P(α), F(α), or G(α). Nevertheless,
feasibility in the second stage is directly affected by these
choices, as illustrated by the examples in the next section.

C. EXTENSION TO H2 CONTROL
Now consider the state-space realization

ẋ(t) = A(α)x(t) + B(α)z(t) + Bd(α)d(t)

ζ (t) = Cz(α)x(t) + Dz(α)z(t) (42)

where ζ (t) ∈ Rqz and d(t) ∈ Rmd are the controlled out-
put and disturbance input vectors, respectively. Additionally,
Bd(α) ∈ Rn×md is the disturbance input matrix to the system
dynamics, Cz(α) ∈ Rqz×n is the controlled output matrix,
and Dz(α) ∈ Rqz×m is the control input direct transmission
matrix.
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Assuming that sensor and actuator dynamics are modeled
as described in Section II, an augmented system can be
derived such as

ẇ(t) = Ā(α)w(t) + B̄(α)z(t) + B̄d(α)d(t)

ζ (t) = C̄z(α)w(t) + D̄z(α)z(t)

y(t) = C̄(α)w(k), (43)

where w(t) is defined as in (22) and Ā(α), B̄(α), and C̄(α) are
given as in (23), while

B̄d(α) =

 Bd(α)
0q(1+ks)×md
0m(1+ka)×md

 , D̄z(α) = Dz(α)

and

C̄z(α) =
[
Cz(α) 0qz×q(1+ks) 0qz×m(1+ka)

]
.

In such fashion, the augmented system (43) models the
effect of an exogenous input signal d(t) over the system
dynamics. Moreover, it indicates the vector ζ (t), which con-
sists of a linear combination of the original system state vector
x(t), defined according to the shape of the matrix Cz(α).
The H2 problem here considered consists in finding a

robust controller L such that the augmented system (43) is
asymptotically stable and also the the closed-loop H2 guar-
anteed cost is bounded by µ. The system decay rate is also
imposed to have a lower bound γ . Such performance criteria
are desired to be meet assuming a control law u(t) = Ly(t).

For the matter considered in this work, the H2 guaranteed
cost is defined as a positive scalar µ such that

µ ≥ ||H(α, s)||2

where ||H(α, s)||2 is the system (43) H2 norm, defined as

||H(α, s)||22 = sup
α∈∧N

1
2π

∫
+∞

0
Tr(H(α, jω)∗H(α, jω))dω

and

H(α, s) = C(α)(sI −A(α)−1)B(α), (44)

is the closed-loop system transfer matrix, defined over the
complex variable s, here considered as the complex frequency
variable s = jω, with

A(α) = Ā(α) + B̄(α)LC̄(α), B(α) = B̄d(α), and, (45)

C(α) = C̄z(α) + D̄z(α)LC̄(α). (46)

To give basis to our next proposed results, we consider the
following lemma, which represents a condition for minimiz-
ing the closed-loop H2 guaranteed cost as defined in this
section.
Lemma 3 [53]: For a Hurwitz stable matrix A(α),

||H(α, s)||22 < µ if and only if there exists parameter-
dependent symmetric matrices P(α) > 0 and Y(α) > 0 such
that

trace(Y(α)) < µ2 (47)

Y(α) − B(α)TP(α)B(α) > 0 (48)

A(α)TP(α) + P(α)A(α) + C(α)TC(α) < 0, (49)

Now, based on the considered two-stage procedure,
we propose new sufficient LMI conditions for computing
the robust H2 controller L based on the state-feedback con-
troller K(α) obtained in the previous stage, as enunciated in
Theorem 2.
Theorem 2: Assuming that there exists a state-feedback

gainK(α) such that (Ā(α)+B̄(α)K(α)) is asymptotically sta-
ble, then there exists a stabilizing static output-feedback gain
L such that Ā(α)+ B̄(α)LC̄(α) is asymptotically stable, con-
sidering a decay rate greater than or equal to γ > 0, if there
exist parameter-dependent symmetric matrices P(α) > 0 and
Y(α) > 0, parameter-dependent matrices F(α), G(α), and
matrices H and J such that are a solution to the following
optimization problem:

min ν

subject to

trace(Y(α)) ≤ ν, (50)[
Y(α) B̄d(α)TP(α)

P(α)B̄d(α) P(α)

]
> 0, (51)

and
(F(α)Ā(α) + F(α)B̄(α)K(α)) + (•)T + 2γP(α)
P(α) − F(α)T + G(α)Ā(α) + G(α)B̄(α)K(α)

C̄z(α) + D̄z(α)K(α)
B̄(α)TF(α)T + JC̄(α) − H(α)K(α)

∗ ∗ ∗

−G(α) − G(α)T ∗ ∗

0 −I ∗

B̄(α)TG(α)T D̄z(α) −H(α) − H(α)T

 < 0 (52)

Then, at the optimal solution, system (43) in closed-loop with
u(t) = Ly(t), where L = H−1J, has a lower bound γ > 0 on
the system decay rate and the closed-loop systemH2 norm is
bounded by µ such that µ =

√
ν ≥ ||H(s)||2.

Proof: Assuming that (52) holds, we have that H is invert-
ible. Now, by pre- and post-multiplying (52) by U(α) and
U(α)T , where

U(α) =

I 0 0 S(α)T

0 I 0 0
0 0 I 0

 , (53)

where S(α) = H−1JC̄(α) − K(α), we have after some
algebraic manipulation:(F(α)(Ā(α) + B̄(α)H−1JC̄(α))

)
+ (•)T + 2γP(α)

P(α) − F(α)T + G(α)
(
Ā(α) + B̄(α)H−1JC̄(α)

)
C̄z(α) + D̄z(α)H−1JC̄(α)

∗ ∗ ∗

−G(α) − G(α)T ∗

0 −I

 < 0. (54)
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Defining L = H−1J comes(F(α)(Ā(α) + B̄(α)LC̄(α))
)
+ (•)T + 2γP(α)

P(α) − F(α)T + G(α)
(
Ā(α) + B̄(α)LC̄(α)

)
C̄z(α) + D̄z(α)LC̄(α)

∗ ∗ ∗

−G(α) − G(α)T ∗

0 −I

 < 0. (55)

And, following the definition given in (45) and (46),
we haveF(α)A(α) + (•)T + 2γP(α) ∗ ∗

P(α) − F(α)T + G(α)A(α) −G(α) − G(α)T ∗

C(α) 0 −I

 < 0.

(56)

At this point, one should observe that the upper-left 2 ×

2 blockmatrix in (56) represents the robust stability condition
for ẇ(t) = Aw(t), as seen in Lemma 2. Therefore, (56) is
equivalently represented by[

A(α)TP(α) + P(α)A(α) + 2γP(α) C(α)T
C(α) −I

]
< 0. (57)

Note that by applying the Schur complement on (57),
we have

A(α)TP(α) + P(α)A(α) + 2γP(α) + C(α)TC(α) < 0

⇒ A(α)TP(α) + P(α)A(α) + C(α)TC(α) < −2γP(α) < 0,

as P(α) > 0 and γ > 0.
Finally, also by means of the Schur complement, we have

that (51) is equivalent toY(α) − B(α)TP(α)B(α) > 0. There-
fore, according to Lemma 3, with ν = µ2 we haveµ =

√
ν >

||H(α, s)||2, and by minimizing ν and consequently the trace
of Y(α), we minimize the system’s H2 guaranteed cost. The
proof is then finished.
It is important to stress that in the two-stage approach

the first-stage gain matrix K(α) can be designed using any
stabilizing state-feedback control synthesis. In this paper,
we consider the use of the conditions presented in (24).
Investigating the efficiency of the proposed robust SOF H2
controller synthesis with different first-stage control design
techniques are beyond the scope of this work.

Finally, as in Theorem 1, the LMI conditions in Theorem 2
are of infinite dimension. Therefore, the same proce-
dure of defining a finite set of LMI by considering a
homogeneous-polynomial structure for the decision variables
using the specialized parser ROLMIP [52] is adopted for
employing Theorem 2.

III. EXAMPLES
In this section, we present some examples in order to illustrate
the application and benefits of our proposed approach for
addressing the problem of robust stabilization of uncertain
LTI systems subject to non-negligible sensor and actuator
dynamics, and time delay, by means of the definition of
an augmented system and the employment of a two-stage-
based SOF control design. Also, we intend to show that the

generalization of previous results proposed in this paper is
indeed relevant for addressing complex SOF designs as the
one exploited herein. The LMIs associated to the investigated
problems are coded in the MATLAB software, with YALMIP
interface [54], and the SDPT3 solver [55].

A. EXAMPLE 1
In this first example, we demonstrate the benefits of our
proposed method. For that, we consider the control design of
the lateral axis dynamics for an L-1011 aircraft. The system
state-space model is adapted from [56] as

ẋ(t) =


−2.980 θ 0 −0.034

−θ −0.210 0.035 −0.001
0 0 0 1

0.390 −1.350 − 3θ 0 −1.890

 x(t)

+


−0.032

0
0

−θ

 u(t), (58)

where the four state variables x(t) = (x1(t), x2(t), x3(t), x4(t))
are the yaw rate, the sideslip angle, the bank angle and the
roll rate, respectively. The control input u(t) is the aileron
deflection. Note that both system and input matrices are
affected by an uncertain parameter θ , such that

−1.0 ≤ θ ≤ −0.5

which represents the airspeed.
We assume that only the state variables x3(t) and x4(t) are

measured on-line by means of two sensors with dynamics
described as in (4), with

Av = diag(−1,−1) and C =

[
0 0 1 0
0 0 0 1

]
.

The control input u(t) is applied through an actuator with
dynamics as in (5), with

Az = −1 and D = 1.

The sensors and actuator information channels are subject
to time delay in such way that the measured state information,
v(t), and actuator command, u(t), present a time delay τ =

τs = τa = 350ms (a realistic value considering Avionics Full
Duplex Switched Ethernet (AFDX) aviation data buses [26])
before being delivered to the controller and to the system
actuator, respectively.

1) SYSTEM MODELING
To apply the proposed method, we start by modeling the time
delay effect using a Padé approximation of order 2. Therefore,
regarding (17) with ks = ka = 2 and τ = τs = τa = 350,
we have that the state-space matrices of (12) for the delayed
sensors and actuator are

• Sensor Channel 1

Asd1 =

[
0 1

−59.2593 −13.3333

]
, Bsd1 =

[
0
1

]
Csd1 =

[
0 −26.6667

]
, Dsd1 = 1. (59)
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• Sensor Channel 2

Asd2 = Asd1 , Bsd2 = Bsd1 ,Csd2 = Csd1

and Dsd2 = Dsd1 . (60)

• Actuator Channel 1

Aad1 =

[
0 1

−59.2593 −13.3333

]
, Bad1 =

[
0
1

]
Cad1 =

[
0 −26.6667

]
, Dad1 = 1. (61)

Firstly, by considering that θ may only assume values
within the given interval, we can represent the uncertain sys-
tem (58) in terms of the convex combination of two vertices

• Vertex 1

A1 =


−2.980 −1 0 −0.034

1 −0.210 0.035 −0.001
0 0 0 1

0.390 1.650 0 −1.890

 ,B1 =


−0.032

0
0

1.000


• Vertex 2

A2 =


−2.980 −0.500 0 −0.034
0.500 −0.210 0.035 −0.001
0 0 0 1

0.390 0.150 0 −1.890

 ,B1 =


−0.032

0
0

0.500


defined according to the minimum and maximum values of
θ , following the polytopic definition (2).

Given the two vertices (A1,B1), (A2,B2), as well as the
sensor and actuator matrices, and the Padé delay model,
a thirteenth-order augmented system is obtained as in (23).

2) CONTROL DESIGN
We now proceed to the design phase were we aim at comput-
ing a SOF gainL such that the augmented system Ā+B̄LC̄ is
asymptotic stable, relaying only on the available sensors out-
put signal. For that, we apply the proposed two-stage HPLF-
based LMI strategy for searching the desired stabilizing gain
L with minimum decay rate specification.

To this end, we first design a stabilizing state-feedback
controller by solving the LMI problem under the conditions
given in (24). For this design, we consider a polynomial
parameter-dependent variable Z(α) with degree g = 2, and
also impose a minimum first-stage decay rate specification
β = 0.02. The obtained state-feedback controller is

K(α) = α2
1K1 + α1α2K2 + α2

2K3 (62)

with

K1 =
[
−0.9624 −0.8310 −3.6782 −4.4970 0.5890 0.6020

0.1047 −0.0117 −0.0141 0.0199

− 0.4611 −144.5650 14.4716
]
,

K2 =
[
−0.8498 −1.3383 −6.8547 −7.4811 1.2836 0.8902

0.2097 −0.0216 −0.0279 0.0378 −0.6510

− 279.7175 29.5492
]
,

K3 =
[
0.0614 −0.76541 −3.4788 −2.8447 0.7254 0.2582

0.1071 −0.0111 −0.0135 0.0189 −0.5118

− 142.6304 14.3959
]
.

In the sequence, we use K(α) (in terms of the vertex
matrices K1,K2, and K3) in the second-stage LMIs of
Theorem 1, which are based on homogeneous-polynomial
functions.We set the polynomial Lyapunov functionP(α) and
auxiliary polynomial variables F(α) andG(α) to be of degree
g = 2. In addition, by enforcing a minimum second-stage
decay rate γ = 0.2, we find

L =
[
−0.5219 −0.3148

]
. (63)

Remark 6: The decay rate bound β imposed in the
first-stage design (and the resulting gain K(α)) directly
impacts the feasibility in the second stage. For this particular
example, by setting β = 0.02 we obtained feasibility in the
second-stage with γ = 0.2. If desired, a search on β can be
employed for obtaining an ‘‘optimal’’ maximum value for the
second-stage decay rate bound γ , since with higher bounds
we enforce faster transient responses [47].

3) PERFORMANCE ANALYSIS
We begin analyzing this result by emphasizing the simplicity
of the obtained SOF gain. Since our method considers only
the available measured system information (which, in this
case, consists of the two sensors outputs), the designed feed-
back gain (63) is a 1 × 2 matrix. In a hypothetical full-state
feedback implementation, the gainmatrix would be of dimen-
sion 1×13, as obtained in the first-stage design (62), in order
to encompass plant, sensors and actuators states, if they were
possible to be measured. Moreover, such a control law would
actually require the knowledge of the uncertain parameter
vector α to obtain the gain matrix K(α).

In Figure 2, we present the closed-loop time-response
of system (58), with its dynamic sensors and actuators as
given in (59)-(61), considering an initial condition x(0) =[
0 1 0 0

]
, which represents the aircraft state after a gust

perturbation [57]. The solid lines represent each of the four
plant states. We can see that the SOF controller (63) enforced
a stable behavior, even in with sensor and actuator delayed
communication channels in τ = 350 ms.

To illustrate the impact of neglecting the delay in the
control design, we also plotted (dashed lines) the tran-
sient response of the closed-loop system with an SOF gain
designed for an augmented system that only considers the
sensors and actuator additional dynamics, as considered
in [12].

Comparing both responses in this example, we can clearly
see a degradation in the system performance, observed in
terms of smaller damping during system transient, specially
with x3(t) and x4(t) state variables (the ones used in the
feedback loop).

For completing the analysis of our proposed method,
we illustrate the impact of the minimum decay rate γ in
the control design. For that, we present a comparison of the
control design (63) – which considered aminimum decay rate
constraint γ = 0.2 – with another design, carried out without
imposing restrictions on the decay rate of the closed-loop
system (i.e. γ = 0).
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FIGURE 2. L-1011 lateral axis closed-loop dynamics with SOF design
neglecting [12] and considering transport delay (SOF controller (63)).

By employing the same procedure adopted in the syn-
thesis of the SOF gain matrix (63), but now considering
β = γ = 0 we obtain

L =
[
−0.2332 −0.0502

]
. (64)

A comparison of the closed-loop responses obtained with the
SOF gains (63) and (64) is presented in Figure 3 in terms
of the state variables x3(t) and x4(t). One can clearly see
that without imposing a minimum decay rate constraint, the
closed-loop system exhibits a worse performance in terms of
a longer settling-time.
Remark 7: A final yet important remark regarding Exam-

ple 1 is that by considering a design approach via
Corollary 1 or 2 we obtain some interesting results. If we
consider a parameter-dependent first-stage design, by setting
Z(α) with degree g = 1 and use the obtained matrix gains
in Corollary 1 we do not find a feasible solution for the
same decay rate design parameters. Corollary 2 also fails in
obtaining feasibility in the second-stage design. These results

FIGURE 3. L-1011 lateral axis closed-loop dynamics with SOF design
considering minimum decay rate γ = 0.2 and without minimum decay
rate enforcement (γ = 0).

FIGURE 4. Simulation results obtained for Example 2 system considering
a conventional SMC controller [58].

illustrate the benefits of considering a higher-degree Polya’s
relaxation associated to the HPLF approach, when compared
to the polytopic method in [50], which will be more properly
discussed in Example 3.

B. EXAMPLE 2
In this second example, we give more emphasis to the impor-
tance of considering the delay effect in the control design.
To this end, we show that methods known for its robustness
characteristics, such as conventional sliding mode control
(SMC) techniques, suffers destabilization in the presence of
time delay.

Consider an uncertain linear system such as (1), described
in terms of the following vertex matrices:

• Vertex 1

A1 =

−0.277 −32.980 −5.432
0.365 −0.319 −9.490
0 0 −5

 ,B1 =

 0
0

−5


• Vertex 2

A2 =

−4.277 −50 −5.432
0.365 −1.318 −9.490
0 0 −5

 ,B2 = B1

We consider the design of an sliding-mode controller in
terms of the control law

u(t) = Rx(t) + ρ
Nx(t)

||Mx(t)|| + δ
,

where R,M, and N are constant matrices, and ρ a constant
scalar. Such parameters are obtained through the employment
of the classic SMC as described in [58], well-known for
presenting robustness to several practical control issues. For
the considered example, one might obtain:

ρ = 0.1, R =
[
−0.58 −7.96 17.09

]
,

N =
[
0.1 −1 0.1

]
, and M =

[
−0.1 1 −0.1

]
.
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The constant parameter δ is a small scalar included for avoid-
ing the chattering phenomenon, often present in sliding mode
control structures [59]. For this example, we set δ = 10−2.
In a simulation considering an arbitrary initial condition

x0 =
[
0.15 0.15 0.15

]T , the SMC controller is able to
stabilize the considered system in closed-loop, yielding the
transient response presented in Figure 4 (top).

However, when a time delay τa = 0.02 is inserted in the
control signal channel, such that ẋ = A(α)x(t)+ Bu(t − τa),
the same SMC controller is not able to maintain stability,
as the simulation results for the same initial conditions show
in Figure 4 (bottom).
In contrast, by employing our robust SOF method that

encompasses the input signal delay in the controller design,
we obtain a stabilizing controller

L =
[
−0.0484 −1.4265 2.2506

]
,

with sensor and actuator models matrices3 Av =

diag(−100,−100, −100),Az = −100, and a 2nd order delay
Padé approximation model. The first- and second-stage LMI
variables degrees are set as degP = degF = degG = 2,
degZ = 0, and β = γ = 0. As we can see in Figure 5,
in contrast to the SMC strategy, our method presents stability
robustness with respect to the presence of time delay in
the control input channel, since closed-loop transient when
input delay is considered exhibits only small variations when
compared to delay-free transient.

C. EXAMPLE 3
Now we aim at illustrating the efficacy of the H2 control
strategy proposed in Theorem 2. To this, consider the uncer-
tain continuous-time system borrowed from [60], defined in
terms of polytope with vertex matrices:

• Vertex 1

A1 =

[
1 2
0 −4

]
, B1 =

[
1
0

]
, Bd1 =

[
2
1

]
C1 =

[
1 0
]
, Cz1 =

[
1 2
]
, Dd1 = 1

• Vertex 2

A2 =

[
2 −1
0 −5

]
, B2 =

[
1
1

]
, Bd2 =

[
1
1

]
C2 =

[
2 1
]
, Cz2 =

[
1 1
]
, Dd2 = 2

Adapting the example for employing our proposedmethod,
we also consider sensor and actuator with non-negligible
dynamics, which are modeled as described in Section I, with
Av = −100, Az = −100. We also assume that the informa-
tion in both state and input channels are delayed in 30 ms,
whose dynamic effects are modeled using a 2nd order delay
Padé approximation model.

Now, applying our two-stage procedure over the conse-
quent augmented system, we first design a stabilizing state-
feedback gain K(α) using (24), with β = 0 and degZ = 0

3Note that we considered actuators and sensors with fast dynamics. With
that, only the delay effect will have a significant impact in the controllers
simulation responses, which is the objective in this comparison example.

FIGURE 5. Simulation results obtained for Example 2 system considering
a robust SOF controller using our proposed two-stage design via
Theorem 1.

for obtaining:

K(α) =
[
−1.9710 −0.1149 0.9088 −0.0047

−4.7203 × 10−5 0.8105 −898.7575 −7.8539
]
.

Then, by solving the minimization problem stated in
Theorem 2, with variables degrees set as degP = degF =

degG = degY = 1 and γ = 0, we obtain a stabilizing robust
SOF controller

L = −4.3039,

which ensures a H2 guaranteed cost µ = 6.9858. For
comparison purposes, observe that in [60], the proposed
H2 control strategy achieved a more conservative guaranteed
cost µ = 8.0343, even without the additional complexity
associated to our approach, which considers delay and sen-
sor/actuator non-negligible dynamics.

D. EXAMPLE 4
In this final example, we now aim at illustrating the benefits
of considering our proposed HPLF-based two-stage robust
SOF design strategy with minimum decay rate constraints for
uncertain LTI systems with sensor and actuator time-delayed
dynamics.

For that purpose, we performed a set of feasibility
tests, which consisted in attempting to find a feasi-
ble solution for the control design of the L-1011 lat-
eral axis dynamics (presented in Example 1) using the
polytopic parameter-dependent strategy considered in [12]
(Corollary 2) and the HPLF generalization proposed in this
work (Theorem 1).
Note that for different ranges for the uncertain parameter θ

and different values for the time delay τ we have a differ-
ent control design problem. We consider that the uncertain
parameter θ lies in the range specified by −1.0 − δ ≤

θ ≤ −0.5 + δ, with 1.0 ≤ δ ≤ 2.5. At the same time,
we consider a range of test values for the time-delay defined
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by 0.05 ≤ τ ≤ 0.5. Therefore, for each pair (δ, τ ) in the
specified ranges, we have a different problem in terms of
uncertain parameter and time delay. Moreover, observe that
for higher values of δ, we are assuming that the uncertain
parameter belongs to a wider uncertainty range.

1) HPLF vs. Polytopic PDLF
In a first study, we assume that no minimum decay rate is
enforced in the control designs in both stages (i.e. β =

γ = 0). Then, for each pair (δ, τ ) we seek to find a first-
stage state-feedback gain4 using (24), and then we feed the
obtained controller information to the LMI problems stated in
Corollary 2 and Theorem 1. In Figure 6 we present for which
pairs (δ, τ ) each strategy succeeded in finding a stabilizing
robust SOF gain L.
As we can clearly see, the HPLF strategy considered in

this paper (Theorem 1) outperforms the polytopic PDLF
approach used in [12], and proposed in [50] (Corollary 2), as
Theorem 1 is able to provide a feasible solution for a larger
number of problems. For this test, the variables (P,F,G)(α)
in Theorem 1 where assumed to be polynomials with degree
g = 2. In practical terms, the result presented in Figure 6
shows that Theorem 1 guarantees the robust SOF stabilization
of the L-1011 lateral axis dynamics for a wider range of
uncertainty on the airspeed parameter θ , by allowing the
decision variables to be defined as homogeneous polynomials
with degree higher than g = 1, as in [50].
In a second feasibility test, we now consider that a mini-

mum decay rate is imposed in both stages of design. Repeat-
ing the same procedure as in the first test, the feasibility
region in Figure 7 is obtained. Once again, we see that the
HPLF strategy outperformed the polytopic PDLF approach
used in [12]. However, a comparison with the results in
Figure 6 reveals that the additional constraint of a minimum
decay rates increases the difficulty of providing a stabilizing
SOF gain. Indeed, the feasibility region in Figure 7 covers a
smaller range of model uncertainty, which is defined by the
value of δ.

2) INFLUENCE OF THE POLYNOMIAL MATRIX K(α) DEGREE
For completing the analysis of the results proposed in our
work, we present a study of the influence that the degree of
the polynomial matrix K(α), chosen in the first-stage design,
exerts over the feasibility in the second stage.

New feasibility tests – on the same basis of the two previ-
ous ones – where conducted, by combining different choices
for the polynomial degrees of the decision variables in both
first and second stages. In the first stage, three values were
tested for the degree degZ of the polynomial variable Z(α),
namely degZ = 0, degZ = 1, and degZ = 2. It is worth
recalling that degZ also corresponds to the degree of K(α),

4Since the second-stage design is sensitive to the state-feedback gain
designed in the first stage, we perform both tests assuming that the first stage
is executed considering the degree of Z(α) to be equal to 0 (degZ = 0),
enabling the use of the same gain K(α) = K in both second-stage synthesis
conditions of Theorem 1 and Corollary 2 [50].

FIGURE 6. Feasibility region obtained for the L-1011 lateral axis SOF
stabilization problem without imposing a minimum decay rate when
applying the polytopic PDLF SOF design strategy [50] (⃝ - Corollary 2);
and when using the HPLF extension proposed in Theorem 1 (⃝ and □).

FIGURE 7. Feasibility region obtained for the L-1011 lateral axis SOF
stabilization problem imposing a minimum decay rate (β = γ = 0.025)
when applying the polytopic PDLF SOF design strategy [12] (⃝); and
when using the HPLF extension proposed in Theorem 1 (⃝ and □).

as K(α) = W−1Z(α). In the second stage, the polynomial
variables P(α), F(α), and G(α) were also chosen to be of
the same degree degPFG (i.e. degP = degF = degG =

degPFG), which was set to either 0, 1, or 2. For each pair
(degZ , degPFG) ∈ {0, 1, 2} × {0, 1, 2}, the feasibility of
the LMI (1) in Theorem (25) was assessed. The results are
presented in Figure 8.
As expected in light of the previous results, by allowing the

decision variables to be homogeneous-polynomially depen-
dent on the uncertain parameter we obtain a wider feasibility
region, which increases with higher polynomial degrees.

However, the inverse result is observed regarding the
polynomial degree established for the first-stage gain K(α).
As seen from both scenarios (with and without minimal
decay rate specification), the best feasibility results in the
second-stage design are obtained when the first-stage gain is
set to be independent from the uncertain parameter. More-
over, the higher degree set for the polynomial gain matrix
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FIGURE 8. Feasibility regions obtained for the L-1011 lateral axis SOF stabilization problem for different choices of the
polynomial degree of the decision variables associated to the first- and second-stage designs with (bottom charts) and without
(top charts) minimum decay rate constraints.

K(α), the smaller is the resulting feasibility region in the
second stage.

IV. CONCLUSION
The proposed strategy is able to address additional sensors
and actuator non-negligible dynamics subject to time delay
by means of an SOF control design applied to an aug-
mented system representation. The simulation results show
the importance of considering such practical issues in the
control design, attesting to the relevance of the synthesis
method presented in this work. In practical terms, the results
attest for the potential of the proposed approach to be applied
in the control design for others attitude angles in aircraft.

By confronting the results observed in Example 1, we see
that a minimum decay rate specification is valuable to
improve the closed-loop dynamics. However, enforcing this
specification may be a challenging issue, as the feasibility of
the LMIs involved in the synthesis of the robust controller
may be compromised. From Example 2, we see that even
techniques well-known for presenting robustness to several
practical control issues are susceptible to present undesired
dynamic characteristics when neglecting the presence of
time-delay effects. Furthermore, the proposed extensions for
dealing with disturbance rejection via H2 norm optimization
shows to achieve better results when compared to other strate-
gies available in literature, as exposed in Example 3.

At last, it is important to highlight that the polytopic system
modeling strategy considered in our paper not only enables

the designer to consider uncertain sensor and actuator param-
eters, and uncertain time delays, but also that these parameters
can be time-varying. Therefore, the proposed method can be
directly applied to address linear parameter-varying (LPV)
systems through a gain-scheduling control design. Addition-
ally, considering the practical relevance of the nonlinear sys-
tems case, the development of an extension of the proposed
LMI conditions to be applied to fuzzy Takagi-Sugeno models
are in progress.
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