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ABSTRACT This work presents the finite-time synchronization of a new six-term chaotic system with
only stable equilibria and its circuitry implementation. The chaotic system is designed in such a way that
its complex dynamical behavior, including hidden attractors, can be adjusted through only one parameter,
whilst allowing transformation to chaotic flows via invariant transformations. A finite-time chaotic
synchronizer is designed via a nonsingular terminal integral backstepping sliding mode controller, with
reduced theoretical finite-time convergence, and a modified sliding surface, to accommodate analog circuitry
implementations. A comparison between the proposed controller against conventional integral backstepping
sliding mode controller showed that active synchronization is achieved in finite time. Finally, analog circuitry
implementation for both open-loop and closed-loop configurations is realized via commercially available
active components such as LF357 and AD633. The descriptive circuitry equations for both configurations are
designed to mimic the actual governing control equations for simplicity and ease of circuit troubleshooting.
The workability of both configurations was tested in OrCAD PSpice. Results show that the master and slave
systems were found to be in synchronization with less than 0.95% maximum errors.

INDEX TERMS Chaotic system, attractor, chaos synchronization, finite-time integral backstepping control,
terminal sliding mode control, closed-loop circuit implementation.

I. INTRODUCTION

Chaos theory, since its conception with the discovery of the
well-known Lorenz system [1], has gradually blossomed over
the years. Its essence lies in the description of the apparently
simple, well-behaved systems of differential equations. Well-
known essential characteristics of chaotic systems include
sensitivity to initial conditions, as well as the existence
of the infinite number of periodic responses [2], whose
characteristics also include long-term unpredictability [3].
Many chaotic systems have arisen from natural phenomena,
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namely, atmospheric convection [1], chemical reaction [4],
electronic circuits [5]. Since then, the search and design for
chaotic systems have been unrelentless. Sprott [6] explored
several third-order chaotic systems and classified the systems
into two categories: five-term systems with two equilibriums
(Sprott A-E), and six terms systems with one equilibrium
(Sprott F-S). Other types of 3D chaotic systems that have
been designed include, for example, [7], [8], [9], [10], [11],
and [12]. The search for chaotic attractors continue with the
works of [13], [14], and [15], for some examples.

In the search for chaotic attractors, researchers have
also uncovered those with hidden attractions. The first
chaotic attractor exhibiting this phenomenon arose from the
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generalized Chua’s system [16], leading to the classification
of attractors as self-excited or hidden [17]. A self-excited
attractor is one whose basin of attraction intersects with an
open neighborhood of equilibrium, otherwise, the attractor is
hidden. Identification of such attractors is important for many
engineering applications, as a sudden shift to the undesirable
attractor could lead to catastrophes [18], [19]. There have
been a number of algorithms that cater to the need for hidden
attractor localization. The earliest algorithm was developed
by Kuznetsov [16]. An improvement of the Kuznetsov
algorithm then compared the Lyapunov spectrum for each
trajectory orbit to classify the attractors [20]. This particular
algorithm requires an accurate and precise computation
of the Lyapunov spectrum, incurring more computational
costs. The latest algorithm was developed by Datseris and
Wegemakers in 2022 [21] using the Poincare recurrence
theorem. A great number of chaotic attractors with hidden
attraction phenomena have been unveiled. Some examples
include [9], [22], [23].

Although multiple wing systems have been designed
in the literature, these generally incur no equilibrium
[14], [24], [25]. Attempts at designing multi-wings systems
with only stable equilibria are rare in the literature. This is
because the design of systems with only stable equilibria is a
challenging task in itself. Once a system with stable equilibria
is designed, its initial conditions near the equilibrium
generally converge to that particular equilibrium, which
may not coin the multiple wings if common methods such
as the addition of equilibria to the saddle-foci system
are simply used. However, designs such as [26] and [27]
applied the sigmoid functions in an attempt to generate
multiple scroll/wing systems. The latest designs include the
use of invariant transformations [28], [29]. Following such
design, this paper thus concentrates on devising a chaotic
system with only stable equilibria that also contain hidden
attractors, and through an invariant transformation, shows
that transformations to other multi-wing chaotic systems with
only stable equilibria could also be devised.

Synchronization of chaos is the process of oscillating two
separate chaotic systems such that their respective trajectories
are concurrent. To this end, a control algorithm is needed,
as initially there will be synchronization errors whose dynam-
ics arise from the mismatch between the drive and response
systems. Various control algorithms have been proposed in
the literature including linear feedback control [30], [31],
adaptive control [32], [33], [34], [35], optimal control
[36], [37], and nonlinear control [38], [39], [40], [41], [42],
[43]. Adaptive backstepping control was used in [44], [45],
[46], and [47]. Vaseghi et al. [48] employed adaptive sliding
mode control for secure communication in wireless sensor
networks, demonstrating of the robustness of the closed-loop
system. Traditional integral sliding mode controller appends
the integral action to the system state variables, readily
eliminating steady-state errors as well as improving the
robustness [49]. However, like its traditional integral action in
a PID controller, the windup effect causes a large overshoot
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or a longer transition time in the control. To generate
a finite time transition, it is then necessary to select a
sufficiently large sliding mode surface. However, such amove
invariably leads to instability and introduces the well-known
chattering phenomenon, which degrades the actuator through
wear and tear [50]. In this light, nonsingular fast terminal
sliding mode control was proposed to achieve the chattering
alleviation feature [51]. Other works then proposed the global
terminal backstepping control technology [52], [53], as well
as nonsingular integral type control laws [54], [55]. Based
on the survey of the literature, it is then paramount that the
controller be designed for the chaos synchronization needed
to achieve such synchronization in finite time. Although the
chattering-free feature is not quite as important as the closed-
loop finite-time response since our application does not
involve a motor as the actuator for the system, it is still indeed
desirable. Most importantly, the designed controller must be
able to be implemented using analog circuitry. This closed-
loop implementation has never been done before in any
literature since researchers thus far have only been concerned
with the open-loop circuit implementation of chaotic systems.

In summary, this work thus originates the following key
contributions:

1) The conjuration of a six-term chaotic system with
only stable equilibria, capable of being transformed
into other multi-wing chaotic systems via invariant
transformation, whose complex dynamics could be
changed with only one parameter.

2) The design of a nonlinear, nonsingular integral back-
stepping terminal sliding mode control for synchro-
nization of the designed six-term chaotic system.
Furthermore, a theoretical proof is provided that
provides faster reaching time T4, than earlier works
of [56] and [57], allowing finite-time control.

3) The practical implementation of both open-loop and
closed-loop systems using analog circuitry through
commercially available active components such as
LF357 and AD633.

The paper is now organized as follows: Section II outlines
the presented six terms chaotic system, along with its
dynamical analyses and transformation to other chaotic
systems. Section III then designs the open loop system, along
with its implementation using analog circuitry. Section IV
designs a nonlinear, nonsingular finite-time integral back-
stepping terminal sliding mode control for synchronization
of the designed six-term chaotic system, with its circuit
implementation conducted in Section V. Section VI then
draws the conclusion of this work.

Il. THE PRESENTED SIX-TERM CHAOTIC SYSTEM

In this section, we first present the novel six-term chaotic
system with two equilibria, whose stability nature can be
made stable or unstable depending on the value of the
lone system parameter. Detailed dynamical system analysis
including bifurcation and hidden chaotic attraction are also
analyzed.
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A. MATHEMATICAL MODEL AND BASIC PROPERTY OF
THE SYSTEM

Inspired by the addition of the ax feedback term to the
original Sprott-B system in [29], we add the same term to
the first equation of the original Sprott-C system [6]. The
resulting equations of motion are:

X1 = axy + x2x3
X2 =X — X2

X3 =1—x7 1)

where parameter a is the system parameter. Note that the
original Sprott-C system is the case of a being zero. This
system, being similar to the Sprott-B system, is also invariant
under the transformation (xy, xp, x3) — (—x1, —x2, x3). This
means that the presented system will be symmetric about the
x3 axis and has rotation symmetry for x3.

1) EQUILIBRIA
Setting the right-hand side of Equation (1) to zero and
solving, two equilibrium points are easily found to be:

Ey =[1,1,-a]" 2
E =[~1,~1,~a]". 3)
We are next interested in the local stability of the equilibrium
points E; and Ep. This is provided simply through the

linearization of the system. Evaluating the jacobian at the
equilibrium point E; gives:

a—a —1
Jey=|1-1 0]. “4)
2 0 0

The characteristic polynomial of Jg, is:
S+(1—a)s®+2s+2. (5)

To ensure that the roots of this characteristic polynomial have
negative real parts, we require the condition of 1 —a > 0; that
is, a < 1. Evaluating the jacobian at the equilibrium E; gives:

a—al
Jp,=| 1-10]. (6)
-2 00

In this case, the characteristic polynomial is
S+ (1 —a)s®+2s+2.

Note that this characteristic polynomial is identical to
the one computed in Equation (5). This is because our
system has symmetry embedded in it, as evidenced clearly
by the computed jacobians Jg, and Jg,. We can thus
conclude that the system will indeed be locally stable for
all a < 0. Note also that the presented system has no
amplitude parameter due to being dependent on only a single
parameter a. However, what it does offer is the existence of
multiple locally stable equilibria, which greatly simplifies
the dynamical systems analysis. This feature in itself is
challenging from the chaotic systems point of view [29].
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2) DISSIPATIVITY
For the dynamical system given by Equation (1), the
dissipativity of the system is given by the trace of the jacobian
JE, and JE,:
ox ox ox
vV = 8_x1 + 8_); + 8_x; = Trace (Jg,) = Trace (Jg,)
=a—1 (N

The divergence value is less than one for all a < 1. So the
exponential contraction rate for the flows of Equation (1) is
given by:

v 1 14 8

e (I—-a (®)
Hence an initial volume V{y will shrink according to
V(t) = Voe =9" This means that as the system is
locally stable, the flow shrinks to zero. Note that this system
does not have a global attractor that is able to trap all the
solution trajectories into a bounded region according to the
definition of [58]. However, with special initial conditions,
potential local attractors may still exist. These attractors will
be uncovered with a more dynamic system analysis in the next
section.

B. DYNAMICAL ANALYSIS

In this section, we give the dynamic system analysis of
the presented system. The numerical simulations are mainly
carried out using the differential equation solver ode45 in
MATLAB, and the DynamicalSystems package in Julia
software [59].

1) LYAPUNOV EXPONENTS

The Lyapunov exponent is one of the most important means
for probing a dynamical system for chaotic activity, charac-
terizing the deviation of infinitesimally close trajectories by
giving an average exponential rating. A positive maximum
Lyapunov exponent is indicative of chaotic behavior [60].
For numerical investigation of the finite time Lyapunov
exponents of the presented system, we use the adaptive
time step, with the simulation time of 20000 seconds
[61], [62]. When the parameter a is set at a = —0.042, with
initial conditions of xg = [4, 1, 1]7, the Lyapunov spectrum
computed from the algorithm of Wolf [63] is:

Ly =0.116, L, =0, Ly = —1.158. )

This particular set of initial conditions and parameter a
indeed generate flows with expanding nature in phase space.
Hence, the proposed system is indeed chaotic. The Lyapunov
dimension is computed to be:

L 0.116
D = —_—_—= 1 —
L3 —1.158
The other popular fractal dimension used to quantify chaos
is the Kaplan-Yorke dimension, which is calculated from the

Lyapunov exponents using the following formula:

Z{F:l L

[Lg+1l

= 1.100 (10)

Dgy =k + (11
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(a) Bifurcation diagram for the maxima and minima of state x1.

— IC=[4.1,-2]
—IC=[1.1,1.1-a]

0.2+

0.1+

0.04

a

(b) Corresponding maximum Lyapunov exponent for two initial con-
ditions

FIGURE 1. Bifurcation diagrams with respect to the states and maximum Lyapunov exponent (MLE).

where k is the smallest integer such that the sum of all
the Lyapunov exponents are non-negative so that chaotic
trajectory is guaranteed. In our case, k = 2, which implies
that

L+ 1,

0.116
Dgy =2+ ——— =2+

~— —2.100
|Ls] 1.158

2) BIFURCATION

The bifurcation diagram is an important tool in the study of
dynamical systems in general, as it depicts the relationship
between a parameter of the system and the behavior of the
dynamical system in which the parameter in question is
measured. For the varying parameter a, Fig. 1 shows the
bifurcation diagram for the maxima and minima of the state
x1 against the change in the parameter a € [—0.5,0.5],
where the blue, black and red plots are the orbits generated
by the initial conditions [1.1, 1.1, —a]”, [ 1.1, —1.1, —a]”,
[4,1.1, —a]T, respectively. As is seen, for values of a
less than zero roughly, the initial conditions [1.1, 1.1, —a]T
(blue) and [—1.1, —1.1, —a]¥ (black) generate orbits that
are eventually attracted to the stable equilibrium points.
The initial condition [4, 1.1, —a]” (red), on the other hand,
generates a multi-stable orbit about both equilibrium points.
As parameter a becomes positive, all initial conditions
generate chaotic orbits. Note that both equilibria are locally
stable for all parameters ranges used in the bifurcation
analysis, but the system in Equation (1) can still exhibit
stable dense orbit with positive Lyapunov exponent as
was seen in the earlier discussion. This implies that the
system is chaotic with stable equilibria. Fig. 1b shows
the corresponding bifurcation diagram of the maximum
Lyaponov exponents for the initial conditions [1.1, 1.1, —a]”
(blue) and the [4, 1.1, —a]” (red). It is seen that for a <
—0.042, the maximum Lyaponov exponent is zero, signifying
the occurrence of stable limit cycles for both sets of initial
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conditions. As a increases over -0.042, the initial conditions
[4,1.1, —a]” suddenly generate chaotic flows, while the
initial conditions [1.1, 1.1, —a]” still generate stable limit
cycle flows. This fact implies that coexisting bifurcation
routes could be generated by different initial conditions,
indicating possible hidden attractors.

To see the effect of Fig.1b even more clearly, Fig.2a and
Fig.2b plot the phase portrait of the system of Equation (1)
for a = —0.042 with the initial conditions [1.1, 1.1, —a]”
and[4, 1.1, —a]”, respectively. Itis clearly seen that the flows
from the initial conditions [1.1, 1.1, —a]” converge to the
equilibrium E7, while the flows from the initial conditions
[1.1, 1.1, —a]” form a double-wing chaotic attractor. It can
be conjectured that had we used the initial conditions
[—1.1, —1.1, —a]”, the orbit coined from these particular
initial conditions would have converged to the second
equilibrium E».

3) BASIN OF ATTRACTION

The existence of coexisting bifurcation routes to different
initial conditions with the same parameter prompts us to
further investigate the combinations of initial conditions that
would end up converging to either equilibrium Ej and E»,
or else end up with chaotic flows. Since both equilibria have
a common x3, that is, x3 = —a, a basin of attraction plot can
be computed for the case of a = —0.042, which is shown
in Fig.3. The orange basin shows all the initial conditions
combinations converging to the equilibrium Ep, while the
white basin shows the set of initial conditions converging
to the equilibrium E,. The blue basin shows the initial
conditions converging to the chaotic flows. The Poincare map
with the cut at z(0) = —a is also shown in yellow on the basin
of the attraction plot. It is seen that the Poincare map does
not intersect the equilibria E; and E;, thereby revealing the
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(a) Phase portrait for [x1, 2] for initial condition [1.1,1.1, —a]”

FIGURE 2. Phase portraits of system (1) with different initial conditions.

y(0)

FIGURE 3. Basin of attraction for the chaotic attractor for a=-0.042 and
x3(0) = -

existence of the hidden attractors for the chaotic system given
by Equation (1).

C. TRANSFORMATION TO OTHER CHAOTIC FLOWS
THROUGH SYMMETRY

As noted in Section II-A that the presented system has
embedded rotation symmetry about the x3 axis. It is thus
possible to create other chaotic flows by invariant rotation
action C,, = Rn(%”) about the x3 axis [28], [29].
In other words, the imaging system may be obtained
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(b) Phase portrait for [1, 22] for initial condition [4,1.1, —a]”

by a2 — 1 mapping ®, := R3(x1,x2, x3) — R3 (%1, %2, %3)

defined [28], [29]:
X1 = Re(x; —l—sz)2 = xlz — x%
xp = Im(x; +ij)2 =2x1x2
X3 = X3 (12)
To obtain the mapped system, we simply rewrite the original
system of Equation (1) with the tilde notation:
X1 = ak) 4 ks
Yoo=F -0

3=1-3 (13)

Carrying out the required differentiation of Equation (12),
equating it to Equation (13), and solving for x; and x;, the
mapped system is thus:

B ax| ()cl2 — x22) + xp(—2x1x2 — x% + xlz(l + 2 x3))
1 =
2(x? + x3)
. -2+ a)xlzxg + axg — xlx%(l + 2 x3)
= 2. 2
2(x7 +x3)
i3 =1 — (] — x> (14)

The equilibria of the transformed system is:
T
1 1 1 (15)
=+ —. —a|
f SRR,
T
\/ 1 1 16)
NI V2’ ’
T
E \/ : : (17)
= — — 7, —a )
’ AT ﬁ 2

\/ 1\/1 l—aT (18)
«/_ V22 '
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-8 6 4 -2 0 2 4 6 8
x1
(a) Phase portrait for [x1, z2] for initial
condition [4,1.1, —a]" for the transformed system
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(b) Phase portrait for [x1, z2] for initial condition [4, 1.1, —a]” for the
transformed system

FIGURE 4. Phase portraits for the transformed system described by Equation (14).
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FIGURE 5. Overall schematic for the circuit implementation of the presented six-term chaotic open-loop system.

Note that we now have four equilibria instead of two.
Fig. 4 plots the phase responses in (x1,x2) plane. It is
obvious that we now have four wings instead of the
two that we previously had, as was shown in Fig. 2b.
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Since this work is devoted to the study of the system
of Equation (1), we leave the full dynamical analysis
of the system described by Equation (14) for future
work.
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FIGURE 6. Practical circuit implementation of the signal multiplication given by AD633 and LF357.

Ill. CIRCUIT IMPLEMENTATION OF THE

OPEN LOOP SYSTEM

A. CIRCUIT DESIGN METHODOLOGY

The open-loop model of Equation (1) admits a corresponding
circuit implementation as depicted in Fig. 5. The overall
circuit topology is an operational amplifier (OA) based
design, with three integrators (A1-A3), four summers (A4-A7),
two differential amplifiers (Ag, Ag), eight signal inverters and
two multipliers. Analysis of the proposed circuit schematics
yields the following system of differential equations:

Vi, = aViy + Vi, Ve

Vx' = Vxl - sz (19)
Vi =1-V}]
R
a=— (20)
R

Note that this circuit formulation given by Equation (19)
has the exact same form as the original system given by
Equation (1), where the variable Vi, k = 1, 2, 3 denotes the
voltage of state x; . Note also from Equation (20) that the value
of the system parameter a can be adjusted simply by choosing
an appropriate value of resistor R;. The initial conditions
for the open-loop chaotic system are set electronically by
directly adjusting the reference applied voltage through the
V5 terminal.

B. PSPICE SIMULATION

To prove the design concept, the modified Sprott-C chaotic
open-loop system in Fig.5 was simulated with commercially
available integrated circuits (ICs) using OrCAD PSPICE
simulation program. The op-amps used were taken from
the commercially available macro-model of OA LF357 by
National Semiconductor [64], as well as analog multiplier
ADG633 by Analog Devices [65]. Both types of device were
biased with symmetrical supply voltages of +5 V. According
to Fig.6, the signal multiplier section in Fig.5 was realized
by cascading the connections of an analog multiplier AD633
and a non-inverting amplifier LF357. The component values
were set at Ry = 4202, R = 10k, C = 100uF

VOLUME 11, 2023
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Vxl [V]

FIGURE 7. Phase portrait for the circuit simulation of the open-loop
system for the initial condition [5, 1.1, —a]”.

All of the input channels V,; were also kept grounded (i.e.
Vi = 0 V). The initial conditions of the proposed system
were simply set through the applied voltages V;1, Vi» and V;3
of the circuit shown in Fig.5, where the system parameter
a (—0.042) must match the magnitude value of v;3. Fig. 7
shows the phase portrait for the circuit implementation of the
open-loop system for [Vy,, Vy, ] plane for the initial condition
[5,1.1,0.04217, demonstrating the double wing chaotic
attractor, as expected from the basin of attraction in Fig. 3.

IV. FINITE TIME INTEGRAL BACKSTEPPING SLIDING
MODE SYNCHRONIZATION OF THE CHAOTIC SYSTEM

In this section, we present the design of the finite-time
integral backstepping nonsingular terminal sliding mode
control for the synchronization of the presented 3D chaotic
system.

A. CONTROL PROBLEM FORMULATION AND
PRELIMINARIES

1) CHAOS CONTROL PROBLEM FORMULATION

We first note, however, that there are two types of control
problems of interest in the study of chaotic systems: active
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stabilization and synchronization. We demonstrate, with
mathematical proof, that in terms of the error dynamics, the
two problems end up being identical.

In the active stabilization problem, the main goal is to
design a controller to drive all the states x1, x2, x3 to zero,
so that all chaos disappears [66]. In an active synchronization
problem, the main control goal is to drive a chaotic system,
called the slave system, to be in sync with an original
chaotic system which is termed the master system [67].
For the presented system of this work, the master system
is the original system in Equation (1), repeated here for
convenience:

Xm,1 = X1 + Xm,2%m,3
Xm1 = Xm,1 — Xm,2
Ami = 1—x0 (21)
The slave system is equipped with the controller to be
designed, and is thereby written:
X511 = axg 1 + X5 2Xs3 + U1
Xs2 = X510 — Xs2 + w2
g3 =1 —x2| +u3 (22)
Theorem 1: The error dynamics of the active stabilization

problem are equivalent to the active synchronization problem
and are given by:

ey = e,
e = e3,
e3 = . (23)

Proof: The active stabilization problem can be viewed,
in terms of Equation (22), as driving the slave system to zero
states. The error states are given simply as the original states
themselves i.e. e; = x;,1, €2 = X;2, and e3 = x,,3. Designing
the transformative control in terms of the error states as:

U] = —ae; —exez + e (24)
U = —ey1+ex+e3 (25)
uy =€l —14v (26)

It is obvious that system (22) has now transformed into the
system (23).

For the active synchronization problem, define the error
states as e; = X5; — Xm,i» I = 1,2, 3. The error dynamics
are given by:

e1 = aey + Xs2X53 — X, 2X%m,3 + U1

ey =e —ext+u

. 2 2

€3 =X, — X tus (27)

Designing the transformative control as;

U] = —aey — X5 2X53 + Xm 2Xm,3 + €2, (28)
uy = ey —ey +es3, (29)
uz = xszgl — x,%l,l +v. (30)

It is again obvious that the error dynamics of the active
synchronization problem is again given by the system of
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Equation (23). These error dynamics are equivalent to the
active stabilization problem. [ ]

2) PRELIMINARIES
We present in this section the general control problem
formulation, where some lemmas and theorems relating to the
control design strategy are outlined and presented.

Consider the following general class of nonlinear SISO
system written in state space as [68]:

X1 = fike) + g1(x1)x2
X2 = (%) + g2(x2)x3

Xn = fa(x) + gn(X)u €1y

where x = [x1,x2,...,x,]7 € R” is the state vector with
initial condition x,(0) = xq, ¥; = [x1, X2, ..., x;]" and u(z) is
the control input signal. The functions f; and g; i = 1,...n
are assumed to be known and Lipschitz on 2; C R™. The
control goal is to drive the state x from some arbitrary initial
condition to a desired state x, in finite time.

Lemma 1: [69]Ifxy e R(k=1,...,n)and0 <p < 1,

then:
n p n n p
(ZXk) <D lal Snlp(ZXk)
k=1 k=1 k=1
Lemma 2: [70] Suppose there exists a V(x) being

C' smooth positive definite function. The origin x = 0 of the
nonlinear system (31) will be a finite time stable equilibrium
if the following inequality is satisfied for some oo > 0,
y €0, 1)

V(x) < —aVY (32)
The reach time is given by:

V)Y
Treach = 2l =) (33)
Proof: We simply solve Equation (32) using the
ordinary method of separating variables and integrating from
0 to . Hence:

V_Vd—v < —u
t dt - t
d—V < —/ adt
o V¥ 0
viTre _ vo)!
-y l—y

1

— V() < [V(O)I’V —at(l — y)] G4
The time T'eqcp 1S thus given by the time taken for V() < Oor:

V()Y
Treach = O[(l——)/) .

|
Lemma 3: [56] Consider the nonlinear system (31).
Suppose that there exists a C' positive definite function V (x)
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such that the following inequality is satisfied for some scalars
a>0ye€(,1)and p; > 0:

V(x) < —aV? +pi, (35)

then the system (32) will be semi-global practical finite time
stable (SGPFS).

Proof: The proof of this lemma is easily adapted from
the one presented in [56] and [71]. We will suppose that
there is a scalar 6 € (0, 1) enabling the inequality (35) to
be rewritten as:

V(x) < —0aVY — (1 — 0V’ + p;
Suppose that there exists a state x such that:

VY > _ Pt ,
(1—-0)x
Then the overall inequality (35) is reduced to:

V(x) < —0aV?. (36)

Invoking the result of Lemma 2, the system will then reach
(Qy: Vi) < (lf—;))a} at:

_ 1 1—y P1 57
Treach = Ba(l — )/) |:V (0) + (Ot(l — 9)) i| .

If the system is already at €2, then its trajectory will not

exceed the bounds of €2,. Hence system (31) will be SGPFS.

|

Lemma 4: [68] Consider the nonlinear system (31). The

system will be SGFPS if there exists a C' positive definite

function V(x) such that the following inequality is satisfied
for some scalars a1 > 0, ap > 0, y € (0, 1) and pr > 0:

(37

V() < =tV —aaV? + pa. (38)
For scalar 6y € (0, 1), the reach time is given by [68]:
Treach = max(Ty, 1) (39)
1 Boo1 V177 (1
T\ = 10+ 1 2o (0)+0127 (40)
Boa1(1 —y) az
1 V1= (19) + 6
T = 1o+ I LA UV L BN
ai(l—y) ) Boaz )
Proof: The proof proceeds in a similar fashion to [68]
and Lemma 4 and will be omitted. [ |

Remark 1: It follows from Remark 5 in the work of [68]
that condition (38) provides a faster convergence rate
than inequality (35) when the state is far away from the
equilibrium point. Indeed, setting an = 0, the sufficient
condition (38) becomes condition V. < —aV + pa, which
is the ordinary control scheme.

Proposition 1: Consider the nonlinear system (31), a
C! positive definite Lyapunov function V(x), and the same
scalars a1 > 0, a2 > 0, y € (0, 1) and p2 > 0 of Lemma 4.
The following inequality is satisfied:

1
—a1V -V +pp < —min(al,ag)V% +0 (42
where 0 = max(«1, a2) + 2.
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Proof: The proof of this proposition is easily verified by
direct computation for quadratic and non-quadratic Lyapunov
functions. [ ]

Corollary 1: Consider the nonlinear system (31), an asso-
ciated positive definite function V (x) and the scalars a1 > 0,
ary > 0,y € (0,1), 6p € (0,1) and p» > O satisfying the
sufficient condition (38). The revised reach time is given by:

Trevisea = max(Ty, T2, T3) (43)
T\ = Equation (40) 44)
T> = Equation (41) 45)
2
2 0 -y
Ti=——| V77 _— .
T (i) [ (0 (&u - 90)) }

(46)

where @ = min(ay, op) and 0 = max(«, @2) + 2.

Proof: Applying Proposition 1 allows the sufficient
condition (38) to be written in the form of the condition
(35). Consequently, the reaching time is given in the form of
Equation (37), with « replaced by a and p; replaced by o.
This reaching time is also provided as a bound, and therefore
gets added to the maximum operation of Equation (39). ®

Corollary 2: Consider the nonlinear system (31), an asso-
ciated positive definite function V (x) and the scalars a1 > 0,
ay > 0,y € (0,1), 6p € (0,1) and p» > O satisfying the
sufficient condition (38). The residual set of the solution of
the system (31) will be given by:

1
lim V(x) < min |: r2 ( £2 )y ,

t>Treach (1 - 90)“1 ' (1 - 00)“2

2
0 y+
(&(1 : 90)) } “n

where the scalars & = min(x1, o) and 0 = max(«o, a2) +
02, as in Corollary 1.

Proof: The first two terms inside the minimum operator
follow directly from Corollary 1 of [68]. The last term
follows from an application of Proposition 1 and the proof
of Lemma 3, with y replaced by %, p1 replaced by o and
o replaced by «. [ ]

Remark 2: The results of Proposition 1 and Corollar-
ies 8-9 imply that even though condition (38) provides a faster
convergence rate than (35), a tighter bound is provided for
both Treqcn and the residual set lim;~7,,,., V(x). The given
bound still implies that the overall convergence rate is faster
than the works of [56], [57], as well as the ordinary control
approach V<—oV+ 02.

B. CONTROL DESIGN

The error system given by Equation (23) is in the triangular
form, facilitating the use of backstepping-based control
design [67]. In this respect, define the errors as follows:

21 =e (48)
2 =e—1n (49)
3 =e3—1M (50)
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where 11 and 7, are the virtual controls to be designed.
To append integral action, we also define the following:

t
b1 :/0 z1(t) dt, (51)

t
@=Am@ﬁ (52)

Step 1: We stabilize the first equation in system (23).
Construct the first Lyapunov function:

vi= 2 lg (53)
R MRS

Differentiating V| with respect to time along the trajectory of
the system (23) gives:

Vi =zie2 + G119
= z1(z2 +n1 + $191) (54

Designing 1 = —¢1¢1 — c1z1, with ¢; > 0, will make
V1 < 0, under the condition, that we force zp to converge
to zero in the next stage of the design.

Step 2: In this step we focus on the stabilization of the
second equation of the system (23). Construct the second
Lyapunov function:

1, 1 5
Vo=Vi+ 32 + §§2¢2 (55)

Time differentiating V; along the trajectory of the system (23)
now yields:

Vi = —c12] + 222 + Qbaza (56)
=—az+a—mn-n+oapk) (7

Designing 02 = —{2 + 11 — 23 — 222, with ¢; > 0, will
make V, = —clzf — czz% < 0, thereby stabilizing the second

equation of system (23).

Step 3: This last step focuses on stabilizing the last
equation of the system (23), as well as determining the
real control input v(¢). The terminal sliding mode control
framework is integrated in this last step of the controller
design to exploit its robustness advantages to modeling errors
and disturbances, whilst keeping the control design simple
enough so that it is implementable since one of the main goals
of this work is to implement the closed-loop control design
using analog circuitry. The works of Deng [72] and Xu [73]
utilized the sig(x)? function in their nonsingular terminal
sliding mode control designs. The definition is:

sig(x)? = |x|%sign(x) (58)

Although the sig(x)* function facilitated finite-time sliding
mode control [72], [73], the signum function contained in
it is much more difficult to implement through circuitry
designs. Another persistent problem with the signum func-
tion in sliding mode control is the well-known chattering
problem, which is normally alleviated in the literature using
the hyperbolic tangent (tanh (x)) function. The hyperbolic
tangent (tanh (x)) function itself is an approximation of the
signum function with some errors near the sign change point
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FIGURE 8. The functions sign(x) versus sigr(x).

x = 0. With these constraints in mind, we slightly modify the
signum function to:

signr(x) = e =0.01. 59)

X
Va2 4 €2 ’
The comparison between the signum function and the
signr(x) function is shown in Fig.8, showing close resem-
blance to one another, with signr(x) being smoother than
sign(x) near x = 0. The modified sig(x)“ is thus:

sigr(x)® = |x|“signr(x). (60)
Now its derivative is:

—sigr(x)* = a-1,

e ()" = alx|

Define now the nonsingular terminal sliding surface as:
sigrz)”* . ;e ). (6D)

s=22+
2 y+1

The time derivative of the sliding surface is simply:
§ =2 +alz (v —n),
= e3 — 1 +alz|"? (v —0). (62)
Note that the control signal comprises two parts in the sliding
mode control framework, namely, the equivalent control
signal v, and the switching control signal vy,,. The equivalent
control signal v, is designed so that § is equal to —Ds.

Equating Equation (62) to —Ds and solving for the v, signal
yields:

ve=m+ §|Z3|_”(f71 —e3)—Ds. (63)
The switching control signal is designed as:
Vs = —Dysigr(s)”2. (64)
The total control signal is, thus,
V= Ve + Vsw,
=1+ §|Z3|_”2(f71 — e3)—Ds — Dysigr(s)"?.  (65)

where D > 0 and D, > 0 are chosen in accordance to
Lyapunov’s stability theory. The parameters y» are chosen to
be in the range of (0,1), similar to [72]. The transformative
control given by Equations (28) - (30) can now be applied to
design the required u; - u3 signals.
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FIGURE 9. Synchronization between master and slave signals.
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FIGURE 10. The control input u(t) of the chaos synchronization.

C. FINITE TIME STABILITY ANALYSIS
The convergence of the designed controller is now analyzed,
including tracking of the desired trajectory x;,.

Theorem 2: Consider the system given by Equation (23),
with the control input designed by Equation (65), the system
is semi-global practical finite time stable, with the reach time
Treach given by:

Treach = maX(Trl s Trza Tr3)9 (66)
1
T, = X
6o min(@y, &) (1 VZT“)
In 6p min(cy, cz)V 2 (O)—i—21 2+ min(cy, ¢2)
2]*V22Jr min(cy, ¢2)
(67)
. 1
) = X
min(@, &) (1 - VZT“)
_lnmln(cl,c2)V1 2 0) + 0021 min(ey, &)
9021 2+ min(cy, ¢)
(68)
. 2
= ———————— X
e (1- 2
2
_ntl v \_12tT
vi="T 0 - 2 69
()+(6<1—90>) ©
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master and slave signals
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(c) Synchronization of the 3 state for the
master and slave signals

2 2 max(D1 Dy)

min(cy, ¢2) ),

min(cy, c2, {1, §2), Z‘zy+
min (min(cy, ¢3), 2=

where ¢

and ¢

max (m1n(c1 &), 21~ ; min(cy, cz))

Proof: Consider the total Lyapunov function, made up
of the integral backstepping control term and the nonsingular

terminal sliding mode control term, as follows:
Ve =Vi+Vo+V,=Vp+ Vg (70

For the integral backstepping control Lyapunov candidate,
we have:

Vg = —CIZ% - CzZ%
2 2 2 2
< —c1z1 — 275 — Q197 — Lo
< —min(cy, ¢2, 81, $2)Vp = —C1Vp (71)

For the nonsingular terminal sliding mode control, we can
write its time derivative as follows:

Vs = s(—Dy|s|"signr(s) — Das)
< —max(Dy, Dy)s*
y+1 V2+] L‘H
< —max(Dy, D)2V, T =—&V, 2 . (12)

Now, seeking an expression of V7 in terms of Vr, and using
v+l

the same coefficients for V, and V, * , x € (B, s), we have:

yy+1 v+l r+l
—\Vp—0Vy 2 < —ciVp—aVi—aVi* —cVy®
< —min(cy, ¢2)(Vp + Vi)
n+tl rn+l
—min(cy, ¢2) ( 2+ Ve ? ) (73)

Applying Lemma 1 to Equation (73) yields:

y+l
—c1Vp — 2V < —min(cy, ¢2)(Vp + Vy)
et rtl
—2"772 min(cy, c2)(Vp + Vi) 2

(74)

Therefore, the total Lyapunov time derivative V7 can be
expressed as:

)/2+1

il
Vr < —min(@y, é)Vy — 2172 min(ey, &2)Vy 2 . (75)
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FIGURE 11. Synchronization of the chaotic signals parameter a ranging between -0.001 to -0.084.
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FIGURE 12. Trajectory comparison of the state errors between the proposed finite time IBSMC against the normal IBSMC.

Applying Corollary 1 to Equation (75) with @y = min(cy, ¢2),
oy = 21_%“ min(ci, ¢2) and y = y» gives the reaching time
as given in Equations (66) - (69). [ |

Remark 3: Note that the virtual control signal on is
used to guarantee the subsystems the desired performances.
However, the signal oy requires the derivative of the
virtual control signal oy. For simplicity in the electronics
implementation of the closed loop system, the derivative is
also filtered with a simple low-pass filter with a short RC
time. Note that this may also incur some errors whose effects
are canceled out by the incorporation of the sliding mode
control at the end stage.

D. SIMULATION RESULTS

For the computer simulations of the designed controller,
we take the parameter a to be a = —0.042, which is
the value that could generate either the chaotic flow or the
stable equilibriums E; and E, given in Equations (2) and
(3) depending on the initial conditions, as was analyzed in
Section II-B. As such, we take the initial states of the master

system X, to be:
Xmy =[5, 1,0.042], (76)
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which would ensure that the system generates chaotic
flows. The slave system is excited with the initial states
given by:

Xso = [1.1, 1.1, 0.042], (77)

ensuring that the open loop system generates stable equilib-
rium flows. The control parameters used are:

¢l =24, =87, ¢ =0.006, (78)
& =0005 a=0.004 1 =0.002, (79
D =001, D;=0.005 (80)

Fig.9 now shows a synchronization between the master and
slave signals for x| - x3 states. Fig.10 depicts the control
efforts u(¢) needed for the synchronization. Note that the
active synchronization is achieved within about 2 seconds,
which is faster than the works of Vaidyanathan [43], [44],
[45]. Higher ¢ and ¢; gains could of course be used to shorten
the synchronization process to be well within one second,
but the control efforts exuded within that one-second period
will be exponentially high, and thus limited by the supply
rails. This causes the actual synchronization process to be
elongated to well over 2 seconds. The control efforts used in

VOLUME 11, 2023
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FIGURE 13. Overall schematic for the circuit implementation of the presented six-term chaotic closed-loop system.
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FIGURE 14. Block diagram of the transformative controller.

our case are mainly about 1200, which electronically means
that for x; - x3 signals in the order of mV, the main control
efforts would just be around 1.2 V, which is well within the
supply rails of the IC of 5 V.

The next test concerns the synchronization of chaotic
systems under parameter errors and uncertainties. In this
light, we consider two extreme cases. The first case is
when parameter a is set to -0.084, representing a 100%
decrease. The second case considered is when a is set to
-0.001, which represents about 100% increase. These two
cases provide the bounds for the uncertainties in parameter
a, which could be anywhere in between. Fig. 11 shows the
synchronization between the master and slave x;’s under
these extreme parameter bounds. It is apparent from both
Figs. 11a and 11b that no significant differences could be
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observed between the two cases as well as to the result of
Fig. 9a, which was the case of the true a value. Note also
that the same results are also seen with x» and x3 states. The
synchronization times are still similar to those of the true
value case. These results imply that the designed terminal
backstepping sliding mode controller is definitely robust to
extreme parameter changes. This is definitely a boon for the
electronics implementation, where the offset needed for the
slave system does not have to be designed to be exactly
dtrye, in order to yield the same control results as the ideal
case.

In order to further ascertain the presented technique, the
developed controller is then compared to the normal integral
backstepping sliding mode controller with the designed
sliding surface given by:

s = Mz1 + Az + A3z3. (81)

with the . = [3.0, 0.3, 0.5]7. The switching control signal
ug,, for this particular case is designed as:

Ugy = —Dsignr(s). (82)

with D chosen as 0.01 in similar fashion to Equation (80).
Note that the parameters of Equations (78) - (79) are kept
unchanged. Figure 12 shows the errors e; - e3 for the
presented method, against the normal integral backstepping
sliding mode controller. As is seen, the error system for
the proposed controller converges to the origin in finite
time. So we can conclude that finite time synchronization
has occurred with our proposed design, and this controller
achieves a good tracking performance without the chattering
phenomenon.
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FIGURE 15. Overall schematic for the circuit implementation of the nonterminal integral backstepping sliding mode controller.

V. CIRCUIT IMPLEMENTATION OF THE

CLOSED-LOOP SYSTEM

A. CIRCUIT DESIGN METHODOLOGY

The block diagram for the implementation of the presented
six-term chaotic system in a closed loop is shown in Fig.13.
This design comprises a master system, a nonsingular ter-
minal backstepping sliding mode controller, a transformative
controller, and a slave system. Both the master system and
slave system used in this design were implemented with
the open-loop system as depicted in Fig.5. The internal
components of the designed controllers, a transformative con-
troller, and a nonsingular terminal backstepping sliding mode
controller, are also represented in Figs.14 - 16, respectively.
The actual physical circuitry for the designed controllers
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FIGURE 16. The internal detail of the sigr block.

has been constructed using the renowned OA-based function
circuit realization [74]. Note that the descriptive equations
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FIGURE 17. Simulated state errors of the designed system in Fig. 13.

for the master system is similar in form to Equation (19),
except the variables V,, are replaced by Vx,, x, k=1,2,3. The
descriptive equations for the slave system, under the influence
of the transformative controller, are designed in the spirit of
Equation (22) as:

Vj‘s,] = avx.v,l + sz,Z sz,3 + Vul

V-).CS.Z = sz,l - sz,Z + Vuz (83)

Vi, = 1= V2 + Vi (84)
The transformative controller is designed based on Equa-
tions (28) - (30), whose descriptive equations are given by:

VMI = _avel - Vxx,Z Vxx,fi + me,Z me.3 + VeZ (85)

Vu2 = Vez - V€1 + Ve3 (86)
Vs = szs.l - Vx2m.l +Vy (87)

B. PSPICE SIMULATION

For simulation purposes, the initial conditions of the master
system and slave system were set as Equations (76) and (77).
The control parameters used in this design were: V., =2.4V,
Ve, =87V, Ve, =0.006V,V, =0.005YV,V, =0.004V,
V) =0.002 'V, Vp = 0.01, and Vp, = 0.005 V, which are
designed to be the same as the control parameters used in
the normal simulations. The simulated state errors V,,, Ve,,
and V,, of the designed system are depicted in Fig.17. The
results demonstrate that the master and slave signals in the
presented system are well synchronized. The error signals
approached 0 V in 12 seconds with the offset voltages of
-45.227 mV, 6.769 mV, and -0.121 mV for V,,, V,,, and
Ve,, respectively. Note that the synchronization time in the
analog circuitry implementation is well over the computer
simulation. This is primarily attributable to the op-amp slew
rates used in the circuitry implementation. Naturally, faster
active devices could produce better responses, and their
applications could be further studied, as could the designs of
controllers with simpler topologies.

VI. CONCLUSION
In this work, a modified six-term chaotic system with
only stable equilibria was first presented, whose dynamics
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could be changed with only one single parameter, namely
a. Furthermore, this chaotic system could be transformed
into other multi-wing chaotic systems through invariant
transformations. Standard dynamical analysis procedures
such as Lyapunov exponents and the period distribution of
state variable (x,4y) confirmed that the presented system
is indeed chaotic. A basin of attraction of the system is
also investigated, revealing that this system also has hidden
attractors.

To synchronize this particular chaotic system, a nonlinear,
nonsingular terminal integral backstepping sliding mode
controller is designed. A theoretical proof is also given
that provides faster-reaching bounds than the earlier works.
A modification is also made to the nonsingular terminal
sliding surface to accommodate the implementation of
analog circuitry. Simulation results demonstrate that within
2 seconds, perfect synchronization between the master and
slave systems was accomplished while remaining robust to
extreme parameter uncertainties. A comparison between the
finite time nonsingular terminal sliding mode controller to a
normal backstepping sliding mode control revealed that the
proposed controller does indeed achieve synchronization in
finite time, with good tracking performances.

Finally, the six-term chaotic system is designed in circuitry
through the use of commercially available op-amps (LF357)
and analog multipliers (AD633), in open-loop and closed-
loop configurations. In an open loop configuration, the initial
values required for chaotic excitation were set through the
applied voltages, whereas the system parameter is adjusted
through passive components. For the closed-loop configura-
tions, the descriptive circuitry equations are designed in such
a way that mimics the actual control equations, for simplicity
and ease of troubleshooting. The workability of both the open
and closed-loop circuit configurations is examined through
simulations in OrCAD PSpice. Results showed that the
master and slave systems were found to be in synchronization
with less than 0.95% maximum errors. Possible future works
include the designs of nonsingular integral backstepping
terminal sliding mode controllers with less complicated
implementation, the incorporation of fixed time control
designs such as [75] and [76], as well as the implemen-
tation of these designs using other active devices with
electronic tunability such as operational transconductance
amplifiers (OTAs).
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