
Received 14 February 2023, accepted 23 February 2023, date of publication 27 February 2023, date of current version 2 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3249471

Anytime Lifelong Multi-Agent Pathfinding
in Topological Maps
SOOHWAN SONG , KI-IN NA , AND WONPIL YU
Intelligent Robotics Research Division, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, South Korea

Corresponding author: Soohwan Song (soohwansong@etri.re.kr)

This work was supported by the Industrial Strategic Technology Development Program, Development of Heterogeneous Multi-Mobile
Logistics Handling Robot Integrated Operation Simulator and Fleet Management System, through the Ministry of Trade, Industry and
Energy (MOTIE), South Korea, under Grant 20015440.

ABSTRACT This study addresses a lifelong multi-agent path finding (lifelong MAPF) problem that
continuously solves an MAPF instance online according to newly assigned goals. Specifically, we focus
on lifelong MAPF in a topological map. This problem is challenging because the movement of the agent is
restricted to narrow corridors in a topological map, rather than the entire map area. Bypasses may be limited
or farther away in corridors, significantly complicating the computation of paths. Furthermore, low-quality
solutions may cause traffic congestion or even deadlock in a corridor. Therefore, we propose a novel lifelong
MAPF method that effectively resolves conflicts in corridors based on an anytime strategy. This method
gradually improves the solution quality by updating sub-paths with heavy traffic congestion. Furthermore,
we adopt several improvement steps to effectively resolve corridor conflicts in a conflict-based search (CBS).
This method significantly reduces the search space and computation time of CBS. We conducted extensive
experiments on various topological maps in warehouse and railway environments. The results show that the
proposed method outperforms state-of-the-art methods in terms of throughput and success rate. In particular,
the proposed method can resolve collisions with a longer time horizon than existing methods, considerably
improving throughput on a topological map with long-range corridors and heavy traffic congestion.

INDEX TERMS Multi-agent pathfinding, mobile robots, logistics automation, path planning, multi-robot
system, topological map.

I. INTRODUCTION
In automated warehouse systems, multiple mobile robots
continuously process a sequence of incoming logistics
tasks [1], [2]. Mobile robots move through warehouse spaces
to deliver packages or inventory pods to each target location.
For the autonomous navigation of mobile robots, the robot
management system must continuously plan collision-free
paths for all robots. This problem is known as lifelong multi-
agent path finding (lifelong MAPF) and has recently been
addressed in many studies [3], [4], [5], [6]. Lifelong MAPF
is an online version of the MAPF problem [7], [8], [9]
that determines the optimal collision-free paths from start
locations to goal locations for agents. Here, an agent refers
to a mobile unit such as a robot, vehicle, or train. A collision

The associate editor coordinating the review of this manuscript and

approving it for publication was P. Venkata Krishna .

occurs when two agents simultaneously move to the same
location at the same time step. Lifelong MAPF repeatedly
solves an MAPF instance online according to newly assigned
goal locations.

Most studies [3], [4], [5], [6] have defined the lifelong
MAPF problem in a grid-like environment in the same way
as Kiva systems [1], [2]. However, the Kiva system requires
specialized setups to systematically operate many robots
on a grid map, such as marker-based localization and a
standardized space for Kiva robots. Therefore, it is difficult
to apply this system to a general warehouse space or various
types of mobile robots. To address this issue, we consider
the lifelong MAPF problem on a topological map, where an
environment is represented as a graph comprising nodes and
lanes (Fig. 1a). Topological maps restrict a robot’s movement
to lanes, thereby improving the stability of navigation.
In particular, large robots, such as automated guided forklifts,

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 20365

https://orcid.org/0000-0003-2145-1161
https://orcid.org/0000-0002-4229-4786
https://orcid.org/0000-0001-5729-7931
https://orcid.org/0000-0001-8138-5878

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

must move along lanes for safety purposes. Furthermore,
topological maps can easily be applied to existing warehouse
spaces with various structures.

However, lifelong MAPF on topological maps is chal-
lenging owing to several factors. First, corridor conflicts
occur frequently when two agents simultaneously cross
a corridor in opposite directions (Fig. 1b). MAPF algo-
rithms unnecessarily search for many states to resolve
this conflict, thereby significantly increasing computation
time. For example, in a conflict-based search (CBS) [9],
corridor conflict exponentially increases the search space
according to corridor length [10]. Second, lifelong MAPF
methods need to use an efficient algorithm, such as
a windowed approach [6], [11] and suboptimal solvers
[12], [13], for fast online computation. However, these
algorithms generally produce low-quality solutions, which
can cause traffic congestion in corridors, because detours are
often limited to topologicalmaps. Finally, a suboptimal solver
sometimes causes deadlock in a dead-end corridor (Fig. 1c).
To avoid this, the algorithm must exhaustively search for the
optimal entry order for the dead-end corridor within a limited
timeframe.

In this study, we propose a novel lifelong MAPF method
that finds the best possible solution within a limited time
by effectively resolving corridor conflicts in topological
maps. This method consists of 1) Anytime lifelong MAPF
algorithm and 2) Corridor-CBS algorithm. The anytime
lifelong algorithm is based on the rolling-horizon collision
resolution (RHCR) approach [6], which is one of the most
efficient methods for lifelong MAPF. RHCR solves the win-
dowedMAPF instances for fast computation. RHCR resolves
collisions within a bounded time horizon while ignoring
unnecessary long-term collisions. However, as shown in
Fig. 3, this approach may cause traffic congestion in long-
range corridors. Therefore, unlike the original RHCR [6],
we applied an anytime approach with an adaptive time
horizon to obtain improved solutions in a topological map.
The anytime approach rapidly finds an approximate solution
and then incrementally improves it while time is available.
The proposed algorithm also quickly obtains an initial
solution with a small time horizon and then iteratively refines
a subset of the solution with an extended time horizon. This
approach significantly improves the solution quality within
a limited time, while providing local optimal solutions for
congested or dead-end corridors.

Lifelong MAPF algorithms iteratively call a MAPF
solver to solve a single MAPF instance. The proposed
Corridor-CBS is a MAPF solver that plans collision-free
paths for agents from their start to their goals. Corridor-
CBS is based on the CBS algorithm [9] and has been
extended to effectively resolve corridor conflicts in a
topological map. A corridor conflict incurs a significant
overhead cost for an agent to wait or bypass the corridor.
Therefore, corridor conflicts are prioritized and resolved first.
We also define a heuristic value based on corridor conflict
relations and apply it to node selection in the best-first

search of CBS. Existing methods for heuristic computation
[14], [15] construct a multi-valued decision diagram (MDD)
for cardinality computation; however, constructingMDDs for
goal sequences in lifelong MAPF can result in significant
computational overhead. In contrast, our method efficiently
computes heuristics using corridor conflict information with-
out constructing MDDs. These approaches greatly reduce
the search space and number of node expansions while
maintaining the solution quality. Therefore, Corridor-CBS
proposed solver determines local optimal solutions faster than
CBS.

The following are the contributions of this study:
• We propose a novel method for lifelong MAPF in topo-
logical maps comprising only single-track corridors.
The proposed method provides high-quality plans with
high throughput while avoiding traffic congestion or
deadlocks in corridors.

• We present an anytime RHCR algorithm that iteratively
improves the solution quality using an adaptive time
horizon. The original RHCR [6] only resolves collisions
within a restricted time horizon using a suboptimal
solver. However, the proposed RHCR can find a solution
that avoids more distant collisions using an optimal
solver.

• We present a MAPF solver called Corridor-CBS.
Corridor-CBS significantly reduces the computation
time of CBS in a topological map by applying several
improvement steps related to corridor conflicts: corridor
symmetry reasoning, prioritizing corridor conflict, and
corridor heuristics.

• We evaluate the proposed algorithms through extensive
experiments in warehouse and railway environments.
The experiments show that the proposed algorithms
outperform state-of-the-art methods [5], [6], [9], [11],
particularly in a topological map with long-distance
corridors and heavy traffic congestion.

II. RELATED WORK
This section discusses prior studies on lifelong MAPF
(Section II-A) and one-shot MAPF (Section II-B) problems,
which are summarized in Table 1.We also provide a literature
review on MAPF studies applied to topological maps
(Section II-C). The one-shot MAPF problem involves finding
collision-free paths from the given start locations to the goal
locations simultaneously. The lifelong MAPF problem is an
online version of the one-shot MAPF problem, which solves
a stream of single MAPF instances for continuously updated
goals.

As described in Table 1, algorithms can be categorized
according to optimality or completeness properties. Optimal
algorithms always provide an optimal solution while their
scalability for the number of agents is limited. In contrast,
suboptimal algorithms focus on improving scalability by
compromising solution quality. Completeness is the property
that an algorithm eventually finds a feasible solution if one
exists.

20366 VOLUME 11, 2023

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

FIGURE 1. Automated warehousing scenario (Scenario 1). (a) Multiple agents automatically perform logistics operations on the topological map.
Colored circles and rectangles represent agents and target locations, respectively. Each agent moves along white waypoints in orange lanes. This
scenario is challenging because (b) corridor conflicts frequently occur when two agents simultaneously pass through a corridor from opposite
directions. Furthermore, (c) conflicts in a dead-end corridor may lead to a deadlock situation.

TABLE 1. Summary of MAPF studies. Studies are classified into a
‘‘One-shot’’ MAPF solver and a ‘‘Lifelong’’ MAPF method based on the
mid-dotted line. ‘‘Opt.’’ and ‘‘Comp.’’ represent the algorithm’s optimality
and completeness. In ‘‘Comp.’’, the triangle mark (

a
) means that the

completeness is satisfied only in well-formed maps. ‘‘WF’’ is an algorithm
that can only be used for well-formed maps. ‘‘Any.’’ refers to an algorithm
applied with the anytime strategy. ‘‘Topolo. Map’’ means an algorithm
directly applied to topological maps.

A. LIFELONG MAPF
Lifelong methods must adopt an efficient suboptimal solver
instead of an optimal solver for fast online computation.
Therefore, as shown in Table 1, all lifelong methods do
not guarantee the optimality of a solution. Most studies
[3], [4], [5] have continuously replanned paths for a subset of
agents whenever new goal locations are assigned.Ma et al. [3]

proposed a token-passing method that continuously passes
a token to an agent. The agent that receives the token has
the authority to assign a task and plan a path. The method
computes an agent’s path by considering the paths of the
other agents as dynamic obstacles. Liu et al. [5] planned paths
only for the agents with new goals. They reserved dummy
paths for isolated parking locations to avoid deadlocks.
Grenouilleau et al. [4] proposed a multi-label A* algorithm
for the low-level search of an MAPF solver. The algorithm
extends the original A* to determine a path traversing two
sequential goals.

These methods [3], [4], [5] generally provide low-quality
solutions because they plan subpaths for several updated
agents, rather than all paths. Furthermore, they are applicable
only to well-formed maps [26], where each agent may rest
at an isolated goal or parking location that is not blocked
from other agents. Li et al. [6] proposed the RHCR method
to address these issues. As discussed previously, RHCR
continuously replans all paths at regular time steps by
resolving collisions only within a bounded time horizon.
RHCR can efficiently compute high-quality solutions for
all agents because it disregards unnecessary long-term col-
lisions. Furthermore, it can be used for both normal and well-
formed maps. Madar et al. [25] also proposed an experienced
RHCR (exRHCR) method that reuses a previous search effort
to improve the efficiency of RHCR. Xu et al. [11] integrated
RHCR with the idea of ‘‘reserving dummy paths’’ [5].
This method iteratively solves a windowed MAPF instance
at regular time steps or when an agent’s goal location is
updated.

However, in topological maps, the performance of the
RHCR-based methods [6], [11], [25] can be significantly
degraded. Long-term collisions can affect future planning
because bypasses are limited or farther away in topological
maps. RHCR with a small bounded horizon may determine
unnecessarily long detours or even lead to deadlock

VOLUME 11, 2023 20367

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

situations. Planning with a large bounded horizon may not
be able to determine a solution within the specified time
limit. To address this issue, we extend the RHCR based on an
anytime strategy. The proposed method applies an adaptive
bounded horizon to plan subpaths. It first obtains an initial
solution with a small time horizon and then progressively
improves a subset of the solution with an extended time
horizon. This method can efficiently compute high-quality
plans considering long-term collisions in topological
maps.

B. MAPF SOLVER
Lifelong algorithms continuously call an MAPF solver to
solve a single MAPF instance. The MAPF solver plans
collision-free paths for agents from their starting locations
to goal locations. Some solvers have applied a rule-based
or prioritized method. The rule-based method [7], [16], [27]
computes multi-agent paths based on simple movement rules
such as push and swap. This guarantees the determination of
a solution in polynomial time; however, the solution quality
is relatively poor. The prioritized method [8], [17], [28]
sequentially plans a single path for each agent according to
a predetermined agent’s priority. It does not guarantee the
completeness and optimality of the solutions, but it is fast and
scalable.

Sartoretti et al. [29] proposed a learning-based MAPF
framework, namely PRIMAL. PRIMAL trains a single-agent
policy on a partially observable map via reinforcement
and imitation learning. They also proposed PRIMAL2 [24],
an extension of PRIMAL, for application in lifelong MAPF.
Their methods can quickly compute paths for a large number
of agents; however, the paths do not guarantee completeness
and optimality.

Sharon et al. [9] presented the CBS algorithm for obtaining
complete and optimal solutions. CBS iteratively resolves a
conflict between two agents by expanding a binary constraint
tree until it determines a node without conflicts. Some studies
have attempted to reduce the computation time of CBS while
maintaining completeness and optimality by applying several
techniques such as prioritizing conflicts [18], symmetry
reasoning [10], and adding heuristics [14], [15]. We extended
these techniques to be applicable to the lifelong MAPF
problem in a topological map.

Some studies [12], [22], [30] have improved the scalability
of an MAPF solver up to hundreds of agents while providing
a near-optimal solution. Barer et al. [12] proposed a
bounded-suboptimal variant of CBS called enhanced CBS
(ECBS) to improve the scalability of CBS. The ECBS
performs a focal search instead of a best-first search in
the constraint tree of CBS to obtain a bounded suboptimal
solution. Given a user-specified suboptimality factor α, the
focal search guarantees that the solution cost is less than α

times the optimal cost. ECBS can reduce the run time by
increasing the suboptimality bound. Therefore, ECBS allows
users to control the trade-off between scalability and solution

quality through the suboptimality factor. Rahman et al. [30]
further reduced the computation time of the ECBS by
applying different suboptimal bounds to each agent.

Several studies [21], [22] have employed an anytime
strategy for the MAPF problem. They quickly obtained an
initial solution using a suboptimal solver and then iteratively
improved a subset of the solution using an optimal or near-
optimal solver. We also adopt the anytime strategy for path
improvement. However, our method addresses a lifelong
MAPF problem, unlike existing anytime methods [21], [22]
that solve a one-shot MAPF problem. Our method iteratively
improved a subset of the solution by resolving additional
collisions within an extended time horizon in lifelong MAPF.

C. MAPF ON TOPOLOGICAL MAPS
Although many studies have solved the MAPF problem on
grid maps, only a few studies have considered topological
maps. Several studies have attempted to effectively solve the
MAPF problem on grid maps using topological graphs [31]
or corridor information [10], [32]. Liu et al. [31] constructed
a sector-based topological graph and estimated traffic con-
ditions for each sector. They planned multi-agent paths by
considering the traffic conditions to avoid traffic congestion.
Cohen et al. [32] extended CBS by considering additional
heuristic information on highways and guiding agents to
avoid collisions in corridors. Li et al. [10] also presented
a corridor conflict resolution method for CBS, significantly
reducing unnecessary expansions of constraint trees.

Several studies [17], [23] have directly solved the MAPF
problem on topological maps. Binder et al. [17] defined
four representative collision cases on topological maps
(sequential, wait, avoid, and push) and presented a resolution
method for each case. Li et al. [23] also considered the
MAPF on a topological graph for the railway scheduling of a
large number of trains. They solved four MAPF instances in
parallel using an anytime strategy called large neighborhood
search [22] to plan paths for thousands of agents efficiently.
Andreychuk et al. [20] and Kasaura et al. [33] solved a
continuous-time MAPF problem on a topological map. They
used a variant of safe interval path planning (SIPP) [34] to
handle continuous time conflicts on a graph. Although these
methods focused on theMAPF in topologicalmaps, currently,
no appropriate algorithm exists for a lifelongMAPF problem.
As mentioned previously, lifelong MAPF in topological
maps is challenging because corridor conflicts and traffic
congestion occur frequently. Therefore, this study presents a
new method to effectively resolve corridor conflicts for the
lifelong problem.

III. PROBLEM FORMULATION
The problem considered in this study is the lifelong MAPF
in a topological map. The topological map is defined as an
undirected graph GM = (VM,EM), where each vertex
v ∈ VM represents a location in 2D, and each edge e ∈
EM represents a lane connecting two vertices. As shown in
Fig. 1, agents generally move in a warehouse environment

20368 VOLUME 11, 2023

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

FIGURE 2. Illustration of the pathfinding of two agents, a1 and a2, with a
corridor conflict. (a) Corridor conflict occurs when a1 and a2 cross
corridor C in opposite directions. (b) The pathfinding problem is
represented in GM. The corridor C is composed of a set of connected
vertices with degree 2, C̄ = {vc1 , vc2 , vc3 , vc4 , vc5 }, and two endpoints
{vq1 , vq2 }. If a2 moves though corridor C first, then a1 must either wait to
pass through C or use a bypass without traversing C . t1 and t ′

1 are the
earliest time steps when a1 arrives the endpoint vq2 through C or a
bypass, respectively.

consisting of only narrow corridors. The vertices within a
corridor represent waypoints where agents follow or wait.
At each discrete time step t , an agent either moves to a
connected vertex or remains at its current vertex. All the
agents are assumed to precisely follow the planned paths on
the vertices.

An MAPF instance includes a topological map GM and a
set of agents A = {a1, . . . , aN } where each agent ai ∈ A
has a unique start si ∈ VM and a unique goal gi ∈ VM.
A path for an agent ai is defined as a sequence of vertices
pi = {v

(0)
i , . . . , v(ti)i }, starting at si = v(0)i and ending at

gi = v(ti)i , where ti is the time step required to reach the
goal. The cost or distance of a path pi is defined as its travel
time, equal to the time step ti. A collision (or, synonymously,
conflict) between two paths, pi and pj, occurs when ai and
aj move to the same vertex at the same time step (called a
vertex collision) or simultaneously cross the same edge in
opposite directions (called an edge collision). The objective
of a one-shot MAPF is to find collision-free paths P =
{p1, . . . , pN } with minimum total cost, cost(P) =

∑
pi∈P ti,

for all agents in A.
The lifelong MAPF problem is an online version of the

one-shot MAPF problem, continuously assigning a new task
to an agent when the agent finishes its current task. Given
a set of agents A = {a1, . . . , aN } and a set of tasks T =
{τ1, . . . , τK }, the objective is for agents in A to complete all
tasks in T by maximizing the throughput (average number
of completed tasks per time step). Cycle time (average
completion time per task) has a reverse relationship with
throughput, so the objective is equivalent to minimizing the
cycle time. Most studies [3], [4], [5] define a task τk ∈ T as
having two vertices, a pickup location, and delivery location.
However, this study considered only one goal location gk
for a task τk . A task allocator iteratively assigns a task to
an idle agent; however, this study does not consider the
task allocation method. An agent sequentially visits its goal

FIGURE 3. Examples of path planning of RHCR for different bounded time
horizons. RHCR plans paths that resolve conflicts only up to a bounded
time horizon ω (bold lines) and then re-plans paths from new starting
points (dashed circles) after λ = 4 time steps. (a) If ω = 6, RHCR cannot
detect the corridor conflict, so it plans paths for two agents, a1 and a2,
to enter the same corridor simultaneously. (b) If ω = 9, RHCR plans paths,
including a detour that avoids the corridor conflict.

locations while avoiding vertex and edge collisions [9] with
other agents.

We define a corridor conflict as a conflict that occurs
when two agents simultaneously pass through a corridor
from opposite directions. To resolve this conflict, an agent
must wait until the other agent has completely passed the
corridor; this significantly complicates the MAPF problem.
Therefore, an effective detection and resolution of corridor
conflicts is important. As shown in Fig. 2b, a corridor C
comprises a set of connected vertices C̄ = {vc1 , . . . , vcL } ⊂
VM with degree 2 and two endpoint vertices {vq1 , vq2} ∈
VM [10]. The corridor length len(C) is defined as the distance
between vq1 and vq2 , which is equal to the time steps it takes
to move between the two vertices. It can be computed as
len(C) = |C̄| + 1 where |C̄| is the number of vertices in
C̄ . This corridor information is stored in advance and can be
directly accessed to detect corridor conflicts when planning
paths.

IV. ANYTIME LIFELONG MAPF
To solve the lifelong MAPF problem, we employed the
RHCR approach [6], one of the most efficient methods.
RHCR solves a series of windowed MAPF instances instead
of all MAPF instances [3], [4], [5]. Because multi-agent
paths are constantly updated according to newly assigned
tasks, RHCR disregards distant future plans. It iteratively
plans multi-agent paths at regular λ time steps by resolving
collisions only within a bounded time horizon of ω time
steps. Furthermore, RHCR computes a path that visits a
sequence of goals instead of a single goal. If the distance

VOLUME 11, 2023 20369

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

FIGURE 4. Flowchart of Anytime-RHCR algorithm for lifelong MAPF. Gray
boxes represent the process of anytime improvement step.

of the shortest path visiting all goals is less than ω, a goal
of a new task is appended to the sequence. This approach
reduces the computation time compared with methods that
consider the entire time horizon while still producing high-
quality solutions; therefore, RHCR can efficiently process the
lifelong MAPF for a large number of agents. Furthermore,
unlike existing methods [3], [4], [5] that can only be used
in well-formed maps, RHCR can be used in all types of
maps.

However, in topological maps, the performance of the
RHCR is significantly affected by bounded time horizon ω

and the type of MAPF solver. Topological maps consist of
only corridors, causing many corridor conflicts and traffic
congestions. RHCR with a small value of ω may cause a
deadlock in a long-range corridor. Furthermore, to resolve
a corridor conflict, an agent must wait until the other agent
moving in the opposite direction has completely passed. This
waiting time may be long and can accumulate unexpectedly
owing to low-quality plans. As shown in Fig. 3a, RHCR
sometimes cannot detect corridor conflict when it uses
a bounded time horizon shorter than the corridor length.
Eventually, the RHCR plans paths for two agents to enter a
corridor from different directions simultaneously. The agent
must then return the way it came in. If this occurs several
times, traffic congestion is triggered, in which several agents
are stuck in a corridor. To solve this problem, RHCR should
use a larger time horizon, as shown in Fig. 3b. However,

Algorithm 1 Anytime-RHCR Algorithm
Input: Agent set A = {a1, . . . , aN }, Task set T =

{τ1, . . . , τK }, Initial window ωinit , Extended window
ωextd , Replanning window λ

Output: None
1: T ′←InitTasks(T ,A)
2: while T ′ ̸= ∅ do

/* Initial Path Planning */
3: S ← GetStartLoc(A)
4: G← GetGoalLoc(T ′)
5: P← SolveMAPF(S,G,winit)

/* Path Improvement Step */
6: while NotInterrupted() do
7: CF ← SearchConflicts(P,wextd)
8: AM ← GetModificationSet(A,P,CF)
9: [SM ,GM ,PM]← ActiveSet(A,AM , S,G,P)

10: PM̄ ← P/PM
11: P∗M ←SolveMAPFSub(SM ,GM ,PM̄ ,wextd)
12: if CF ̸= ∅ or cost(P∗M) < cost(PM) then
13: P← P∗M ∪ PM̄
14: end if
15: end while
16: A←MoveAgents(A,P, λ)
17: T ′← UpdateTasks(T , T ′,A)
18: end while

significant computation is required to plan all paths with a
large time horizon. RHCRmay not even find a solutionwithin
a limited period. Therefore, the bounded time horizon should
be appropriately determined according to traffic congestion
to obtain the best solutions for RHCR.

Therefore, we employed an anytime strategy to apply an
adaptive time horizon to RHCR. We refer to the proposed
lifelong MAPF algorithm as Anytime-RHCR. Fig. 4 provides
a high-level overview of the Anytime-RHCR algorithm.
In Fig. 4, the gray boxes represent the process of the proposed
anytime step and the rest are the same as those of the
original RHCR. The algorithm iteratively plans paths after
agents move λ time steps and assigns a new task whenever
an agent completes its current task. For path planning,
Anytime-RHCR first obtains an initial solution using a fast
suboptimal solver, ECBS, with a short time horizon ωinit .
It then determines a subset of agents called the modification
set. Anytime-RHCR iteratively improves the solution of the
modification set using the optimal solver Corridor-CBS with
an extended time horizon ωextd . Therefore, the proposed
method efficiently resolves conflicts over a longer time
horizon within a limited computation time. The proposed
method also effectively improves the solution quality from
the optimal solver. This approach enables to determine
high-quality plans for traversing complex corridors without
deadlock. The following sections detail the overall process
of Anytime-RHCR (Section IV-A), the modification set
(Section IV-B), and windowed MAPF solvers for initial
planning and path improvement (Section IV-C). Furthermore,

20370 VOLUME 11, 2023

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

in Section V, we detail the Corridor-CBS algorithm, which is
a MAPF solver in the improvement step.

A. ANYTIME-RHCR
Algorithm 1 depicts the pseudocode of the Anytime-RHCR
algorithm. The algorithm consistently assigned an incomplete
task to an agent that had completed its current task. It also
iteratively plans paths for all agents to execute assigned tasks
at λ regular time steps. The algorithm quickly finds initial
paths with a small window ωinit and then iteratively refines
the subpaths of a modification set with an extended window
ωextd . The modification set is determined to be an agent
related to additional conflicts in the ωextd .
The algorithm initializes task subset T ′ from the set of

all tasks T (Line 1). Each task set T ′i ⊂ T ′ represents a
set of sequential tasks assigned to an agent ai ∈ A. Each
task set T ′i is continuously updated by appending a new
task τk ∈ T whenever ai completes a task. (Line 17). The
updated new task, τk , is removed from T . The algorithm is
terminated when all tasks in T are assigned and completed
(Line 2).

The algorithm iteratively replans multi-agent paths at
regular λ time steps. For each iteration, it sets start locations
S to the current locations of agents A (Line 3) and goal
locations G to the target locations of assigned tasks T ′ (Line
4). The algorithm applies the anytime MAPF approach to
determine multi-agent paths where each agent ai ∈ A moves
from start location si ∈ S to sequential goal locationsGi ⊂ G
without collision. The anytime approach first computes initial
paths P for all agents using a suboptimal solver with a small
time horizon ωinit (Line 5). It then gradually improves the
quality of the subset of P using a near-optimal solver with
adaptive ωextd until interrupted; we refer to this stage as the
path improvement step (Lines 6 – 15). We interrupt this step
when the timeout expires or a limited iteration number is
reached. Finally, all agents move along computed paths P
only for λ time steps (Line 16) and update their tasks T ′
(Line 17).

In the improvement step, the algorithm iteratively deter-
mines a modification set of agentsAM ⊂ A and replans their
paths PM ⊂ P while fixing the other paths PM̄ = P/PM .
It first finds conflicts CF among planned paths P that occur
in extended time windowωextd whereωextd is larger thanωinit
(line 7). It then selects NM agents as a modification set AM
based on the conflicts (Line 8 and Section IV-B). Next, the
algorithm extracts their start locations SM ⊂ S, goal locations
GM ⊂ G, and paths PM ⊂ P (Line 9). It computes new paths
P∗M that do not collide with PM̄ using a near-optimal solver
with extended window ωextd (Line 11). Finally, the algorithm
adopts new paths P∗M (line 13) if the cost of P∗M is lower
than that of original paths PM (Line 12). If conflict set CF is
not empty, the MAPF solver resolves one or more conflicts
in the CF ; therefore, it directly adopts P∗M irrespective
of the cost. The algorithm repeats this procedure until
interrupted.

B. SELECTION OF THE MODIFICATION SET
In Algorithm 1, determining agent set AM is a critical
component affecting the quality of a solution. The proposed
method first attempts to solve conflicts in CF by selecting
a set of agents related to the conflicts. The method then
determines a set of agents to reduce the solution cost if all
the conflicts are resolved. A different method is applied for
selecting a modification set depending on the existence of
conflicts in CF .

If conflicts exist, we select a set of agents that effectively
resolve many conflicts in CF . Let GCF = (VCF ,ECF) be the
conflict graphwhere each vertex v ∈ VCF is an agent and each
edge e ∈ ECF represents a conflicting relationship between
the two agents [35]. The proposed method determines the
largest connected component V ′CF ⊂ VCF in GCF . If |V ′CF | >
NM , the method determines an agent set AM by randomly
selecting the connected agents in V ′CF . If |V

′
CF | < NM ,

the method initializes AM as the set of all agents in V ′CF .
It then selects a random agent ai in AM and adds other
agents that block path pi of ai. This process is repeated until
|AM | = NM .
If there are no conflicts, we apply an agent-based selection

method [22]. This method determines an agent ai with the
largest delay and inserts it intoAM . A delay is defined as the
cost difference between the shortest and planned paths. The
proposed method determines a set of agents that block the
path of ai and inserts them into AM . It then repeatedly adds
agents that block the path of random agent aj ∈ AM until
|AM | = NM . The proposed method selects the new agent
with the largest delay for each iterative step by maintaining
the list of selected agents.

C. WINDOWED MAPF SOLVERS
This section describes the windowed MAPF solver for com-
puting multi-agent paths P with bounded horizon collision
checks (Lines 5 and 11 in Algorithm 1). Unlike the original
solvers [9], [12], the windowed solver checks and resolves
collisions only up to the firstω time steps onP and ignores the
collisions of the remaining time steps. Therefore, afterω time
steps, the solver determines the shortest paths to the agent’s
goals, irrespective of collisions. We employed the multi-label
A* algorithm [4], [6] with the SIPP method [34] for the
low-level search of the solver. This algorithm computes a
single path visiting multiple goals of an agent in the location-
time space.

For the initial planning (Line 5 in Algorithm 1),
we employed the complete and bounded suboptimal solver,
ECBS [12]. The ECBS can quickly determine a bounded
suboptimal solution with a high suboptimality factor. For
improvement planning (Line 12), we use a solver, a vari-
ant of CBS, namely Corridor-CBS. Corridor-CBS applies
several corridor conflict resolution techniques to improve
the computational efficiency of CBS in a topological map.
Section V details the corridor conflict resolution of the
Corridor-CBS.

VOLUME 11, 2023 20371

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

Algorithm 2 High-Level Search of Corridor-CBS
Input: Start locations S = {s1, . . . , sN }, Goal locationsG =
{G1, . . . ,GN }, Initial constraints CTinit

Output: Planned paths P, or ‘‘No solution’’
1: R← GenerateRootNode(S,G,CTinit)
2: OPEN .Push(R)
3: while OPEN ̸= ∅ do
4: N ← OPEN .Pop() // Node with lowest f = c+h
5: if N .CF = ∅ then
6: return N .P // Solution found
7: end if
8: if NotComputed(N .h) then

/*Corridor Heuristic Computation (Section V-C) */

9: ClassifyCorridorConflict(N .CF)
10: N .h← ComputeCorridorHeuristic(N)
11: OPEN .Push(N)
12: continue
13: end if

/* Prioritizing Corridor Conflict (Section V-B) */
14: cf ← SelectConflict(N .CF)
15: if IsCorridorConflict(cf) then

/* Corridor Symmetry Reasoning (Section V-A) */
16: [ct1, ct2]← ResolveCorridorConfict(cf)
17: else
18: [ct1, ct2]← ResolveNormalConfict(cf)
19: end if
20: N1← GenerateChild(N , ct1)
21: N2← GenerateChild(N , ct2)
22: OPEN .Push(N1)
23: OPEN .Push(N2)
24: end while
25: return ‘‘No solution’’

V. CORRIDOR CONFLICT-BASED SEARCH
In this section, we describe a new MAPF solver called
Corridor-CBS. The Corridor-CBS is used as the MAPF
solver in the improvement step of Anytime-RHCR (Line
11 in Algorithm 1). Corridor-CBS solves the one-shot MAPF
problem of generating collision-free paths from the starts to
the goals. It only resolves conflicts within an extended time
horizon ωextd , as described in Section IV-C.
Algorithm 2 shows the pseudocode for the Corridor-CBS

algorithm. Corridor-CBS extends the CBS algorithm [9] to
resolve corridor conflicts in a topological map. In Algo-
rithm 2, the parts added to the original CBS are highlighted in
blue. CBS comprises a two-level search algorithm.High-level
search resolves all conflicts on planned paths by expanding
a binary constraint tree. Each node in the constraint tree
includes a set of constraints and the shortest paths that satisfy
its constraints. CBS iteratively assigns a new constraint to a
node by expanding the constraint tree until it finds collision-
free paths. The low-level search algorithm is a single-agent
path planner that computes the shortest path for each agent
that satisfies the constraints of the tree node. As mentioned

before, we adopted the multi-label A* [4], [6] as a low-level
search algorithm to find a path visiting multiple goals.
We also used the SIPP [34] instead of a space-time A*.
SIPP performs A* search in a safe time interval space, not
a discrete time step, which greatly reduces the search space
in single-agent path planning.

Algorithm 2 first generates a root nodeR by computing the
shortest path with an initial constraint for each agent (Line 1)
and insertsR into an OPEN list (Line 2). The algorithm then
iteratively resolves a conflict between two agents, a1 and a2,
by expanding the nodes of the binary tree until it detects a
node with collision-free paths (Lines 3 – 24). Each node N
contains a set of constraintsN .CS, a solution path satisfying
the constraints N .P, and conflicts that occur in the solution
N .CF . A conflict between two agents ai and aj is defined
as a tuple cf = ⟨ai, aj, v, t⟩ or cf = ⟨ai, aj, e, t⟩ where
ai and aj conflict on vertex v ∈ VM or edge e ∈ EM
at time step t . A constraint is also defined as a tuple ct =
⟨a, v, t⟩ or ct = ⟨a, e, t⟩ where it prevents agent a ∈ A
from moving vertex v ∈ VM or edge e ∈ EM at time
step t . For each iteration, the algorithm pops a node N in
the OPEN list based on the best first search strategy (Line
4). It selects a node with the minimum f -value that is the
sum of a solution cost c and an admissible heuristic h [15].
If h has not been calculated, it is initialized to zero. The
algorithm then selects a conflict cf in N .CF (Line 14) and
resolves it by assigning different constraints ct1 and ct2 to
each agent a1 and a2 (Lines 16 or 18), respectively. Let cf =
⟨a1, a2, v, t⟩ be a normal conflict (not a corridor conflict).
The constraints for resolving cf are defined as: ct1 =
⟨a1, v, t⟩ and ct2 = ⟨a2, v, t⟩ where ct1 and ct2 prohibit agent
a1 and a2 from moving vertex v at time step t , respectively.
Finally, the algorithm generates two child nodes,N1 andN2,
by appending each constraint, ct1 and ct2, and insertsN1 and
N2 into the OPEN list (Lines 20 – 23). Please refer to [9] for
more information on CBS.

The aforementioned algorithm operation is similar to that
of the original CBS [9]. The CBS unnecessarily searches
for many nodes to resolve a corridor conflict, exponen-
tially increasing node expansion according to the corridor
length [10]. Moreover, corridor conflicts frequently occur
in topological maps because the movement of the agent is
restricted to single-track corridors. Therefore, Corridor-CBS
additionally considers several improvement steps that relate
to corridor conflict resolution, including i) corridor symmetry
reasoning (Line 16), ii) prioritizing corridor conflict (Line
14), and iii) corridor heuristic (Line 10). The following
subsections describe each improvement step.

A. CORRIDOR SYMMETRY REASONING
A corridor conflict produces many unnecessary expansions
of the constraint tree on the CBS, significantly increasing
the search space [10]. To address this problem, we employed
the corridor symmetry reasoning method [10]. This method
appends a specialized range constraint for a corridor conflict
instead of a simple vertex or an edge constraint. Li et al. [10]

20372 VOLUME 11, 2023

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

introduced other reasoning methods for rectangular and
target symmetries. However, we only considered the corridor
symmetry because our problem did not involve rectangular
and target symmetries.

Assume that a corridor conflict occurs where the shortest
paths of agents a1 and a2 intersect in opposite directions
inside corridor C . To resolve this conflict, an agent must
either wait for another agent to exit the corridor or take
another detour. Therefore, CBSmust assign many constraints
that prevent an agent from entering all nodes in C until
the other agent exits, which increases the number of node
expansions up to 2len(C) [10]. To address this problem,
the corridor symmetry resolution method [10] assigns a
constraint to the entrance of C instead of the node where
conflict occurs. Let t1 and t2 be the earliest time steps when
a1 and a2 arrive at endpoints vq2 and vq1 of C , respectively
(Fig. 2b). This corridor conflict can be effectively resolved
by appending the following two constraints to the child
nodes [10].

ct1 = ⟨a1, vq2 , [0,min(t ′1 − 1, t2 + len(C))]⟩

ct2 = ⟨a2, vq1 , [0,min(t ′2 − 1, t1 + len(C))]⟩

where a range constraint ⟨a, v, [tmin, tmax]⟩ prohibits agent
a ∈ A from entering vertex v ∈ VM from tmin to tmax
time steps. t ′1 is the earliest time step when a1 arrives at vq2
through a bypass without traversing corridor C (see Fig. 2b).
If a bypass does not exist, t ′1 is set to +∞.

B. PRIORITIZING CORRIDOR CONFLICT
For each iteration, CBS selects an arbitrary conflict cf from
a conflict set N .CF . However, the CBS performance is
significantly affected by the selection order. The selection of
an inappropriate conflict causes unnecessary expansion of the
constraint tree and increases the runtime. Boyarski et al. [18]
proposed a method for prioritizing conflicts. They resolved
conflicts in the order of cardinal, semi-cardinal, and non-
cardinal conflicts. The cardinal or semi-cardinal conflict
increases the cost of two child nodes or only one child node,
respectively. On the other hand, the non-cardinal conflict
does not increase the cost of either child node. This method
speeds up high-level search by reducing the number of node
expansions.

In prioritizing conflict [18], cardinality computation
requires building an MDD [36] for each agent. An MDD
includes all possible shortest paths of an agent. The
cardinality of a conflict ⟨ai, aj, v, t⟩ can be determined by
checking that all shortest paths of ai and aj pass through
the vertex v at the time step t in the MDDs. Generating an
MDD for multiple goals in our lifelong MAPF could result
in a large computational overhead. Therefore, rather than
calculating cardinality, we prioritized and resolved corridor
conflicts first. To resolve a corridor conflict, an agent must
wait until the other agent has completely passed the corridor.
This waiting time significantly affects the cost of the planned
paths. Therefore, a corridor conflict is more important than a

pure cardinal conflict in topological maps. This prioritization
improves the lower bound of the conflict tree and reduces
the possibility of node expansion. Finally, it reduces the
runtime of high-level search without the computation of the
cardinality.

C. CORRIDOR HEURISTIC
In CBS, the best-first search in the binary constraint tree
is performed, where the node with the lowest solution cost
c (sum of path costs) is expanded first. Recently, several
studies [14], [15] have considered an admissible heuristic
h for cost evaluation that further improved the high-level
search performance. Similar to the A* search algorithm, they
explored the tree nodes according to the f value, where f =
c+h. An admissible heuristic can be estimated by computing
the minimum vertex cover of a conflict graph [15] or
dependency graph [14]. The conflict and dependency graphs
represent the cardinal conflict and dependency relationships,
respectively, for all the agents. This heuristic value is the
minimum cost that must be increased to resolve the conflicts
in the current solution.

In this study, we computed an admissible heuristic based on
corridor conflict relations between agents. A corridor conflict
incurs an overhead cost for an agent to wait or bypass the
corridor. Given a node N with a corridor conflict between
two agents ai and aj, overhead cost 1cij is defined as [14]:

1cij = c̄ij − cij

where c̄ij is the minimum cost of the conflict-free paths of ai
and aj inN and cij is their current cost. The overhead cost can
be used for an admissible heuristic because a corridor conflict
will increase the cost by at least 1cij. This method is more
efficient than determining cardinal conflicts and dependency
relationships because it does not require the construction of
MDDs with multiple goals.

To compute the heuristic value of a node, we first construct
corridor conflict graph GCCF = (VCCF ,ECCF ,WCCF),
representing the corridor conflict relations between every pair
of agents. Similar to conflict graph GCF (Section IV-B), each
vertex vi ∈ VCCF represents an agent. Each edge eij ∈ ECCF
represents a corridor conflict relation between the two agents
ai and aj, instead of a normal conflict. Each edge eij also
has weight wij ∈ WCCF , where wij is defined as overhead
cost 1cij. We then solve an edge-weighted minimum vertex
cover problem [14] for graph GCCF . This involves assigning
a non-negative integer value xi to each vertex vi ∈ VCCF to
minimize

∑
vi∈VCCF xi. For each edge eij ∈ ECCF , the integer

values should satisfy constraint of xi + xj ≥ wij. Finally,
the heuristic value h is determined as the sum of the integer
values of the vertex cover solution. Fig. 5 shows an example
of an admissible heuristic computation using the proposed
method.

VI. EXPERIMENTAL RESULTS
We conducted four sets of experiments to evaluate the
performance of the proposed method. First, we evaluated

VOLUME 11, 2023 20373

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

TABLE 2. Average throughput of each method for different numbers agent N . The best and second-best throughputs are highlighted in bold font and
underlined, respectively. For each scenario, we randomly generated tasks and determined a task sequence be assigned to each agent. We simulated
5000 time steps using the same task sequences for each method and counted the number of completed tasks to calculate throughput.

FIGURE 5. Example of an admissible heuristic computation based on
corridor conflicts. Let N be a node with the shortest paths without
considering collision for (a) the MAPF instance. Our method detects
corridor conflicts in N and constructs (b) corridor conflict graph GCCF.
In GCCF, the weight wij of an edge eij is defined as the overhead cost cij .
The method then assigns a non-negative integer value xi to each vertex
vi by solving the edge-weighted minimum vertex cover problem for GCCF.
Finally, the admissible heuristic of N is determined as

∑
vi ∈VCCF

xi :
h = 6 + 1 + 0 + 7 + 0 + 0 = 14.

the performance of the anytime lifelong MAPF algorithm
compared with that of the baseline algorithms [5], [6],
[11] (Section VI-A). Second, we analyzed the influence
of the parameter, modification set size, in Anytime-RHCR
(Section VI-B). Third, we evaluated the effectiveness
of the Corridor-CBS using one-shot MAPF experiments
(Section VI-C). Lastly, we verified the generalization
capability of the proposed method using a railway map
(Section VI-D). All algorithms were processed on a standard
desktop PC with an Intel Core i7-6700K CPU and 64 GB of
RAM, without a graphics processing unit.

A. LIFELONG MAPF EXPERIMENTS
The lifelong MAPF problem can be directly applied to the
warehouse scenario of continuously transporting logistics.
Warehouse environments are typically composed of narrow
aisles (corridors), so they are suitable for applying topological

FIGURE 6. Simulated warehouse environments used in the experiments.
The topological maps are represented with orange lanes and white
nodes. The red, blue, and green nodes denote the parking station, rack
station, and in/outbound station, respectively.

maps. Therefore, we selected warehouse maps as our primary
experimental environment. We considered three warehouse
environments with topological maps (i.e., scenario1: Fig. 1,
scenario2: Fig. 6a, and scenario3: Fig. 6b). As shown in
Figs. 1 and 6a and 6b, the topological map consists of
orange lanes and white nodes. Red nodes are isolated parking
locations, which are the starting nodes of agents. Blue and
green nodes represent a station connected to a rack (blue) or
in/outbound (green) for loading and unloading tasks. All tasks
in T are randomly generated at the blue and green nodes.
They are located in corridors with a length of 11 (scenario 1)

20374 VOLUME 11, 2023

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

or 22 (scenarios 2 and 3). In scenario 3, we constructed
the most challenging map with heavy traffic congestion
by reducing the number of task corridors by half that of
scenario 2.

The performance of the proposed method (Anytime-
RHCR) was compared with that of the following lifelong
MAPF methods:

• Reserving dummy paths (RDP) [5]: This method
iteratively plans sub-paths for the agents with new
goals while considering other paths as moving obstacles.
It reserves dummy paths to isolated parking locations
(red nodes in Fig. 6) to avoid deadlock situations.

• RHCR [6]: The original RHCR was adopted as the
baseline method for the comparison. RHCR only
resolves collisions on the bounded time horizon of ω at
every planning time.

• RHCR-RDP [11]: An integrated method for RHCR and
RDP. This method solves a windowed MAPF instance
whenever agents move λ time-steps or update one or
more goal locations. This method also plans paths by
preserving dummy paths.

We used ECBS [12] for RDP, RHCR, RHCR-RDP, and the
initial solver of Anytime-RHCR.We also used Corridor-CBS
for improvement planning of Anytime-RHCR. We set the
runtime limit of all algorithms to 10 s and the replanning
period to λ = 10 time steps. We set the suboptimality factor
of ECBS as α = 1.5 for RDP. For RHCR, we considered
three bounded time horizons, ω = 30, ω = 40, and ω =

50 time steps, with different suboptimality factors, α = 1.5,
α = 2.0, and α = 2.5, respectively.We referred to themethod
for each parameter setting as RHCR1, RHCR2, and RHCR3,
respectively. Each suboptimality factor was determined to be
the minimum value at which RHCR can always determine
a solution within the runtime limit according to the size of
ω in all scenarios. We also applied two parameter settings
for RHCR-RDP: RHCR-RDP1 (ω = 40 and α = 2.0)
and RHCR-RDP2 (ω = 50 and α = 2.5). For Anytime-
RHCR, we also considered two methods with different time
horizon settings: Anytime-RHCR1 (ωinit = 30, α = 1.5, and
ωextd = 50) and Anytime-RHCR2 (ωinit = 40, α = 2.0, and
ωextd = 50). We set the number of agents in the modification
setAM to NM = 5 and the maximum iteration number of the
improvement step to 20.

For each scenario, we randomly generated a set of
sequential tasks for each agent and simulated 5,000 time steps
to evaluate performance. Table 2 presents the throughput
(average number of completed tasks per time step) of each
method for different numbers of agents N . RDP generally
had the worst performance in all three scenarios. RDP
works similarly to prioritized path planning [28] but uses
the ECBS solver. Therefore, RDP underperforms the RHCR-
based method, which plans all paths simultaneously. RHCR
showed better performance as the size of ω increased,
even with different suboptimality factors of the ECBS.
In particular, the performance gap between RHCR1 and

FIGURE 7. Averaged delay of each method for different numbers of
agents N in scenarios (a) 1 and (b) 3. The delays are averaged over all
tasks processed by each method.

RHCR3 increased in Scenario 3. Therefore, RHCR required a
larger ω value in complex scenarios with considerable traffic
congestion.

RHCR-RDP generally performed better than RHCR when
ω was equal. RHCR-RDP replans paths much more fre-
quently than RHCR, because RHCR-RDP performs replan-
ning whenever an agent’s goal is updated. In particular, when
the throughput is very large, RHCR replans all paths in almost
every time step, which is an inefficient approach that repeats
unnecessary planning. Moreover, RHCR-RDP still performs
worse than Anytime-RHCR.

Anytime-RHCR1 showed relatively good performance
when N was small, particularly when N = 40, and showed
the best performance in all scenarios. Anytime-RHCR1
performed better than RHCR methods in scenarios 1 and 2.
However, Anytime-RHCR1 showed significant performance
drops when N = 100 or N = 120 in scenario 3; in particular,
it had a lower performance than RHCR2 and RHCR3. RHCR1
also had the worst performance. Therefore, the initial solution
can greatly influence the final solution quality of our method.
General corridor lengths are greater than 20 in scenario 3.
Therefore, the MAPF solver does not sufficiently cover two
corridors when ωinit is only 30. This suggested that the
proposed method required the minimum specific value of
ωinit to guarantee a reliable performance under heavy traffic
conditions.

Anytime-RHCR2 exhibited the best or second-best per-
formance in all scenarios. In particular, Anytime-RHCR2
showed much higher throughput than RHCR3 in the most
challenging condition (N = 120 in scenario 3). Our method
can find an improved solution for a subset of agents with
traffic congestion using Corridor-CBS, which can ultimately
improve throughput. This implied that even if the same
bounded time horizon was used for the search, the anytime
strategy could significantly improve the solution quality in
heavy traffic conditions.

In this experiment, we also analyzed the degree of traffic
congestion for each method by evaluating the average delay.
Fig. 7 shows the averaged delay of all tasks for each method
and different N in scenarios 1 and 3. For each task, a delay

VOLUME 11, 2023 20375

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

FIGURE 8. Success rates (upper) and average runtime (lower) of CBS [9] and Corridor-CBS under different numbers of agents (N) in three scenarios.
We evaluated the performance of Corridor-CBS according to several combinations of corridor symmetry reasoning (CS), prioritizing corridor conflict
(PC), and corridor heuristic (CH).

is defined as the difference between the agent’s movement
time steps and the shortest distance from a start location to
a goal location without considering collision. As traffic gets
congested, agents frequently wait or move to long detours,
resulting in considerable delays; therefore, the averaged delay
is strongly related to the degree of congestion. In scenario 1,
the average delays are less than 2, whereas in scenario 3,
the average delays are more than 10. This means that traffic
congestion is much more considerable in scenario 3 than
in scenario 1. Anytime-RHCR2 had the best performance
of averaged delay in all cases. Anytime-RHCR2 always
produces high-quality plans that do not cause congestion as
much as possible.

B. INFLUENCE OF MODIFICATION SET SIZE
This section analyzes the influence of the size of the
modification set NM in Anytime-RHCR. As NM increases,
the solution quality of Anytime-RHCR is expected to
improve in each iteration. However, a large NM increases the
computation time and reduces the number of iterations of the
improvement step within a time limit. Therefore, an appro-
priate modification set size should be determined according
to the complexity of MAPF instances. Table 3 shows the
throughput and number of iterations of Anytime-RHCR
according to NM . We only considered a runtime limit
of 10 s as the end condition of the improvement step,
disregarding the maximum iteration number. Except for this
end condition, we used the same settings as Anytime-RHCR2
in Section VI-A.
As shown in Table 3, Anytime-RHCR performed best

when NM was large (7 or 10) in Scenario 1. Because
Scenario 1 is relatively less congested, Anytime-RHCR can
perform improvement steps more than 100 times, even when

TABLE 3. Throughput and the number of iterations of Anytime-RHCR
according to modification set size NM . ‘‘Iter’’ and ‘‘Thpt’’ represent the
iteration number and throughput, respectively. For each case, the best
throughput is highlighted in bold font.

NM = 10. In Scenarios 2 and 3, the best performance
was obtained when NM = 5. In particular, Anytime-
RHCR with NM = 7 or NM = 10 performed fewer
than 15 iterations in Scenario 3, which was insufficient
to improve the solution quality. These results indicate
that Anytime-RHCR with a larger NM performs better
when performing the improvement step a sufficient number
of times. However, if sufficient iterations are not guar-
anteed, Anytime-RHCR cannot significantly improve the
performance.

C. EFFECTIVENESS OF CORRIDOR-CBS
In this experiment, we conducted an ablation study to verify
the effectiveness of each improvement step of the Corridor-
CBS. We evaluated the one-shot MAPF performance of

20376 VOLUME 11, 2023

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

TABLE 4. Evaluation of the statistical significance of three test cases
(Test1: CBS vs Corridor-CBSCS+PC+CH, Test2: Corridor-CBSCS vs
Corridor-CBSCS+PC, Test3: Corridor-CBSCS vs Corridor-CBSCS+CH). The
p-values are estimated by performing a paired sample t-test on the
runtime of each case. The p-values with significant differences at the 1%
significance level are marked in bold. ‘< 0.0001’ represents a p-value
smaller than 0.0001.

several combinations of corridor symmetry reasoning (CS)
(Section V-A), prioritizing corridor conflict (PC) (Section V-
B), and corridor heuristic (CH) (Section V-C), based on the
original CBS [9]. For each method, we solved the windowed
MAPF instances with a bounded time horizon of ω = 50.
To create the test datasets, we saved anMAPF instance at each
planning time in the previous lifelong MAPF experiments
(Section VI-A). We then evaluated the success rates and
average runtimes of each method on the test datasets. The
success rate refers to the percentage of solved instances
within the time limit of 10 s. The average runtime was
measured by setting the runtime of an unsolved instance as
the time limit of 10 s.

Fig. 8 shows the experimental results for each method for
the three scenarios. CBS had the worst performance in terms
of success rate and runtime. CBS unnecessarily searches for a
huge number of nodes to resolve corridor conflicts, increasing
the runtime. In particular, CBS had a runtime of 0.223 s when
N = 10 in scenario 3, while Corridor-CBS had a runtime
of approximately 0.1 s. Corridor-CBSCS showed improved
performance in comparison with CBS, indicating that the
corridor symmetry reasoning [10] is effective in topological
maps.

Corridor-CBSCS+PC and Corridor-CBSCS+CH generally
performed better than Corridor-CBSCS in terms of the success
rate and runtime. This indicated that prioritizing conflict
and heuristic search methods based on corridor conflict
information could improve the MAPF performance in a
topological map. These methods were able to efficiently

TABLE 5. Average throughput of each method for different numbers
agent N in Scenario 4. We highlighted the best and second-best in bold
and underlined fonts, respectively. An empty cell (-) represents a case
where a solution was not found within a limited time.

reduce the search space of CBS only using corridor
conflict information, rather than creating complex MDDs
[14], [18].

Corridor-CBSCS+PC+CH always had better success rates
than CBS. The performance gaps in the success rates
between Corridor-CBSCS+PC+CH and CBS became more
significant as traffic congestion increased in a topological
map. In particular, when N = 30 and N = 40 in
scenario 3, the success rate of CBS was only 32% and 2%,
whereas that of Corridor-CBSCS+PC+CH was 90% and 55%,
respectively. The Corridor-CBS effectively resolved corridor
conflicts through several improvement techniques. Therefore,
the proposed method could significantly improve the MAPF
performance of CBS in a topological map with high traffic
congestion.

We also evaluated the statistical significance of each
method using a parametric statistical test. We consid-
ered three test cases:1) CBS vs Corridor-CBSCS+PC+CH,
2) Corridor-CBSCS vs Corridor-CBSCS+PC, and 3) Corridor-
CBSCS vs Corridor-CBSCS+CH. We performed a paired-
sample t-test on the runtime of each case to estimate the
significance of the differences between the two methods.
Table 5 presents the p-values of each test case for different
numbers of agents N . The lower the p-value, the higher is
the significance, whereas the higher the p-value, the lower
is the significance. In Table 5, we marked the p-values with
significant differences at the 1% significance level in bold.
In all scenarios, each test case had a low p-value, except for
cases in which N was too large or too small. This means that
each pair of methods has a runtime result with a significant
difference, except when the problem is simple or difficult to
solve.

D. LIFELONG MAPF ON RAILWAYS
In this section, we verify the generalization capability of
Anytime-RHCR by evaluating its performance in a simplified
railway system presented in the flatland challenge [37].
The railway environment is also generally used in MAPF
experiments and can be represented as a topological map.

VOLUME 11, 2023 20377

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

FIGURE 9. Railway environment used in Scenario 4. This environment
contains a topological map composed of unstructured multiple tracks.

Fig. 9 shows the railway environment used in this experiment
(Scenario 4). Unlike warehouse scenarios (Scenarios 1 - 3),
in this railway environment, the topological map consists of
multiple tracks that are unstructured in length and shape.
Therefore, railway scenarios are more challenging than
warehouse scenarios are.

Unlike the Flatland challenge of solving one-shot MAPF
problems, we consider the lifelong MAPF problem in the
railway environment. Each vertex in a topological map
is defined as a railway cell. We generated a test set by
randomly selecting the starting locations of the agents and
the goal locations from the vertices. Agents can move both
forward and backward. Because there is no isolated parking
(dummy goal) location in this railway scenario, algorithms
utilizing dummy path planning (RDP and RHCR-RDP)
are unavailable. Therefore, we only evaluated the per-
formance of Anytime-RHCR and RHCR. We used the
same parameter settings for Anytime-RHCR and RHCR in
Scenarios 1 - 3.

Table 5 presents the throughput of each method for
different numbers of agents N . Anytime-RHCR2 had the best
performance in all cases. This indicates that the proposed
method is effective, even for unstructured railways. Both the
Anytime-RHCR and RHCR performed better as the bounded
time horizon increased. However, when N is 120 or 150,
RHCR3 does not obtain a solution within the time limit.
This means that RHCR requires considerable computation to
search for collisions of all agents for up to 70 time steps.
However, Anytime-RHCR finds an initial solution with a
small time horizon and updates a subset of the solution with
an extended time horizon. This approach allows the solver
to successfully resolve collisions for up to 70 time steps,

significantly improving the lifelong MAPF on topological
maps.

VII. CONCLUSION AND FUTURE WORK
We present a novel algorithm based on the RHCR method
for lifelong MAPF in topological maps. Generally, a conflict
between two agents can be easily resolved by having
one agent move sideways. However, in topological maps,
sideways movement cannot be performed within a corridor;
therefore, RHCR with a small bounded time horizon causes
traffic congestion. To address this issue, we applied an
anytime approach to the RHCR. The proposed algorithm
quickly obtained an initial solution using a suboptimal solver
with a small time horizon. It then iteratively refined a
subset of the solution using a near-optimal solver with an
extended time horizon. This approach allowed the solver to
search over a longer time horizon within a limited time.
Therefore, the proposed approach could obtain a high-quality
solution in topological maps with limited bypasses and
high traffic congestion. We also presented a MAPF solver
called Corridor-CBS. Corridor-CBS significantly reduced
the runtime of CBS by applying several improvements to
effectively resolve corridor conflicts.

The experimental results showed that the proposed method
provides a much higher throughput than state-of-the-art
methods. In particular, in complex scenarios (Scenarios 3 and
4), RHCR caused heavy traffic congestion from a restricted
time horizon or even failed to find a solution within a time
limit. However, the proposed method produced a high-quality
solution with low congestion because it searched for a longer
time horizon using the optimal solver. This indicates that the
proposed method is effective, even in complex topological
maps with irregular and long-range corridors.

Although the proposed method achieves outstanding
results in lifelong MAPF experiments, its performance is
dependent on the quality of the initial solution (refer to
the results of RHCR1 and Anytime-RHCR1 in scenario 3).
Because of an inadequate suboptimality factor or initial time
horizon, the proposedmethod fails to obtain an initial solution
or returns a solution of very low quality. To address this
issue, in future work, we can consider a method to adaptively
determine the suboptimality factor and time horizon based on
the degree of congestion. Evolutionary algorithms, such as
membrane computing [38], [39], can be applied to estimate
the best parameters. Orozco-Rosas et al. [38] employed a
combination of membrane computing and a pseudo-bacterial
genetic algorithm to estimate the parameters of an artificial
potential field [40] for single-agent path planning. This
approach may be applied to MAPF in the future. Similar
to [41] and [42], a machine learning-based method also can
be applied to determine the parameters.

In future work, we will study an integrated problem of
lifelong MAPF and multi-agent task assignments. For this
problem, there are two approaches: coupled [43] and decou-
pled [4], [11] approaches. The proposed Anytime-RHCR
will be applicable to both approaches. We can also

20378 VOLUME 11, 2023

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

adopt a scheduling algorithm of automated storage and
retrieval systems (AS/RS) [44], [45] for task assignments.
Foumani et al. [45] determined the optimal sequence of orders
and items inside each order for AS/RS based on the TSP
algorithm with a cross-entropy method. This approach could
be applied to plan task sequences of agents.

In addition, we will apply the proposed planning method to
a robot management system that operates real robots. We can
deliver the initial solution to the robots and then perform
path improvement steps in parallel while the robots move.
This design can secure more computational time for path
planning and efficiently find better solutions. Similar to [25],
the incremental search method that reuses previously planned
paths can be applied to reduce the computational effort in the
robot management system.

REFERENCES
[1] P. R. Wurman, R. D’Andrea, and M. Mountz, ‘‘Coordinating hundreds of

cooperative, autonomous vehicles in warehouses,’’ AI Mag., vol. 29, no. 1,
p. 9, 2008.

[2] A. Bolu and Ö. Korçak, ‘‘Adaptive task planning for multi-robot smart
warehouse,’’ IEEE Access, vol. 9, pp. 27346–27358, 2021.

[3] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, ‘‘Lifelong multi-agent path
finding for online pickup and delivery tasks,’’ 2017, arXiv:1705.10868.

[4] F. Grenouilleau, W.-J. van Hoeve, and J. N. Hooker, ‘‘A multi-label A∗

algorithm for multi-agent pathfinding,’’ in Proc. Int. Conf. Automated
Planning Scheduling, vol. 29, 2019, pp. 181–185.

[5] M. Liu, H. Ma, J. Li, and S. Koenig, ‘‘Task and path planning for
multi-agent pickup and delivery,’’ in Proc. Int. Joint Conf. Auto. Agents
Multiagent Syst. (AAMAS), 2019, pp. 1–9.

[6] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and S. Koenig,
‘‘Lifelong multi-agent path finding in large-scale warehouses,’’ in Proc.
AAAI Conf. Artif. Intell., 2021, vol. 35, no. 13, pp. 11272–11281.

[7] Q. Sajid, R. Luna, and K. Bekris, ‘‘Multi-agent pathfinding with
simultaneous execution of single-agent primitives,’’ in Proc. Int. Symp.
Combinat. Search, 2012, vol. 3, no. 1, pp. 88–96.

[8] D. Silver, ‘‘Cooperative pathfinding,’’ in Proc. AAAI Conf. Artif. Intell.
Interact. Digit. Entertainment, 2005, vol. 1, no. 1, pp. 117–122.

[9] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, ‘‘Conflict-based
search for optimal multi-agent pathfinding,’’ Artif. Intell., vol. 219,
pp. 40–66, Feb. 2015.

[10] J. Li, G. Gange, D. Harabor, P. J. Stuckey, H. Ma, and S. Koenig,
‘‘New techniques for pairwise symmetry breaking in multi-agent path
finding,’’ inProc. Int. Conf. Automated Planning Scheduling, vol. 30, 2020,
pp. 193–201.

[11] Q. Xu, J. Li, S. Koenig, and H. Ma, ‘‘Multi-goal multi-agent pickup
and delivery,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2022, pp. 9964–9971.

[12] M. Barer, G. Sharon, R. Stern, and A. Felner, ‘‘Suboptimal variants of the
conflict-based search algorithm for the multi-agent pathfinding problem,’’
in 7th Annu. Symp. Combinat. Search, 2014, pp. 19–27.

[13] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, ‘‘Searching with
consistent prioritization for multi-agent path finding,’’ in Proc. AAAI Conf.
Artif. Intell., 2019, vol. 33, no. 1, pp. 7643–7650.

[14] J. Li, A. Felner, E. Boyarski, H. Ma, and S. Koenig, ‘‘Improved heuristics
for multi-agent path finding with conflict-based search,’’ in Proc. IJCAI,
Aug. 2019, pp. 442–449.

[15] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, T. S. Kumar, and
S. Koenig, ‘‘Adding heuristics to conflict-based search for multi-agent path
finding,’’ inProc. Int. Conf. Automated Planning Scheduling, vol. 28, 2018,
pp. 83–87.

[16] R. J. Luna and K. E. Bekris, ‘‘Push and swap: Fast cooperative path-finding
with completeness guarantees,’’ in Proc. 22nd Int. Joint Conf. Artif. Intell.,
2011, pp. 294–300.

[17] B. Binder, F. Beck, F. König, and M. Bader, ‘‘Multi robot route planning
(MRRP): Extended spatial–temporal prioritized planning,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 4133–4139.

[18] E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin, O. Betzalel, and
E. Shimony, ‘‘ICBS: The improved conflict-based search algorithm for
multi-agent pathfinding,’’ in Proc. 24th Int. Joint Conf. Artif. Intell., 2015,
pp. 223–225.

[19] J. Li, D. Harabor, P. J. Stuckey, H. Ma, G. Gange, and S. Koenig, ‘‘Pairwise
symmetry reasoning for multi-agent path finding search,’’ Artif. Intell.,
vol. 301, Dec. 2021, Art. no. 103574.

[20] A.Andreychuk, K. Yakovlev, P. Surynek, D. Atzmon, andR. Stern, ‘‘Multi-
agent pathfinding with continuous time,’’ Artif. Intell., vol. 305, Apr. 2022,
Art. no. 103662.

[21] K. Okumura, Y. Tamura, andX. Défago, ‘‘Iterative refinement for real-time
multi-robot path planning,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2021, pp. 9690–9697.

[22] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig, ‘‘Anytime multi-
agent path finding via large neighborhood search,’’ in Proc. Int. Joint Conf.
Artif. Intell. (IJCAI), Aug. 2021, pp. 1–9.

[23] J. Li, Z. Chen, Y. Zheng, S.-H. Chan, D. Harabor, P. J. Stuckey, H. Ma,
and S. Koenig, ‘‘Scalable rail planning and replanning: Winning the 2020
flatland challenge,’’ in Proc. Int. Conf. Automated Planning Scheduling,
vol. 31, 2021, pp. 477–485.

[24] M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti, ‘‘Primal_2: Pathfinding
via reinforcement and imitation multi-agent learning-lifelong,’’ IEEE
Robot. Autom. Lett., vol. 6, no. 2, pp. 2666–2673, Apr. 2021.

[25] N.Madar, K. Solovey, and O. Salzman, ‘‘Leveraging experience in lifelong
multi-agent pathfinding,’’ 2022, arXiv:2202.04382.

[26] M. Čáp, J. Vokřínek, and A. Kleiner, ‘‘Complete decentralized method
for on-line multi-robot trajectory planning in well-formed infrastructures,’’
in Proc. Int. Conf. Automated Planning Scheduling, vol. 25, 2015,
pp. 324–332.

[27] B. De Wilde, A. W. T. Mors, and C. Witteveen, ‘‘Push and rotate:
Cooperative multi-agent path planning,’’ in Proc. Int. Conf. Auto. Agents
Multi-Agent Syst., 2013, pp. 87–94.

[28] M. Bennewitz, W. Burgard, and S. Thrun, ‘‘Optimizing schedules for
prioritized path planning of multi-robot systems,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), vol. 1, May 2001, pp. 271–276.

[29] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig,
and H. Choset, ‘‘PRIMAL: Pathfinding via reinforcement and imita-
tion multi-agent learning,’’ IEEE Robot. Autom. Lett., vol. 4, no. 3,
pp. 2378–2385, Jul. 2019.

[30] M. Rahman, M. A. Alam, M. M. Islam, I. Rahman, M. M. Khan, and
T. Iqbal, ‘‘An adaptive agent-specific sub-optimal bounding approach for
multi-agent path finding,’’ IEEE Access, vol. 10, pp. 22226–22237, 2022.

[31] Z. Liu, S. Zhou, H. Wang, Y. Shen, H. Li, and Y.-H. Liu, ‘‘A hierarchical
framework for coordinating large-scale robot networks,’’ inProc. Int. Conf.
Robot. Autom. (ICRA), May 2019, pp. 6672–6677.

[32] L. Cohen, T. Uras, and S. Koenig, ‘‘Feasibility study: Using highways
for bounded-suboptimal multi-agent path finding,’’ in Proc. Int. Symp.
Combinat. Search, 2015, vol. 6, no. 1, pp. 2–8.

[33] K. Kasaura, M. Nishimura, and R. Yonetani, ‘‘Prioritized safe interval
path planning for multi-agent pathfinding with continuous time on 2D
roadmaps,’’ IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 10494–10501,
Oct. 2022.

[34] M. Phillips and M. Likhachev, ‘‘SIPP: Safe interval path planning
for dynamic environments,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 2011, pp. 5628–5635.

[35] J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koenig, ‘‘MAPF-LNS2:
Fast repairing for multi-agent path finding via large neighborhood search,’’
in Proc. AAAI Conf. Artif. Intell., 2022, pp. 10256–10265.

[36] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, ‘‘The increasing cost
tree search for optimal multi-agent pathfinding,’’ Artif. Intell., vol. 195,
pp. 470–495, Feb. 2013.

[37] S. Mohanty, E. Nygren, F. Laurent, M. Schneider, C. Scheller,
N. Bhattacharya, J. Watson, A. Egli, C. Eichenberger, C. Baumberger,
G. Vienken, I. Sturm, G. Sartoretti, and G. Spigler, ‘‘Flatland-RL: Multi-
agent reinforcement learning on trains,’’ 2020, arXiv:2012.05893.

[38] U. Orozco-Rosas, K. Picos, and O. Montiel, ‘‘Hybrid path planning algo-
rithm based on membrane pseudo-bacterial potential field for autonomous
mobile robots,’’ IEEE Access, vol. 7, pp. 156787–156803, 2019.

[39] U. Orozco-Rosas, O. Montiel, and R. Sepúlveda, ‘‘Mobile robot path
planning usingmembrane evolutionary artificial potential field,’’Appl. Soft
Comput. J., vol. 77, pp. 236–251, Apr. 2019.

VOLUME 11, 2023 20379

S. Song et al.: Anytime Lifelong Multi-Agent Pathfinding in Topological Maps

[40] O. Khatib, ‘‘Real-time obstacle avoidance for manipulators and mobile
robots,’’ in Proc. IEEE Int. Conf. Robot. Autom., vol. 2, Mar. 1985,
pp. 500–505.

[41] T. Huang, J. Li, S. Koenig, and B. Dilkina, ‘‘Anytime multi-agent path
finding via machine learning-guided large neighborhood search,’’ in Proc.
AAAI Conf. Artif. Intell., 2022, pp. 9368–9376.

[42] T. Huang, B. Dilkina, and S. Koenig, ‘‘Learning node-selection strategies
in bounded suboptimal conflict-based search for multi-agent path finding,’’
in Proc. Int. Joint Conf. Auto. Agents Multiagent Syst. (AAMAS), 2021,
pp. 1–9.

[43] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
‘‘Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,’’ IEEE Robot. Autom. Lett., vol. 6, no. 3,
pp. 5816–5823, Jul. 2021.

[44] S. Brezovnik, J. Gotlih, J. Balič, K. Gotlih, and M. Brezočnik, ‘‘Optimiza-
tion of an automated storage and retrieval systems by swarm intelligence,’’
Proc. Eng., vol. 100, pp. 1309–1318, Jan. 2015.

[45] M. Foumani, A. Moeini, M. Haythorpe, and K. Smith-Miles, ‘‘A cross-
entropy method for optimising robotic automated storage and retrieval
systems,’’ Int. J. Prod. Res., vol. 56, no. 19, pp. 6450–6472, Oct. 2018.

SOOHWAN SONG received the B.S. degree in
information and communication engineering from
Dongguk University, Seoul, South Korea, in 2013,
and the M.S. and Ph.D. degrees in computer sci-
ence from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2015 and 2020, respectively. He was a Post-
doctoral Researcher at the Neuro-Machine Aug-
mented Intelligence Laboratory, KAIST. Since
March 2021, he has been a Senior Researcher with

the Intelligent Robotics Research Division, Electronics and Telecommuni-
cation Research Institute (ETRI). His research interests include robotics,
motion planning, multi-robot systems, and computer vision.

KI-IN NA received the B.S. degree in mechan-
ical engineering from the Pohang University of
Science and Technology (POSTECH), Pohang,
Republic of Korea, in 2009, and the M.S. and
Ph.D. degrees in robotics program from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Republic of Korea, in 2011 and
2022, respectively. Since 2011, he has been
a Research Scientist with the Electronics and
Telecommunication Research Institute (ETRI),

Daejeon. His current research interests include detection and tracking of
moving objects, socially-aware navigation, human–robot interaction, and
artificial intelligence for real applications.

WONPIL YU received the B.S. degree in control
and instrumental engineering from Seoul National
University, Seoul, South Korea, in 1992, and the
M.S. and Ph.D. degrees in electrical engineering
from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 1994 and 1999, respectively. He is with the
Intelligent Robot Research Group, Electronics and
Telecommunication Research Institute (ETRI),
South Korea. He is also active in developing

technology standards in mobile robotics, where he is currently working
with the Map Data Representation (MDR) working group with a technical
sponsorship from the IEEE Robotics and Automation Society. Prior to
joining ETRI, in 2001, he worked for Agency for Defense Development
(ADD), Daejeon, where he was involved in the development of a precision
stabilizer for radar seeker system. His research interests include mobile
robotics, agricultural robotics, and perception technology.

20380 VOLUME 11, 2023

