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ABSTRACT Estimates of marine phytoplankton primary productivity (PP) from satellite remote sensing
observations are potentially used to assess global carbon budgets, biogeochemical response, pools and
fluxes of carbon and its spatial and temporal variations due to ocean-atmospheric oscillations under climate
change. According to the recent studies, satellite-based vertically integrated global PP products have
significant uncertainties due to the limitations of the past models, challenges in deriving the appropriate
parameters that account for the variation of PP with seasons and provinces, and specify the vertical
structure of phytoplankton biomass from satellite observation data and scarcity of in-situ vertical profile
data. To overcome these issues, we developed a depth-resolved and depth-integrated model to estimate
PP for global oceanic waters. It comprises the depth-resolved primary productivity (DRPP) and satellite-
based depth-integrated primary productivity (DIPP) parameterizations to accurately estimate the magnitude
and variability of PP in the global ocean. These parameterization algorithms require knowledge of the
relative chlorophyll-specific carbon fixation rate (Pbrel) and maximum chlorophyll-specific carbon fixation

rate within the water-column
(
Pbopt

)
in order to derive the spatial and temporal patterns of DRPP and

DIPP. To estimate the chlorophyll-specific maximum rate of carbon fixation at a depth equal to z (Pbz ), two
different Pbrel algorithms were developed based on the relative values of i) the subsurface photosynthetically
available radiation (PARrel) and ii) the optical depth at depth z (ζz). Furthermore, a sensitivity analysis was
conducted to understand the effect of sea-surface temperature (SST), sea-surface chlorophyll concentration
(SCHL) and sea-surface photosynthetically available radiation (SPAR) on the photo-physiological parameter(
Pbopt

)
. These physical, biological and optical parameters were used to obtain accurate Pbopt estimates. The

model based on the SST-SCHL-SPAR (Pbopt (SSTCP)) produced more accurate Pbopt estimates than the global
Vertically Generalised Productivity Model (Pbopt (VGPM)). Comparison of the model results with in-situ
measurement data demonstrated that the ζz-based DRPP algorithm (DRPP(ζ z)) yields more accurate results
than thePARrel-based DRPP algorithm (DRPP(PARrel)). This study also investigates the spatial and temporal
patterns in MODIS-Aqua-derived Pbopt and DIPP products and the impacts of climate-driven perturbations
on the global ocean PP due to the La Niña and El Niño phenomenon during 2010 and 2015.

INDEX TERMS Primary productivity (PP), maximum carbon fixation rate, depth-resolved PP, depth-
integrated PP, ocean color remote sensing, global ocean.

I. INTRODUCTION
Photoautotrophs (phytoplankton: photosynthetic bacteria,
diatoms, dinoflagellates, prymnesiophytes, chrysophytes,
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and among other organisms) are critical organisms that sup-
port the marine environment by providing food (organic
matter) to sea creatures and transferring energy through the
base-high levels in the marine food chain. These marine
organisms are essentially utilizing photosynthetically active
radiation (PAR, which designates the range of solar radiation
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from 400 - 700 nm) and become responsible for the carbon
fixation of 46% (∼104.9 petagrams of carbon/year) in the
marine environment, which is approximately half of the
global productivity [1], [2]. Phytoplankton plays a key role
in the ocean ecosystem and contributes approximately 95%
of global marine primary production. The factors includ-
ing light, temperature, nutrients, soil and water affect PP
generated by terrestrial plants, whereas light and nutrients
are the key environmental factors which affect the marine
primary producers [3]. Phytoplanktons utilize inorganic con-
stituents (such as nitrate and phosphate) through the process
of photosynthesis and excrete organic compounds (such as
lipids and proteins), which have broad implications for the
organic carbon fluxes in marine food webs. According to
Parsons et al. (1984), the general expression of PP is given
by

nCO2 + 2nH2O
sunlight
−→ n (CH2O) + nH2O+ nO2 (1)

The photoautotrophs are the main primary producers that
use PAR photons to convert inorganic carbon (carbon dioxide
(CO2), bicarbonate (HCO−

3 ), and carbonate (CO2−
3 )) into

organic carbon substances [2], [5]. The rate of production of
organic matter per unit area during photosynthesis is referred
to as Gross Primary Productivity (GPP), which is usually
higher in the sunlit surface ocean layer and decreases with
the depth in the ocean where the light intensity is 1% of the
sunlight entering the ocean surface. The Net Primary Produc-
tivity (NPP, expressed as mg C m−2 d−1 or g C m−2 year−1)
is the rate of net accumulation of organicmaterials in the form
of biomass, which is obtained by subtracting the autotrophic
respiration and other loss terms from the GPP [6], [7].

Marine PP can be estimated from direct and indirect
methods (measurements and modelling). For example, Epp-
ley, Nielsen, and Slawyk et al. estimated NPP by using
the CO2 fixation method (14C and 13C assimilation) [8],
[9], [10], Dugdale and Goering demonstrated the rate of
nutrient uptake for best yields (15NO3 and 15NH4 assim-
ilation) [11], Williams and Robertson and Williams et al.
utilised O2 evolution from the water (effected by phytoplank-
ton photosynthesis) [12], [13], and Kolber and Falkowski
and Kolber et al. used the molecular luminescence (Fluo-
rescence) method where the light energy is captured by
electrons circling an atom and a molecule [14], [15]. The
most popular methods rely on the light-dependent changes
in dissolved oxygen and inorganic carbon to estimate marine
PP. For example, the light-dark bottle oxygen method was
explored for estimating PP. Later, the carbon-based methods,
which use the radioactive isotopic 14C and 13C tracers, were
used to estimate marine PP [10], [16]. However, the con-
ventional in-situ measurements provide a lesser spatiotempo-
ral extent and become inadequate for studying the dynamic
nature of PP in the global ocean. These methods always
require water samples to perform the carbon/oxygen (14C,
13C and 18O) incubation procedures. During the process of
incubation, photosynthesis and the irradiance are measured

and the photosynthesis versus irradiance (P versus E) curves
are generated for characterizing phytoplankton physiological
responses to environment conditions [17]. Traditional in-situ
sampling methods provided a limited number of measure-
ment data which are inadequate for capturing seasonal, inter-
annual and multi-decadal variability in PP and its dynamics
patterns in regional and global oceanic waters. Moreover,
these methods are exhaustive, expensive and time-consuming
in the harsh marine environments [18].

Satellite ocean colour (OC) remote sensing provides an
important avenue for estimating marine PP and the related
physico-chemical and optical properties on regional and
global scales. In this context, the first ocean colour satellite
sensor named Coastal Zone Color Scanner (CZCS) abroad
Nimbus-7 satellite provided time-series data for a large num-
ber of locations on the global ocean during 1978 to 1986 and
allowed us to estimate phytoplankton pigment abundance for
a variety of qualitative and quantitative studies [19], [20].
The CZCS mission made a revolutionary change leading to
the development of many OC satellite missions over the past
35 years, namely, Sea-viewing Wide Field-of-view Sensor
(SeaWiFS),Moderate Resolution Imaging Spectroradiometer
(MODIS), Ocean Colour Monitor (OCM), Medium Resolu-
tion Imaging Spectrometer (MERIS), Hyperspectral Imager
for the Coastal Ocean (HICO), Geostationary Ocean Color
Imager (GOCI), Visible Infrared Imaging Radiometer Suite
(VIIRS), Multi-Spectral Instrument (MSI), Ocean and Land
Colour Instrument (OLCI) [21], [22].

In the past decades, numerous OC remote sensing algo-
rithms have been developed, tested and validated using
satellite-measured water-leaving radiance or remote-sensing
reflectance data [23]. For brevity, the satellite-based NPP
models are grouped under i) wavelength-resolved models
(WRM), ii) wavelength-integrated models (WIM), iii) time-
integrated models (TIM), iv) depth-integrated models (DIM),
and v) depth-resolved models (DRM) [24], [25], [26], [27],
[28], [29], [30], [31]. These models are classified based
on the complexity and integration level with wavelength,
time and depth. According to the input parameters, the
satellite-based NPP models are classified as: i) chlorophyll-
based models, ii) carbon-based models, and iii) phytoplank-
ton absorption-based models [32], [33].

In earlier studies, the PP products were derived from the
inputs of satellite data products (CZCS, MODIS-Terra/Aqua
andGOCI) such as chlorophyll concentration, optimal carbon
fixation rate, sea-surface temperature (SST), surface light
intensity (PAR) and surface light diffuse attenuation coef-
ficient with certain assumptions and specific relationships
among the photosynthetic and physico-chemical parame-
ters [34], [35]. Considerable efforts were also made to esti-
mate PP fromMERIS and HICO for inland (lake and lagoon)
and near-shore coastal waters [36], [37].

Recently, the primary productivity algorithm round robin
(PPARR: 1-3) was conducted to test and evaluate the
various NPP models [38]. From the PPARR compari-
son results, the vertically generalized productivity model
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(VGPM) is chosen for this study because of its popu-
larity for processing MODIS-Aqua data for global ocean
applications and its advantage of using the readily avail-
able satellite-derived products [18], [27], [39]. In gen-
eral, the accuracy of the satellite-based DIPP estimates
may vary depending on the hydrographic conditions and
distributions, geographic features, regional characteris-
tics, atmosphere-ocean oscillations under extreme weather
events and climate change impacts [40], [41]. One can
also estimate a potential change in DRPP and DIPP
from the physiological parameter (i.e., the photo adaptive
variable, Pbopt ).
However, the phytoplankton photo-physiological parame-

ter is difficult to directly derive from satellite remote sensing
data. This is because it does not have a direct relationship with
the water-leaving radiance or remote-sensing reflectance.
Also, there is little data and information on the characteristics
of this parameter. Consequently, the existing Pbopt (VGPM )
model is less accurate in capturing the environmental con-
dition and variability because of the higher-order function of
SST. Few studies have investigated the relationships of PAR
and phytoplankton photosynthetic parameter as well as PAR
and temperature-based DRPP and DIPP models [42], [43],
[44]. According to the previous studies, the above models
generally underestimated PP in low-latitude waters and over-
estimated in mid-latitude waters. At present, there is a chal-
lenge in estimating PP at depth ‘z’ (depth-specific) because
of the requirement to specify the vertical structure in phy-
toplankton biomass, light and photo-physiological parameter
(as discussed in Section IV-A and B) [40], [45], [46].

These challenges can be overcome by establishing new
empirical relationships among the optically measurable
parameters (such as biomass, light, nutrients and tempera-
ture) to estimate global DRPP and DIPP and analyze their
variations on seasonal, inter-annual and multi-decadal scales.
This requires the improved models to estimate DRPP and
DIPP in the global ocean. The improved products are nec-
essary for better understanding the biologically-driven and
biogeochemical processes associated with the production,
sinking and demineralization of organic carbon in the global
ocean.

The present work focuses on the depth-resolved and
depth-integrated primary productivity estimates from in-situ
and satellite data in the global ocean. This is achieved
by i) deriving and assigning the appropriate model param-
eters that link phytoplankton photosynthetic responses to
the light field, ii) accounting for their variations with sea-
sons and provinces, and iii) specifying the vertical struc-
ture in phytoplankton biomass because satellites observe
the ocean surface. In particular, this work is mainly
dedicated to

i) Empirically derive Pbrel models using PARrel and ζz,
ii) Assess the performance of our DRPP (PARrel) and

DRPP(ζz) models using in-situ PP data,
iii) Analyze the influence of SST, SCHL and SPAR on the

Pbopt estimates,

iv) Derive new Pbopt models, and
v) Demonstrate the annual and seasonal variations in Pbopt

and DIPP from MODIS-Aqua data using the VGPM
and SSTCP models.

II. DATA
A. IN-SITU DATA
For this study, the field measured and globally acquired PP
data were obtained from the two different sources of oceanic
14C-database: i) Oregon State University Primary Produc-
tivity database (OSPP) (http://sites.science.oregonstate.edu/
ocean.productivity/field.data.c14.online.php) and ii) Bio-
logical and Chemical Oceanography-Data Management
Office Primary Productivity database (BCO-DMOPP)
(https://www.bco-dmo.org/dataset/814803). The summary of
the 14C-primary productivity data is given in Table 1.

The OSPP database contains merged data collected on the
multiple research cruise programs in different oceanic waters
(bounded by latitudes and longitudes of 80.50◦N to 76.00◦S
and 176.40◦E to 188.00◦W) over the period of 3.5 decades
from 1958 to 1994. This provides quality-controlled and in-
situ measured 14C-primary productivity data from different
oceanic regimes and geographical coordinates. It consists of
3304 vertical profiles of PP and other important parameters
such as chlorophyll concentration (Chl), photosynthetically
available radiation (PAR), optical depth (ζ ), chlorophyll-
specific carbon fixation (Pb), maximum chlorophyll-specific
carbon fixation (Pbopt ), sea-surface temperature (SST) and
daylength (DL). The OSPP vertical profiles were previously
used for model development (e.g., empirical, machine learn-
ing, and artificial neural network approaches) and validation
purposes.

A program of the U.S. Joint Global Ocean Flux Study (U.S.
JGOFS) and Ocean Carbon and Biogeochemistry (OCB) cre-
ated the BCO-DMOPP database, which covers global waters
bounded by latitudes and longitudes of 60.00◦N to 78.00◦S
and 176.98◦E to 178.03◦W. The BCO-DMOPP database
contains a total of 148 in-situ measured depth profiles of
14C-productivity and related parameters including PAR,
chlorophyll pigments (Chl-a/b, carotene, neoxanthin), phy-
toplankton absorption (aph), mixed layer depth (MLD) and
nutrient measurements (NO3, NO4, PO4, SiO4, and NH4)
for the period from 1985 to 2008 (more than two decades
of data). Here, the OSPP and BCO-DMOPP data were used
after eliminating few vertical profiles due to themissing data /
absence of the one or more required parameters (PP, Chl,
PAR, SST, Pb, Pbopt , and ζ ). The data screening resulted
a total of 1340 (out of 3452) vertical profiles of required
data (Fig. 1). These data were randomly divided into two
datasets: i) one dataset is used for deriving the model
parameterizations and it consists of around 55% productiv-
ity and other data (the number of vertical profile measure-
ments, Np=712) and ii) one dataset is used for validating
the Pbrel and P

b
opt products (important inputs for the DRPP

and DIPP algorithms) and it consists of around 45% data
(Np=628).
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FIGURE 1. A global map showing the geographical locations of in-situ
measured primary productivity profiles obtained from the databases of
OSPP and BCO-DMOPP (Number of vertical profile measurements,
Np=1340).

B. SATELLITE DATA
The Standard Mapped Image (SMI) products were down-
loaded from the National Aeronautics and Space Adminis-
tration (NASA)–Ocean Colour Web (https://oceancolor.gsfc.
nasa.gov/l3/) as maintained by the Ocean Biology Process-
ing Group (OBPG), Goddard Space Flight Center. These
products were constructed from the Level-3 (L3) binned
sensor Moderate Resolution Imaging Spectroradiometer
(MODIS)–Aqua images with a spatial resolution of 4 km. For
this study, the reprocessed SMI data including SST, SCHL
and SPAR (from the MODIS-Aqua sensor) were used to
generate the global products of Pbopt and DIPP. To evaluate
the model performance in different geographic locations and
periods, the present and existing models were applied to SMI
data to generate spatial and temporal products of Pbopt and
DIPP for the global ocean. In particular, the seasonal images
were generated for i) winter: 21 December 2019 – 20 March
2020; ii) spring: 21 March – 20 June 2020; iii) summer:
21 June – 20 September 2020; iv) autumn: 21 September –
20 December 2020; and v) annual: the calendar year of 2020.
For this purpose, the MODIS-Aqua images of SST, SCHL
and SPAR were obtained and processed using MATLAB
codes (R2021b) to generate the global products of Pbopt and
DIPP (using the Pbopt (VGPM) and Pbopt (SSTCP)) for the year
2020. In addition, the MODIS-Aqua images of SST, SCHL
and SPAR were used to demonstrate the variations in DIPP
during the La Niña and El Niño events in 2010 and 2015.

1) VALIDATION AND LIMITATIONS OF THE SATELLITE DATA
The OC products are mainly affected by i) significant influ-
ence of CDOM and SS on the reflectance signal which can
introduce errors in satellite-derived chlorophyll products for
Case 2 waters, ii) attenuation due to the atmospheric con-
stituents – (a) absorption by gas molecules (mainly oxygen,
ozone and water vapour), (b) scattering and absorption by
aerosols, iii) low solar elevation (>70◦) which can cause the
uncertainty in the SPAR and SCHL estimates, and iv) dispari-
ties in spatial and temporal resolution of the input parameters
can cause the uncertainty in the OC products. To reduce the
uncertainty in the satellite-derived products and improve the
quality and consistency of OC products, the NASA-OBPG

performed frequent reprocessing (the recent reprocessing of
MODIS-Aqua products was done in July 2022) and produced
the ‘‘MODIS/Aqua Ocean Colour Reprocessing 2022.0’’.
This system incorporates the new source files for ancillary
data, improved algorithms and updated instrument/vicarious
calibration files for the mission.

The NASA-OBPG is responsible for periodical repro-
cessing of the Ocean Colour (here, SCHL and SPAR) and
SST products in order to advance and refine the algo-
rithms and provide additional vicarious calibration data for
all supported missions. As a result of the Reprocessing
2022.0, the MODIS-Aqua derived SCHL products were
compared with all available in-situ data (N = 1347,
where ‘N ’ represents the number of in-situ observations)
which were obtained from the Aerosol Robotic Network
(AERONET)-OC and SeaWiFS Bio-optical Archive and
Storage System (SeaBASS) databases. The statistical anal-
ysis between in-situ and satellite-derived SCHL data gave
a mean bias of 1.167 mg m−3 and a mean absolute
error of 1.688 mg m−3 [47]. The histogram compari-
son also showed a close consistency between the satellite-
derived SCHL (0.0211∼58.287 mg m−3) and in-situ data
(0.019∼58.099 mg m−3). Furthermore, a comparison of the
MODIS-Aqua derived SPARwith a limited number of in-situ
measurements (N = 292) from the COVE site showed a sim-
ilar mean bias and amean absolute error of 4.775 Em−2day−1

for a range of in-situ (21.745 to 64.438 E m−2 day−1)
and satellite-derived (8.891 to 60.168 E m−2 day−1) SPAR
data [47].
The recent reprocessing of MODIS-Aqua SST was done

in December 2019 (denoted as ‘‘Reprocessing 2019.0’’) and
the reprocessed SST were validated with in-situ data for
wind speed greater than 6 m s−1. Our analysis showed
that the SST gradients in the near-surface layer are affected
by the three different processes – subsurface turbulence,
heat exchange with the atmosphere and absorption of solar
insolation. Under these circumstances, the relationship of
sub-surface and skin temperature was found to be nearly
stable. The statistical analysis between satellite-derived SST
and sub-surface buoy data (N = 508950) gave a mean of
−0.185 ◦C, a median of -0.170 ◦C, and a standard deviation
of 0.423 ◦C, whereas a similar analysis between satellite-
derived SST and skin radiometer SST data (N = 2070) gave
a mean of 0.042 ◦C, a median of 0.040 ◦C, and a standard
deviation of 0.494 ◦C [48]. The periodic reprocessing and
averaging of OC and SST products over a longer timescale
(weekly/monthly) significantly reduced the uncertainties and
improved the quality of these products.

III. DESCRIPTION OF THE PP MODELS
The satellite OC models are typically built based on the
relationships of phytoplankton biomass (chlorophyll), pho-
tosynthetic parameter (PAR) and physical properties (SST)
of oceanic water. These models are capable of estimating the
ocean PP and its spatial and temporal variations in the near-
surface ocean layer on basin and global scales. Given the
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depth and surface parameters supplemented by the satellite-
based calculations, both DIPP and DRPP are accurately esti-
mated using a set of new models developed in this study
(Fig. 2).

A. THE DRPP MODEL
The DRPP model estimates PP at depth ‘z’ by resolving the
depth-specific parameters in the water-column. To estimate
the depth-specific/resolved PP, a relationship between the
chlorophyll-specific carbon fixation rate

(
Pbz
)
and underwater

light field measurements at depth ‘z’ was established and
included in the DRPP model. This relationship captures the
variability of phytoplankton assemblages, but it requires the
in-situ measured vertical profiles of i) chlorophyll concen-
tration, ii) chlorophyll-specific photosynthetic rate

(
Pbz
)
and

iii) photoperiod. The general form of the depth-resolved (spe-
cific) model is given by [31], [49]

PPz = function of Chlz,Pbz and DL

DRPP = PPZ = Chlz × Pbz × DL (2)

where PPz is primary productivity at depth z, Chlz is the
chlorophyll concentration at depth z, Pbz is the chlorophyll-
specific carbon fixation rate at depth z, and DL represents
the photoperiod. The characteristics of the input parame-
ters of the model are described in Table 2. The relative
chlorophyll-specific carbon fixation rate within the water-
column (Pbrel) is estimated as a function of the chlorophyll-
specific carbon fixation rate at depth ‘z’

(
Pbz
)
and maximum

chlorophyll-specific carbon fixation rate within the water-
column (Pbopt ). To estimate PP accurately, Pbz is the product
of Pbrel and P

b
opt and expressed as

Pbrel =
Pbz
Pbopt

Pbz = Pbrel × Pbopt (3)

Our analysis based on the high-sensitivity in-situ measured
14C-primary productivity profile data showed that Pbrel can be
derived from underwater light field data, which include the
relative values of the subsurface photosynthetically available
radiation (PARrel) and optical depth (ζz). This allows an
accurate estimation of PP through the Pbrel and P

b
opt models.

B. THE DIPP MODEL
Behrenfeld and Falkowski developed a chlorophyll-based
VGPM to estimate NPP [31], [42]. This model is suitable
for estimating DIPP on regional and global scales, because
it uses the available remote sensing data products as the input
parameters (such as SST, SCHL and SPAR).

DIPP (VGPM) = SCHL × Pbopt (VGPM) × Daylength

× 0.66125 ×
SPAR

SPAR+ 4.1
× Zeu (4)

According to Morel and Berthon, the euphotic depth (Z eu)
was estimated using the integrated chlorophyll concentration

as a function of SCHL and the term
(
0.66125× SPAR

SPAR+4.1

)
represents the irradiance function, which describes the
relative change in the light saturation fraction of Zeu and
Pbopt (VGPM ). The Pbopt (VGPM ) model (hereafter, M1) esti-
mates the photo-adaptive parameter using a 7th order polyno-
mial equation with the input of SST and provides the median
values of Pbopt (VGPM ) for every 1 ◦C interval increment in
SST from -1 to 29 ◦C. Due to the higher-order function of
SST, the VGPM model is not capable of fully capturing the
prevailing environmental condition and its variability. The
Pbopt (VGPM ) is defined as

Pbopt (VGPM)

= 1.2956 +

(
2.749 × 10−1

× SST
)

+

(
6.17 × 10−2

× SST 2
)

−

(
2.05 × 10−2

× SST 3
)

+

(
2.462 × 10−3

× SST 4
)

−

(
1.348 × 10−4

× SST 5
)

+

(
3.4132 × 10−6

× SST 6
)

−

(
3.27 × 10−8

× SST 7
)
(5)

The above formulation is valid for the range of SST
1◦C < SST < 28.5◦C. If SST < −1◦C, the coefficient is set
as 1.13 mgC (mg.chl)−1 hr−1. For SST > 28.5◦C, it is set
as 4.00 mgC (mg.chl)−1 hr−1. At present, the Pbopt (VGPM)

products are biased with a large error. To reduce this error,
critical environmental and biological parameters for Pbopt
are incorporated in the new model that adequately cap-
tures the environmental and biological effects [42], [51] and
overcomes the deficiency of the models based on a single
parameter.

TheMATLABR2021b functionwas used to implement the
DIPP algorithm to estimate Pbopt (VGPM ) and Pbopt (SSTCP).
The daylength calculation file was obtained from the Math-
Works file exchange repository to compute the daylight
length for a given year and latitude [52].

IV. DERIVING THE MODEL INPUT PARAMETERS
A. THE Pbrel USING PARrel DATA
The Pbrel can be accurately estimated by using the depth-wise
variation of PP along with Chlz, subsurface light field and
PPz. Since Pbrel is affected by the light-limited and photo-
inhibited parameters, the relationship of Pbrel and PARrel is
necessary in the underwater light field perspective. The ver-
tical profiles of Pbrel and PARrel measurements are needed
to accurately estimate Pbz . The P

b
rel is estimated from in-situ

PARrel data which requires the parameters PARz and PARmax .

Pbrel = function of PARrel

PARrel =
PARz
PARopt

=
PARz
PARmax

=
PARz
PAR0

(6)

The amount of PAR is maximum (PARmax) at the sea-
surface and decreases with increase in depth. Here, PARrel
is estimated as the function of the in-situ PAR at depth ‘z’
(PARz) to the maximum (optimal) PAR (PARmax). About 55%

21148 VOLUME 11, 2023



H. K. Kashtan Sundararaman, P. Shanmugam: Depth-Resolved and Depth-Integrated PP Estimates From In-Situ and Satellite Data

TABLE 1. Details of the in-situ 14C-primary productivity data used for model development and validation purposes.

of the in-situ measured 14C-PP data (Np=712) were used
to derive an empirical formulation to estimate Pbrel as the
function of PARrel . It takes the form as

Pbrel =
(104.6 × PARrel + (−4.003))

(11.89 + PARrel)
(7)

The median values of Pbrel were calculated for each 5
Einstein m−2 d−1 interval of PAR increment from 0 to 100%
of PARrel (Fig. 3 (a)). The above formulation captures the
effect of the underwater light field and estimates Pbrel from
the in-situ PAR profile data.

B. THE Pbrel USING ζ z DATA
It is assumed that the PPz and light saturation depth vary lin-
early with PAR given that the light saturated photosynthesis

rate is nearly constant and does not affect the quantum yields
of phytoplankton photosynthesis. Earlier studies have con-
cluded that in the absence of photoinhibition in open oceans,
the vertical structure of PP will display a region of light
saturation in the surface layer and a region of light limitation
in the deeper layer. Because most of the in-situ PP profiles
were obtainedwithout subsurface PARmeasurement data, the
vertical attenuation coefficient of PAR (KPAR) is incorporated
in the Pbrel model, which is given by

Pbrel = function of ζz

ζz = KPAR × z (8)

This method is useful when there is the lack of PAR mea-
surements associated with PP profile data. It can be extended
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FIGURE 2. A flowchart describing the key-steps involved in the DRPP and DIPP models.

TABLE 2. Description of the parameters and symbols used in this study.

through the depth to describe the photosynthesis-irradiance
parameters. The product of physical depth (z) and vertical
attenuation coefficient of PAR (KPAR) gives the optical depth
(ζz) in the water-column (8). Normalizing the physical depth
by the optical depth using the appropriate coefficients and
parameters gives Pbrel ,

Pbrel = 82.39 × exp

(
−

(
ζz − 0.5998
2.1460

)2
)

(9)

The vertical profile of Pbrel can be estimated as a function
of the optical depth (not physical depth). About 55% of the
in-situ measured ζz (Np=712) were used to derive the above
formulation. Figure 3 (b) shows a relationship between the
observed median values of Pbrel and ζz(with an increment of
0.2 in the range from 0 to 6, which is a unitless quantity).

C. THE Pbopt USING SST, SCHL AND SPAR
The Pbopt in regional and global oceanic waters was estimated
by two different methods: i) using the historically collected
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FIGURE 3. A relationship of the relative chlorophyll-specific carbon
fixation rate in the water column (Pbrel ) established from (a) the relative
values of the subsurface photosynthetically available radiation (PARrel )
and (b) the optical depth values at depth z (ζ z).

photosynthesis-irradiance data for geographically classified
oceanic provinces [53] and ii) using an empirical approach
that relates the observedPbopt to the environmental and biolog-
ical forcing parameters [25], [42]. Depending on the specific
application, one of these methods can be chosen as the former
approach provides the coarser-scale physiological variability
in the region of interest [54] and the later approach gives
the phytoplankton biomass variability based on the Pbopt .
Earlier studies have focused on the characteristics of the input
parameters of the model such as chlorophyll, PAR and Pbopt
and proposed better refinements on the estimation of under-
water light field [20], [44], [55]. A considerable progress was
also made to describe the vertical distribution of chlorophyll
[50], [55].

Our study demonstrated that the Pbopt estimates require
further improvement based on the critical physical, biolog-
ical and optical parameters (SST, SCHL and SPAR). These
parameters are incorporated into the calculation of Pbopt ,
because i) SST can be used as a proxy to determine the
light and nutrient concentrations at the sea-surface / near-
surface waters, which define the photosynthetic capacity of
phytoplankton [56], [57], [58], [59], ii) the abundance of
phytoplankton is indexed by the chlorophyll concentration
in the marine environment. Moreover, PP is affected by the
size-fractionated phytoplankton communities. For instance,
the small-sized phytoplankton is dominant over the larger-
sized phytoplankton in many ocean provinces. The SCHL is a
biotic factor and serves as a proxy for phytoplankton biomass.

The photosynthetic efficiency is affected by the size and
composition of phytoplankton by changing the photosyn-
thetic light absorption characteristics [60], iii) Generally,
there is a significant change in the surface-reaching-
irradiance (light availability) at different time scales (day and
night, seasonal and annual). Accordingly, the phytoplankton
community adopt this change in the light-harvesting capacity
and the light-limited and photo-inhibited parameters con-
trol the magnitude of Pbopt . Specifically, the photo-inhibited
parameter alters the depth of Pbopt in the water-column. The
flow of the photochemical energy at different light intensity
levels in the phytoplankton cellular structure can be repre-
sented by adding the light component in the Pbopt model [42].
The photophysiological characteristics of phytoplankton are

distinct in different light environments, and physical and
chemical conditions, which dictate the in-situ growth of phy-
toplankton over time and across the oceanic provinces. Thus,
the SST, SCHL and SPAR can be used to estimate Pbopt in the
global ocean.

To estimate the spatial and temporal variability of phy-
toplankton carbon fixation in global oceanic waters, our
model includes the effects of environmental and biologi-
cal factors on the Pbopt . The physiological nature of phy-
toplankton mainly depends on the availability of light and
nutrients in the water-column. Thus, the association of the
environmental and biological forcing parameters with Pbopt
was studied for a better representation of the ideal photo-
adaptive parameter. In this study, the median values of SCHL,
SPAR and Pbopt were calculated from those of SST within the
range from -1.3 to 31.8 ◦C (with 1 ◦C interval increment).
For performance assessment, the resultant data consisting of
32 in-situ measurements (SST, SCHL, SPAR and Pbopt ) out of
712 data were used. Our analysis showed a positive correla-
tion of Pbopt with SST and SPAR, and a negative correlation
of Pbopt with SCHL in global oceanic waters owing to its
causative association with the environmental and biological
factors (refer Fig. 4 (a)-(c)). This parameter helps to empha-
size photo-acclimation and nutrient-dependence changes
in global ocean waters (detailed discussions presented in
section VI-A).
In this study, we developed a total of seven Pbopt models

(from M2 to M8, further details in Table 3 ); i) the uni-
parameter models (M2 to M4) developed using a single input
parameter (e.g., SST, SCHL and SPAR), ii) the bi-parameter
models (M5 to M7) developed using a combination of the
two input parameters (e.g., SCHL-SPAR, SST-SCHL, and
SST-SPAR), and iii) the tri-parameter model (M8) devel-
oped using a combination of the three input parameters (e.g.,
SST-SCHL-SPAR together).

V. PERFORMANCE ASSESSMENT
Performance assessment of thePbopt ,DIPP andDRPPmodels
was done based on the most common statistical metrics such
as mean relative error (MRE), Pearson-correlation coefficient
(PCC), mean absolute error (MAE), root mean square error
(RMSE) and mean net bias (MNB) [33], [61]. These metrics
are defined as

MRE(ABS) =
1
n

∑n

i=1

(
|Xmodelled

i − Xin−situ
i |

Xin−situ
i

)
(10)

PCC =

∑n
i=1

(
Xin−situ
i − Xin−situ_mean

i

)
√∑n

i=1

(
Xin−situ
i − Xin−situ_mean

i

)2
×

(
Xmodelled
i − Xmodelled_mean

i

)
√∑n

i=1

(
Xmodelled
i − Xmodelled_mean

i

)2
(11)
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FIGURE 4. Relationships of the maximum chlorophyll-specific carbon
fixation rate within the water column (Pbopt ) and (a) sea-surface
temperature (SST: ◦C), (b) sea-surface chlorophyll (SCHL: mg.chl m−3),
and (c) sea-surface photosynthetically available radiation (SPAR:
Einstein m−2 d−1).

MAE =
1
n

∑n

i=1
|Xmodelled

i − Xin−situ
i | (12)

RMSE =

√
1
n

∑n

i=1
(Xmodelled

i − Xin−situ
i )2 (13)

MNB =
1
n

∑n

i=1
(Xmodelled

i − Xin−situ
i ) (14)

where Xi represents the Pbopt ,DRPP (PARrel) andDRPP (ζz).

VI. RESULTS AND DISCUSSION
The spatiotemporal variations in Pbopt , DRPP and DIPP are
largely caused by the physical (mixing and stratification,
thermohaline circulation, mixing of waters, upwelling and
downwelling), chemical (nutrient, carbon, oxygen and trace
metal cycling, and remineralization) and biological parame-
ters (grazing by zooplankton and biological pumps). These
complex processes are controlled by the SST, SCHL and
SPAR. In this study, multiple regression equations were
developed and validated to capture the variations of these
properties in the global ocean. To demonstrate the spatial and
magnitude variations of Pbopt , the DIPP formulations of this
study were applied to theMODIS-Aqua Level-3 seasonal and
annual images.

A. EVALUATION OF THE Pbopt MODELS
This section provides the statistical comparison of uni-,
bi- and tri-parameter Pbopt models using independent in-situ
data (Np=628) and the scatterplot comparison of all
Pbopt models (Fig. 5). Statistical results showed that the
Pbopt (SSTCP) (M8) had better performance in terms of the
correlation coefficient (PCC: 0.335) and errors (MRE: 0.757;
MAE: 1.856; RMSE: 2.440 and MNB: 0.283) than the
standard Pbopt (VGPM ) (M1) and other models (M2-M7)
developed in this study (Table 4). The ranges of these
statistical metrics for the M1-M7 models are PCC: 0.165-
0.330;MRE(ABS): 0.764-0.978;MAE: 1.867-2.292; RMSE:
2.429-2.878 and MNB: (-0.633)-0.299, which clearly indi-
cate the lower performance of these models as compared to
the M8.

To investigate the spatial distribution and temporal varia-
tion of Pbopt , the MODIS-Aqua images of the year 2020 were
processed and the results shown in Figs. 6 and 7. Note that

TABLE 3. Details of the present models to estimate Pbopt .

the M1 underperformed (MRE: 0.978, MAE: 2.046, RMSE:
2.613 and MNB: -0.633) because of its higher order polyno-
mial SST relationship being inadequate to replicate the char-
acteristics ofPbopt . As a result, theM1 produced high values in
midlatitude ocean waters and low values in tropical and polar
ocean waters (Fig. 6 (d)). The frequency distribution of M1
values is centered at 4 mg C (mg.chl)−1 hr−1, which is due to
the fact that the Behrenfeld and Falkowski model assigned
the constant Pbopt value (4 mg C (mg.chl)−1 hr−1) for the
SST >28.5 ◦C [31].
In the previous section, significant relationships of Pbopt

with SST, SCHL and SPAR (refer Fig. 4) were demonstrated
and allowed to develop the multiparameter Pbopt models [uni-
parameter models (M2-M4), bi-parameter models (M5-M7)
and tri-parameter model (M8)]. The results of these models to
capture the biogeochemical variations in the global ocean are
shown in Fig. 6 (e)-(g). In general, the uni-parameter models
(M2-M4) produced biased Pbopt (global spatiotemporal vari-
ability) as the result of the single input parameter, which lim-
its our ability to capture the effects of physical and biological
environmental parameters in the marine environment [42].
The bi-parameter models (M5-M7) showed spatial patterns
of Pbopt consistent with M8 (Fig. 6 (h)-(k)) with slightly
higher errors (Table 4 ). The overall ranges of the global Pbopt
values derived from the M2-M7 are given as follows: mean:
4.154-5.565, median: 4.144-6.017 and standard deviation:
1.262-1.934.

The Pbopt estimates derived from the standard model
(M1) and other models developed in this study (M2-M7)
are inadequate to represent the effects of light-limitation,
photo-saturation and photoinhibition in the global ocean.
The frequency distribution of M8 indicates that the
Pbopt values are spread throughout the range of 0.000-
7.587mgC (mg.chl)−1 hr−1 (as shown in Fig. 7 (h)). In addi-
tion, it exhibits a bimodal distribution with peaks around
2 and 7mgC (mg.chl)−1 hr−1. The statistical metrics showed
small errors and high correlation coefficients for M8, which
indicates its higher performance over the M1-M7 models
to capture the variability of Pbopt in the diverse marine
environments.
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FIGURE 5. Scatterplot comparison between the in-situ measured
maximum chlorophyll-specific carbon fixation rate within the water
column (Pbopt ) and the empirically-derived Pbopt values from (a) VGPM
model: M1 (Pbopt

(
VGPM)

)
, (b-d) uni-parameter models: M2-M4,

(e-g) bi-parameter models: M5-M7, and (h) tri-parameter model: M8
(Pbopt (SSTCP)) respectively.

To analyse the seasonal variability in Pbopt , the M1 and M8
models used to process the MODIS-Aqua seasonal images
(Fig. 8). In spring and summer, phytoplankton are able to pho-
tosynthesize at a faster rate, resulting in a high Pbopt as shown
in Fig. 8 (r) and (s). In autumn and winter, phytoplankton
growth slows down resulting in a low Pbopt as seen in
Fig. 8 (q) and (t).

B. EVALUATION OF THE DRPP MODEL
The DRPP is modelled as the function of Chlz,DL and Pbz ,
as given in (2). The Chlz and DL are directly / accurately
obtained from in-situ measurement data, which can be used
in the DRPP models. The modelling of Pbz is complicated
because of the challenge in defining the subsurface light
fields and its controlling parameters Pbopt and P

b
rel in diverse

marine environments. In this study, the M1-M8 models were
presented to calculate the Pbopt (detailed discussion given in
Section VI-A) and two different approaches were developed
to obtain Pbrel : i) one approach the PARrel data (7), and ii) one

approach uses the ζz data (9). By substituting the Pbrel (7 and

9) and Pbopt (M1-M8) in (3), we obtained sixteen Pbz models.
By substituting these sixteen Pbz models in (2), we obtained
sixteen DRPP models. For a better representation, these six-
teen DRPP models are grouped as i) eight DRPP (PARrel):
M1_PAR to M8_PAR, and ii) eight DRPP(ζz): M1_OD to
M8_OD. Figure 9 shows the comparisons of these models.

To evaluate the accuracy of these DRPP models, the
model results were compared with in-situ vertical profile
measurement data (Table 5 ) (Np=628). It should be men-
tioned that theDRPP(ζz)-M8_OD yielded a higher accuracy /
performance in terms of PCC (0.746) and statistical metrics
(MRE: 1.137; MAE: 17.96; RMSE: 37.71 and MNB: 5.134)
over the other models.

C. GLOBAL DISTRIBUTION OF DIPP(VGPM) AND
DIPP(SSTCP) USING SATELLITE DATA
The global and regional PP levels are generally influenced
by seasonal environmental changes, light and nutrients [62].

FIGURE 6. (a-c) The annual MODIS-Aqua images of SST, SCHL and SPAR
used as the input parameters for the Pbopt and obtained from (d) M1
(Pbopt (VGPM)), (e-g) uni-parameter models: M2-M4, (h-j) bi-parameter
models: M5-M7, and (k) tri-parameter model: M8 (Pbopt (SSTCP)) for the
year 2020.

FIGURE 7. Histogram comparison of the maximum chlorophyll-specific
carbon fixation rate within the water column (Pbopt ) obtained from the
global MODIS-Aqua images (as shown in Fig. 6) using (a) VGPM model:
M1 (Pbopt

(
VGPM)

)
, (b-d) uni-parameter models: M2-M4,

(e-g) bi-parameter models: M5-M7, (h) tri-parameter model: M8
(Pbopt (SSTCP)) for the year 2020.

The seasonal variability mainly occurs due to the availability
of light and nutrients caused by vertical mixing in the water
column. To analyse the spatiotemporal variation in the DIPP
products, the DIPP models were applied to MODIS-Aqua
data for generating the seasonal and annual images for the
year 2020. The Behrenfeld and Falkowski [31] model was
used to derive the DIPP(VGPM) and DIPP(SSTCP) products
from satellite data with the inputs of Pbopt from two different
models: i) Pbopt (VGPM ) and ii) Pbopt (SSTCP) . The DIPP
products based on the inputs of Zeu and Pbopt derived from the
SST, SCHL and SPAR, and daylength are more accurate in
detecting the seasonal and inter-annual variations on a global
scale [63].

The polar region exhibits the vertically uniform temper-
ature (diminutive thermocline) and uninterrupted nutrient
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TABLE 4. Comparison of the Pbopt models obtained from the VGPM (M1) and the new models (M2-M8) with in-situ Pbopt measurements. (UNIT:
mg C (mg.chl)−1 hr−1).

FIGURE 8. The MODIS-Aqua seasonal images of (a-d) SST, (e-h) SCHL
and (i-l) SPAR used as the input parameters for the Pbopt obtained from
(m-p) VGPM model: M1 (Pbopt

(
VGPM)

)
, (q-t) tri-parameter model: M8

(Pbopt (SSTCP)) for winter, spring, summer and autumn of 2020.

supply by mixing processes, which confirm that PP in this
region is not limited by nutrients. The PAR is low in winter
and acts a primary limiting factor, causing the seasonal PP
changes in polar oceans. Consequently, PP is lowest in winter
despite the abundance and mixing of nutrients in the water-
column (Fig. 10 (a) and (b)). The increased levels of nutrients
and PAR together cause algal blooms during the spring and
summer, resulting the high primary production (Fig. 10 (d-f)
and (g-i)). These algal blooms start to decay with the
depletion of nutrients and reduction of PAR, resulting the
lower primary production during the autumn and winter
(Fig. 10 (j-l) and (a-c)).

FIGURE 9. Scatterplot comparison of the in-situ measured DRPP values
and the empirically modelled DRPP values obtained from i) Pbrel using the
PARrel measurements (red colour filled circle) and ii) Pbrel using the ζ z
measurements (green colour filled circle) for (a-h) eight maximum
chlorophyll-specific carbon fixation rates within the water column (Pbopt ):
M1-M8.

Due to the strong thermocline formation, the temperate
regions experience significant seasonal variations in the strat-
ification layer depth. In winter, this depth rises towards the
surface in shallow (weak stratification) and moves downward
towards the deep (strong stratification) in summer due to
the weak thermocline condition. This suggests that nutrients
are not a limiting factor for primary productivity, but it is
mainly light-limited in winter. The spring is associated with
strong vertical mixing of nutrients, availability of light and
production variations similar to those observed in the polar
region [64]. During summer, the temperate regions receive
a high PAR which results in strong stratification (thermo-
cline layer in shallower depth) and limits vertical mixing.
This leads to the nutrient-depleted conditions and decreased
productivity. In the beginning of the autumn, the temper-
ature decreases, the thermocline becomes weaker, and the
storm condition breaks the stratification, bringing up the
nutrient-rich deep waters to the surface waters and producing
autumn blooms (Fig. 10 (j) and (k)). However, the living
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TABLE 5. Comparison of the DRPP models obtained from the Pb
opt (M1 − M8) and Pb

rel using the PARrel and data. (UNIT: mg Cm−3d−1 ).

FIGURE 10. Comparison of the seasonal DIPP products derived from the
VGPM model: M1 (Pbopt

(
VGPM)

)
and tri-parameter model:

M8 (Pbopt (SSTCP)) along with their differences (DIPP(M1)-DIPP(M8)) for
(a-c) winter, (d-f) spring, (g-i) summer, (j-l) autumn, and (m-o) annual
of 2020.

period of autumn blooms is short. As the winter approaches,
the temperate regions receive minimal light flux and hence
low PP (mainly light-limited).

In tropical oceanic waters, the PAR is high at the sea
surface throughout the year and causes the ocean surface
warmer, highly stratified and strong thermocline conditions
(nutrients limited). As a result, productivity is low for all

FIGURE 11. Comparison of the seasonal DIPP products of the
tri-parameter models, M8 (Pbopt (SSTCP)) for (a-d) Arctic, (e-h) West
Pacific, (i-l) South American and (m-p) African regions for the season of
winter, spring, summer and autumn of 2020 respectively.

seasons throughout the year (similar to the central ocean)
(Fig. 10 (m) and (n)) [65].
Furthermore, we investigated the seasonal variation

in DIPP(VGPM) and DIPP(SSTCP) derived from the
regional MODIS-Aqua images for the Arctic, West Pacific,
South America and Africa (Fig. 11). In northern hemi-
sphere (Arctic region), the surface-reaching PAR and
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FIGURE 12. Comparison of the annual DIPP products derived from
(a-d) VGPM model: M1 (Pbopt

(
VGPM)

)
and (e-h) tri-parameter model: M8

(Pbopt (SSTCP)) for the year of 2010 and 2015 respectively. The white
colour bounded area is used to show the effects of the La Niña and El
Niño events in the tropical waters.

chlorophyll concentrations are higher and resulting high PP
(Fig. 11 (b) and (c)). In contrast, the southern hemisphere
receives low surface PAR and chlorophyll concentration
which consequently has a low rate of primary production
(Fig. 11 (a) and (d)). In autumn andwinter, the southern hemi-
sphere receives high PAR and leads to increased chlorophyll
concentration and primary productivity (Fig. 11 (i and l), and
(m and p) respectively).

The El Niño and La Niña events can impact the spatiotem-
poral variability of DIPP by controlling the mixing of nutri-
ents and phytoplankton growth in the global ocean. These
events are more predominant to influence the changes in the
weather patterns that weaken the eastern trade wind and cause
temperature variation in the equatorial Pacific region [66].
To demonstrate these impacts and associated annual global

variation in DIPP (VGPM and SSTCP), the MODIS-Aqua
data were processed for the year 2010 (strong La Niña) and
2015 (strong El Niño) and presented in Fig. 12 (a and b) and
(e and f) respectively.

During El Niño, the unusual warming of surface waters
drives the global climate patterns and changes the wind pat-
tern, rainfall, and sea-surface temperature on the equator [67].
Especially in the equatorial pacific region, chlorophyll con-
centration and productivity become low, which is due to the
weak upwelling activity (Fig. 12 (d) and (h)) [68]. In La Niña,
there was unusual cooling of surface waters (opposite pro-
cess), strengthened upwelling, and mixing of nutrient-rich
water from the bottom layer to the surface waters, and the
increased chlorophyll concentration and high phytoplank-
ton production in equatorial pacific regions as shown in
Fig. 12 (c) and (g) [69]. The ENSO is not only impacting the
equatorial pacific oceanic regimes but extending these effects
to Eastern Indian and Indonesian oceanic waters, Gulf of
Mexico and western Atlantic (subtropical) regions. Overall,
the DIPP(VGPM) products yielded the lower PP values than
the DIPP(SSTCP) in the equatorial region and slightly higher
PP in the mid-latitudes during the El Niño and La Niña
scenarios.

VII. SUMMARY AND CONCLUSION
The present work consisted of three major studies: i) Devel-
opment and validation ofDRPPmodel using the ζz andPARrel
measurements, ii) Development of an efficient algorithm to
estimate Pbopt in diverse marine environment conditions, and
iii) Demonstration of the DIPP products with the inputs ofM1
and M8 models. To achieve the accurate global DRPP/DIPP,
the input parameters (Pbz ,P

b
opt and Pbrel) were modelled as

the function of the important environmental forcing vari-
ables (biogeochemical and physiological parameters). In this
study, the various combinations of SST, SCHL and SPAR
were considered to develop the robust Pbopt models (uni-,
bi- and tri-parameter models). The statistical comparison
results indicate that the tri-parameter model (M8) out-
performed the other models (M1-M7). To describe the
subsurface light field with the effects of light-limitation,
saturation and photo-inhibition, two different models for
estimating Pbrel were also developed using PARrel and ζz
data. Consequently, sixteen DRPP models were constructed
with the inputs of Pbrel and P

b
opt . Statistical results demon-

strated that the DRPP(M8_OD) has a relatively better per-
formance than the other models (DRPP(M1_OD-M7_OD)
and DRPP(M1_PAR-M8_PAR)). To further evaluate these
models, the global-scale (ocean basin) DIPP products were
investigated using MODIS-Aqua data.

Finally, this study also demonstrated the spatial and tem-
poral variations of Pbopt and DIPP products for the year
2020. The regional DIPP images were produced to ana-
lyze the capability of the applied models. The statistical
results indicate that the M8 based Pbopt , DRPP and DIPP
models are applicable to diverse marine environments. The
global annual average of DIPP products was estimated around
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200-400 mg C m−2 d−1, where the upwelling regions
contributed to a higher PP. For example, the annual
DIPP was 550-800 mg C m−2 d−1 off California coast
and 900-1100 mg C m−2 d−1 off Peru and Benguela
coasts. The central ocean produced a lesser annual DIPP
(50-150 mg C m−2 d−1) than the other ocean regions. The
Southern Ocean waters are associated with a higher level of
nutrients and a lower level of light, resulting the diminished
phytoplankton PP (250-550 mg Cm−2 d−1). The newmodels
with the appropriate physiological parameters (Pbopt and P

b
rel)

could significantly improve the accuracy of DRPP and DIPP
products.

In this study, SST was used as a proxy to account for
nutrients in global ocean waters. A better representation of
macro/micro-nutrients is further required to capture more
accurate seasonal patterns in PP due to the phytoplank-
ton community composition. Though the present models
improved the PP estimates in the tropical and temperate
regions, there could be uncertainties in the polar region due to
the freshwater runoff from melting of icesheets and glaciers.
Low light and nutrients, low solar angle and high cloudi-
ness can significantly impact the upper ocean stratification
and related processes. In such regions, accurate estimates
of PP can be obtained through further refinements by using
i) vertical PAR profiles which are defined as a function of the
SPAR and SCHL, ii) vertical chlorophyll profiles which are
defined as a function of the SCHL, and iii) other governing
parameters such as size-fractioned phytoplankton, upwelling
wind stress, and mixed layer depth in the model formula-
tion. In conclusion, the improved and optimized models as
presented in this study can be used with the water colour
remote sensing sensors to elucidate changes in phytoplank-
ton biomass, assimilation efficiency, and seasonal and inter-
annual variations of DIPP at regional and global scales.
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