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ABSTRACT The identification of aircraft wake vortex is an essential issue in the operation of airspace
utilization ratio. In particular, accurately identifying wake vortex in fine classification is helpful to guide
separation standards under realistic airport conditions that consist of various complex operation scenarios.
To stress this issue and improve the efficiency at the same time, we developed two mini architectures with
each network of 10 layers by modifying deep residual neural network (ResNet) and describe the results of
a study to evaluate the performances for identifying wake vortex in fine classification. For this purpose,
we built the wake vortex dataset measured with pulsed Doppler LiDAR at Chengdu Shuangliu International
Airport from Aug 16, 2018, to Oct 10, 2018. To support wake vortex identification in fine classification, the
classification indices that consider the background wind speeds, wake vortex evaluation and aircraft types
were included in the learning and identification tasks. We compared the performance of the two ResNet
mini architectures with other lightweight networks by using wake vortex dataset. The experimental results
demonstrate that the developed two ResNet mini architectures contribute to competitive wake identification
modeling in terms of accuracy and parameter number.

INDEX TERMS Wake vortex identification, LiDAR, lightweight network, ResNet.

I. INTRODUCTION
The turbulence generated by aircraft wave vortex during the
landing and take-off phases of the flight presents a potential
hazard to the trailing aircraft, this limits airport capacity [1],
[2], [3]. On the other hand, due to the low flight altitude
of the aircraft and the limited response time of the pilot
[4], the aircraft wake vortex of near surface has an impor-
tant influence on flight safety [5]. From 1983 to 2000, the
National Transportation Safety Board recorded more than
130 flight accidents caused by wake turbulence, accounting
for 1/3 of the total number of air accidents in the United States
during the period [6], [7]. The International Civil Aviation
Organization (ICAO) has stipulated aircraft wake separation
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standards to assure air traffic safety [1], [8]. However, current
ICAO wake separation rules are relatively conservative and
have become an important factor limiting the development
of the current civil aviation industry [8], [9]. To cope with
the rapid growth of flight capacity, it is essential to bring the
increased insight into aircraft wave vortex analysis.

There exist two important methods to study the behavior
of aircraft wake, i.e., computational fluid dynamics (CFD)
and flow field measurement [10]. The main advantage of
CFD is that it supports the consistent analysis of wake vortex
behavior under various environmental conditions, but this
technique cannot exhibit a significant impact on aircraft spac-
ing to improve airport capacity [11]. Compared to CFD, the
high precision and resolution of LiDAR make it capable of
supporting the most effective field measurement [11]. Specif-
ically, in clear air the LiDAR is the effective sensors, as the
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echoes are mainly derived by the particles involved in the
wake vortex [8]. In another two works [10], [12], we have
briefly outlined the analyzed techniques for aircraft wake
vortex.

In particular, the intensity data provided by the products
of pulsed Doppler LiDAR can be used to mine information
of wake vortex observed. However, signal uncertainty and
eccentricity caused by sensor scanning patterns, background
winds and a receiver’s adjusted gain response usually exist
in the data of wake vortex provided by pulsed Doppler
LiDAR. So, the large number of lower quality materials
makes it very hard for manual methods to reliably identify
the informational parts in wake vortices, which is labor and
time consumption. Moreover, these manual means require
the intervention of experts in the process. In such situations,
computational methods provide the program capabilities to
identify aircraft wave vortex.

To perform accurate identification of wake vortices, a nat-
ural solution of the problem is to extract and enhance their
weak features embedded in inhomogeneous backgrounds.
Since the results of LiDAR products can be supported by
information content that extends the pixel information, the
strategies of deep leaning can provide good prospective
tools. In this study, we conducted a deep learning based
study to identify air wake vortex. In the process of deep
learning technology into application, there are two key
innovations:

• Fine classification for wake vortex identification. Some
existing deep learning based methods [13], [14], [15] mainly
focus on achieving better identification accuracy in binary
classification, i.e., wake vortex and non wake vortex. How-
ever, fine classification in identifying wake vortex is an
important criterion in the applications of guiding aircraft
wake separation standards, which satisfies the various com-
plex requirements of users. To better exploit the potential in
separation standards under realistic airport conditions, classi-
fication indices that consist of the background wind speeds,
wake vortex evaluation and aircraft types were included in the
identification task.

• Use efficiency. To be effective, neural networks for
wake identification tasks should be lightweight, in which
the better spatial inductive biases allow networks to learn
representations with fewer parameters. Towards this end,
we developed two networks with each of 10 layers by mod-
ifying deep residual neural network (ResNet) [16], named
as ResNet mini v1 and ResNet mini v2, to extract the
features of considered materials and test them in wake
vortices of various scene. Case studies indicate that the pro-
posed two networks exhibit competitive results across dif-
ferent tasks that comprehensively consider background wind
speeds, wake evaluation, three aircraft types and parameter
number.

The remainder of the paper is organized as follows.
Section II describes the data resource and its classification
index. The proposed two identification models are intro-
duced in Section III. Experiments and results are presented in
Section IV, Section V is the conclusions and the limitations
and future work are drawn in Section VI.

FIGURE 1. RHI scans for wake vortex measurement.

FIGURE 2. Aircraft Wake Vortex Field Detection by wind3D 6000.

TABLE 1. The parameters of Wind3D 6000 and experimental
configuration (RHI) for measuring aircraft wake vortex at the chengdu
shuangliu internal airport from aug 16, 2018, to oct 10, 2018.

II. DATA RESOURCES
A. DATA COLLECTION
In practice, we use rhi (range height indicator) scans
[10], [12] to measure wake vortex, which provide a two-
dimensional perspective of the turbulence. The measure-
ments performed rhi scans indicated by the dashed lines are
shown in Fig. 1. The rhi scans are used to calculate vertical
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cross-section profiles of wake vortices over the whole scan
area, allowing the position of the lidar (point a in the right
of Fig. 2). The mode of the lidar used for the experiment
is Wind3D 6000 (showed in the left of Fig. 2), which is
manufactured by leica-lidar transient technology ltd. The
parameters of wind3d 6000 and experimental configuration
(rhi) are detailed in Table 1. In our work, we use Wind3D
6000 to measure aircraft wake vortex at the chengdu shuan-
gliu internal airport from aug 16, 2018, to oct 10, 2018.

B. DATA VISUALIZATION AND PROCESSING
For a better observation of wake vortex, we transform the
original material into intensity data. to set up the most direct
and effective way of satisfying the model of deep learning,
the wake data is visualized using a gray cloud image with
linear mapping. Fig. 3 shows an example of this operation on
aircraft wake vortex of AIRBUS-A320.

FIGURE 3. Transformation for aircraft wake vortex of Airbus-A320.

C. DATA AUGMENTATION AND ORGANIZATION
The primordial dataset is comprised of 3531 samples, which
is divided into two parts. The first part contains 750 samples
of existing aircraft wake vortex, the second part is that without
aircraft wakes. To offer a richer and more balance dataset,
we rotated 0 to 2 degrees, or panned left, right, up, and down
on each sample for dataset extension. After that, we remove
the impure data, and then we got a total of 15,000 sam-
ples. Among them, each category accounts for half. Besides,
we changed all images from 336×288 to 100×100, to reduce
the occupation of computer memory. Fig. 4 is the operations
for the dataset extension. And then, we divide the dataset into
three parts, the training set, the validation set, and the test set,
accounting for 60%, 20%, and 20% respectively.

FIGURE 4. Image augmentation for the intensity data of aircraft wake
vortex.

D. SPECIFICALLY SPLIT THE TEST SET
1) BACKGROUND WIND FIELD
The visualization of aircraft wake vortex under background
wind field with different speed is displayed in Fig. 5. From
this figure, the cross wind provides additional turbulent
kinetic energy input to the wake vortex, and the vorticity of
the vortex core increases rapidly with greater axial velocity
and rolling moment than that in the case of static wind. For
wake vortex motion, encountering crosswind will accelerate

the wake vortex to be blown away from the route. For the
strength dissipation of the wake vortex, the low-speed wind
is not enough to destroy its morphological integrity when
the wake vortex receives continuous cross wind disturbance,
while the strong cross wind can adequately accelerate the
separation and dissipation of the wake vortex core of the air-
craft [18], [19]. Therefore, the identification of wake vortex
in strong wind field is equally important to that in weak wind
field. In this work, the wake vortex data under wind speed
4m/s and 1m/s are considered in the test models.

FIGURE 5. Average wind variation in background wind field.

FIGURE 6. Evolution of aircraft wake vortex. According to whether the
aircraft wake vortex cores are separated, we can roughly divide the wake
cycle into two stages. The first stage is that the vortex nuclei is not
separated, and the second stage is separated.

FIGURE 7. Visualization of wake vortex data in aircrafts of three types.

2) CYCLE STAGES OF WAKE VORTEX
Fig. 6 shows the entire cycle of the wake from generation
to gradual dissipation. At the beginning of the aircraft wake,
its radial velocity is very fast, and the positions of the two
vortices are very close. Under the time evolution, the radial
velocity of wake vortex gradually decreases to 0 due to
the frictional force of the surrounding air, and the distance
between two vortex nuclei gradually increases until dissi-
pated. following this, we divided the wake cycle into two
stages based on whether the aircraft wake vortex cores are
separated in the test models.
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FIGURE 8. ResNet mini v1 Architecture.

TABLE 2. Test accuracy on different scenes and total parameters of models.

3) AIRCRAFT TYPES
Different types of aircraft with the corresponding wake flow
strength are considered in the test models. Fig. 7 provides
the visualization of wake data in aircrafts of three types: light
aircraft, medium aircraft and heavy aircraft.

III. RESNET MINI
In this section, we modified ResNet framework [16] to lead
to the proposed ResNet mini v1 and ResNet mini v2. Each
network is 10 layers deep, which can significantly reduce
the network parameters while enhancing the performance.

The reason of selecting a mini version of ResNet is that we
aim to reduce the risk of overfitting and make it manageable
for hardware devices to execute, allowing time reduction and
facilitated operation in the actual civil aviation equipment.

A. RESNET MINI V1
Fig. 8 depicts the architecture of ResNet mini v1. The ResNet
mini v1 consists of a Block named Conv_BN_ReLU [20]
followed by a max pooling layer, four Residual Modules,
an average pooling layer, a fully connected layer, and a
softmax at the end.
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FIGURE 9. Structure of Residual module v2.

FIGURE 10. Add function and Concatenate function.

In Cov_BN_ReLU block, Batch Normalization (BN) [21]
is added between the convolution layer with kernel size
3-by-3, stride 1 and padding of 3 pixels, and max pooling
layer with kernel size 3-by-3, stride 2 and padding of 1 pixel.
It can greatly improve the speed of model training and accel-
erate the convergence speed.

Residual module consists of three Conv_BN_ReLU blocks
as shown in the lower left corner of Fig. 8. The amounts
of filters in the convolution layers of residual module also
doubles as the network deepens. The last Residual module is
connected to an average pooling and then a fully connected
layer follows. There are two neurons in the fully connected
layer for solving the binary problem. At the end of the net-
work is a softmax function.

B. RESNET MINI V2
To incorporate more features from different layers and ensure
their reusability, inspired by DenseNets [22], we improved
Residual module v1 and designed a Residual module v2,
as shown in Fig. 9.

In our Residual module v2, the characteristics of different
layers are further integrated by adding a skip connection,
which alleviates the disappearance of gradient and improves
the back propagation of gradient, making the model easier to
train. Compared with add function, the use of concatenation
function can achieve feature connection on channels, thus
it improves feature map capability of describing the image

FIGURE 11. ResNet mini v2 Architecture.

information (Fig. 10). Although the model parameters are
slightly increased, it can improve the efficiency of feature
reuse in the network.

For ResNet mini v1, by replacing Residual module with
Residual module v2, we will get ResNet mini v2 framework
(Fig. 11).

IV. RESULTS AND DISCUSSION
To identify wake vortices within our dataset, the ResNet mini
based method is described as the flow chart of Fig. 12.

A. EXPERIMENTAL PLATFORM AND NETWORK
PARAMETER SETTING
In our experiments, the workstation used in this study is a
computer with 8G memory, Intel i7-8565U CPU, a 1.80G
main operating frequency, and a GeForce MX150 (2GB)
GPU.

The deep convolutional neural network is built on the ten-
sorflow1.9 framework and is implemented using Python3.6.
The number of batch size is 5, the number of epochs
is 20. Optimizer is Adam [23], learning rate is 0.00001 with
decay 0.00001/20. The Binary Cross-entropy is used as loss
function.

B. EXPERIMENTAL RESULTS
For comparison analysis, four lightweight networks CNN
[13], LeNet-5 [24], SqueezeNet v1 [25] and ShuffleNet

VOLUME 11, 2023 20519



S. Duan et al.: Two ResNet Mini Architectures for Aircraft Wake Vortex Identification

FIGURE 12. Flow chart of the ResNet mini wake identifying algorithm.

v1 [26], with each of parameter number close to ResNet
mini architecture, are considered in experimental evalua-
tion by using our wake vortex dataset. The parameter num-
bers of ResNet mini v1, ResNet mini v2, CNN, LeNet-5,
SqueezeNet v1 and ShuffleNet v1 are 80,010, 134,812,
130,306, 1,213,326, 1,266,426 and 1,102,034 respectively
when they are applied to wake vortex identification.

The loss and accuracy curves of models over epochs
in training and validation for the wake vortex dataset are
illustrated in Fig. 13. It is clear that the training accura-
cies obtained by ResNet mini v1 and ResNet mini v2 are
closed to SqueezeNet v1 but much better than that of CNN.
In validation accuracy, ResNet mini v1 and ResNet mini v2
present results close to those of LeNet-5, SqueezeNet v1
and ShuffleNet v1, while they exceed the performance of
CNN. What’s more, apparently, ResNet mini v1 has only
61.4%, 6.6%, 6.3% and 7.3% parameters of CNN, LeNet-5,
SqueezeNet v1 and ShuffleNet v1 on the verification set.
In addition, ResNet mini v2 exhibits only 11.1%, 10.6% and
12.2% parameters of LeNet-5, SqueezeNet v1 and ShuffleNet
v1 for verification.

For quantitative comparison of identification methods on
the wake vortex test set, the model’s performances are eval-
uated by several measures: receiver operating characteris-
tic (ROC) curves [26], [27], [28], the area under ROC (AUC),
and accuracy [29], [30] when the classification indexes of
wake vortex cycle, background wind field and aircraft types
are considered in this identification task.

Fig. 14presents the ROC curves obtained from the dif-
ferent models tested in this experiment. It has been shown
that ResNet mini v1 and ResNet mini v2 outperforms CNN,
LeNet-5 and ShuffleNet v1 with respect to AUC, while they
are close to SqueezeNet v1.

Table 2 summarizes the identification results on test set
when the introduced models are applied to wake data when
the classification indexes of wake vortex cycle, background
wind field and aircraft types are included in identification
task. The best results among all models are marked in bold.
For the cycle stage 1, medium aircraft, heavy aircraft and
overall accuracy, the best performances are achieved by
ResNet mini v2. Although the accuracy of ResNet mini v1
for the indices of two cycle stages, background windspeed
(around 4m/s) and light aircraft is slightly lower than its
counterparts, the results obtained by the ResNet miniv1 is
acceptable on classification indices background windspeed
(around 1m/s), medium aircraft, heavy aircraft and overall
accuracy.

It should be noted that ResNet mini v2 and ResNet mini
v1 generate different performances on cycle stage 1 and cycle
stage 2 respectively, whichmeans that different models would
learn different characteristics of the data.

For background wind field, the identification accuracy of
these threemodels is much lower for stronger wind fields than
that for weak wind fields. This means that the wind speed
has a non-negligible effect on the wake vortex identification,
and the higher the wind speed, the more difficult it is for the
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FIGURE 13. The loss and accuracy curves of models over epochs in training and validation for the wake vortex dataset.

FIGURE 14. ROC plots of considered methods using the test set of our wake vortex dataset.

model to learn and identify its characteristics. In the actual
airport environment, the average wind speed of the wind field
usually changes greatly, and the different regions in airports

often have more varied wind field environments due to the
influence of meteorological, geographical and other factors.
Therefore, the model’s ability to identify wake vortex in
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FIGURE 15. Part of experimental results obtained by ResNet mini v2. For the vast majority of wakes, it can be classified correctly. However, for some
data with strong wind fields and more disordered, identification errors emergence. Subgraphs (a) and (b) are examples of identification failures.

strong wind fields is important for coping with more complex
environments.

In the case of wake vortices from light aircraft, medium
aircraft and heavy aircraft, the wake velocity and wake
vortex volume decay gradually when the take-off weight
decreases. Therefore, the accuracy of identifying the wake of
heavy aircraft is greater than that of light aircraft or medium
aircraft.

Fig. 15 is an example when ResNet mini v2 is applied
on some wake vortices chosen from our test dataset. The
performance of Fig. 15 agrees with the results that have been
shown in Table 2.

V. CONCLUSION
The exploration of information about aircraft wake vortex
enables to obtain new knowledge of wake turbulence sepa-
ration standards. Particularly, identifying the wake vortex in
fine classification has great potential for practical application
of the deep learning models in real airport environments.
In our wake identification task, we grouped wake vortex
into three classification indexes, namely, wake vortex cycle,
background wind field and aircraft types. In addition, more
efficient and lightweight networks that allow fewer parame-
ters and calculations can meet the requirements of the users.
Therefore, we developed two ResNet mini frameworks that
are able to identify aircraft wake vortex with high accuracy
in fine classification.

VI. LIMITATIONS & FUTURE WORK
1) The classification indexes are not likely to be sufficient

to cover a wide range of wake vortex behaviors.Wewill
make our approaches better in exploiting the features
of wake vortices via mining effective pattern-based
classification rules.

2) The designed scheme might affect the accuracy of
the two proposed model. We will design a more effi-
cient network to enhance the identification accuracy of
wake vortices under effective pattern-based classifica-
tion rules.
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