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ABSTRACT With the development of human-like robotic technologies, robots have been advanced to sense
and recognize objects, which is one branch of artificial intelligence to mimic human reactions. Although
high-performance computer technologies are used, the ability of object recognition by touch is still low due to
the lack of proper sensors. Therefore, this research studied the object learning and recognition system through
robot touches by developing an artificial sensory system acting as an electronic skin with tactile sensors.
The Tactile Sensor is developed in this research, consisting of 15 Tactile Sensor Arrays and the palm’s
touchpoints. Furthermore, recognition analysis was developed on Bag of Word (BoW) and Convolution
Neural Network (CNN) algorithms. With the BoW technique, using Support Vector Machine (SVM) as a
classifier withMoment Analysis Descriptor (MA) provided the highest accuracy, showingmore than 80.15%
accuracy from five grasping of an object. With the CNN approach, InceptionNetV3 provided the highest
accuracy of 98.28% from only one capture of an object.

INDEX TERMS Bag of feature, bag of word, CNN, robot hand, tactile object recognition, tactile sensor,
transfer learning.

I. INTRODUCTION
The human sensory system comprises five organs: eyes, ears,
nose, tongue, and skin. The development of these five sensory
systems for the machine can be divided into five types: Image
Sensor, Microphone, Electronic Nose, Electronic Tongue,
and Electronic Skin. When the humanoid robot was devel-
oped, both the robot’s anatomy [1] and the robot’s nervous
system [2]. The development of robot anatomy has evolved
to have the structure of a robot-like human [1], especially
the part of the robot hand that is currently being devel-
oped to be very similar to a human hand [3]. It has five
finger structure, can hold objects, and performs many tasks
similar to humans [4]. When the sensory system is applied
to the robot system, the robot’s hands are also applied to
the electronic skin [5]. The tactile function of the robot
hand mimics the functioning of the human sensory system.
The robotic system has a tactile sensor as a transducer to
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convert pressure into electrical signals. Information obtained
by touch, known as ‘‘Pressure profile,’’ was sent to the com-
puter for processing. It has a working principle like a human
being with a receptor as a sensor that receives pressure and
sends it as a nerve impulse to the brain for analysis and
prediction.

The development of artificial haptic perception for robots
is a challenge according to the amount of research in this
field is still small compared to visual image work. However,
the importance and perception of objects’ touch are essential.
The operation of the robot is essential to hold an object.
Therefore, evaluating objects, including shape, surface, and
hardness, requires physical and sensory systems. Humans can
only distinguish objects using tactile perception. However,
today’s robots lack this skill. It is mainly due to the lack
of touch sensors suitable for robotic hands and analytical
methods suitable for each sensor.

Therefore, this research develops object recognition for
humanoid robots using full-hand tactile sensors, which
achieves to carry and continues from our previous work [6].
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The BoW and CNN are employed to improve the system’s
efficiency.

II. THEORY AND RELATED WORK
The related work in object recognition by handling is quite
diverse due to developments in several aspects of this subject,
beginning with studies of human haptic behavior [7] from
physiological and psychological studies to understand human
haptic perception and unfamiliar objects surveys for recogni-
tion [8]. Other studies include humanoid robot hand system
design to enable object handling [3], [4], [9], [10], control
of the robot hand system of a humanoid robot [11], [12],
tactile sensor array design for humanoids robot hand [5], [6],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32]. Methods for
recognizing objects based on tactile image recognition [6],
[15], [18], [20], [21], [22], [23], [24], [28], [29], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43]
and studies on the application of tactile image recognition for
humanoid robot hands [6], [15], [18], [20], [21], [22], [23],
[24], [27], [28], [29], [31], [32].

A. TACTILE SENSOR FOR HUMANOID ROBOT HAND
In 1995 Lederman et al. [7] study of the anatomy and
mechanics of the human hand was reported, which was the
basis of humanoid robot development, addressing the object
handle behavior of hands in terms of six parameters cylin-
drical grasp, tip, hook or snap, palmar, spherical grasp, and
lateral. Park et al. [9] introduced the sequence of handling
objects to design a humanoid robot hand is investigated and
described the learning mechanisms in object recognition. The
information occurs while touching an object, such as holding
the object, shape, and surface. This learning method is similar
when applied to robotic hand learning. The shape and surface
of the object currently use a tactile sensor developed for use
with the robot’s hand. The development of sensors for the
humanoid robot hand has continued, as shown in Table 1.
However, it is installed on some parts of the robot hand,
such as Fingertip [16], [19], [25], [26], [27], [29], Finger
[14], [15], [21], [31], Palm [6], [24], [32], Fingertip and Palm
[17], [20], [28], etc. Installing some sensors in the robot hand
is very different from the real human hand. However, some
studies install sensors across the robot’s hand [22], [23], but
the robotic hand does not have all five fingers [23]. The
development of a sensor for a robotic hand equipped with a
full palm and five-finger sensor was presented by Liu et al.
[22]. However, there is still a lack of practical analysis of the
results.

B. OBJECT RECOGNITION BASED ON TACTILE IMAGE
One of the essential developments of the humanoid robot
hand is tactile object recognition. It has been reported in var-
ious research studies [6], [7], [16], [19], [21], [22], [23], [24],
[25], [29], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43], [44], [45]. The important element for processing

TABLE 1. Humanoids robot hand with tactile sensor.

is the installation data of the tactile sensor array, so-called
tactile image recognition, as summarized in Table 2.

A research group developed an algorithm for tactile sen-
sors, which can be divided into two groups [44]: 1) a group
that uses a small tactile sensor to test an object. If the sensor
is much smaller than the object, we call this tactile image a
‘‘Local shape tactile image’’ [34], [35], [39]. The recognition
method is called ‘‘Local shape recognition,’’ which uses the
Bag of Word (BoW) method or Bag of Feature (BoF) method
for analysis. 2) The other group uses a tactile sensor that is
large or similar in size to the object. We call this tactile image
a ‘‘Global shape tactile image.’’ This recognition method is
called ‘‘Global shape recognition.’’ It uses Machine Learn-
ing methods (ML) [15], [18], [20], [21], [22], [24], [36],
[37], [38] and Deep Learning or Convolution Neural Net-
work (CNN) methods for analysis [6], [28], [31], [32], [40],
[41], [43]. The equations for the Local shape tactile image
and Global shape tactile image are shown in (1) and (2).

Local shape tactile image

Tactile sensor size ≪ Object size (1)

Global shape tactile image

Tactile sensor size ≈ Object size (2)

The robot hand is equipped with sensors of various sizes
in various positions. We can use two methods of recogni-
tion analysis. Because each sensor will give a small image,
we can use the Local shape tactile image recognition method
by using the BoW, and it can be analyzed by the Global
shape tactile image recognition method by bringing the Local
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TABLE 2. Recognition method for tactile image.

shape tactile image obtained from different parts of the palm
together to form a large image [13], [14], [15], [17], [20], [21],
[22], [23], [28], [30], [31].

Therefore, we have used two analyses, the BoW, and the
CNN methods, to compare the results.

III. MATERIAL AND METHOD
The materials and methods used in this study were divided
into two main parts, hardware, and algorithms. The hardware
used in the experiments consisted of a humanoid robot hand
equipped with a tactile sensor array and the object sets used
for testing in this study. The algorithm set was developed to
control, operate, and collect all humanoid robot hands and
analyze the tactile image for object recognition.

A. OBJECT SHAPE DETECTION BY TACTILE SENSOR
The humanoid robot development began with studying and
copying actual human activity, for example, in the research on
the anatomy and mechanics of the human hand [8], to design
a humanoid robot [10]. Therefore, robot hand in this research
is designed based on the human hand, as shown in Figure 1.
There are 14 points of Degree of Freedom in the palm,
consisting of 2 points on the thumb and 3 points on each

other finger. Moreover, there are six types of hand behavior
in humans who hold objects [8]: cylindrical grasp, tip, hook
or snap, palmar, spherical grasp, and lateral. The cylindrical
grasp, which grasps around the objects, is mainly applied
in this research and can provide much information about
grasping objects.

FIGURE 1. (a) Bones in a human hand, (b) hand’s degree of freedom
(DOF) [10].

Object shape detection using a tactile sensor relies on
readings from the three-dimensional surface morphology of
an object [46]. Also, the surface characteristics of an object
can be obtained from the pressure that the object touches the
tactile sensor, shown in Figure 2.

FIGURE 2. Touching effect with the tactile sensors (a) sensor array,
(b) distance sensor array, (c) vector data of the fold surface object [46].
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Define the sensor position on the x and y axis, as shown in
Figure 2 (a). The force activates the sensor when the object is
touched, as shown in Figure 2 (b). Moreover, Figure 2 (c) is
the sensor data vector.

When the vector is
−−→
ii,i+1 = [oyi+1 − yizi+1 − zi]

and
−−−→
ik,k+1 = [oyk+1 − ykzk+1 − zk ]

The slope ki and kk of vector
−−→
ii,i+1 and

−−−→
ik,k+1 can be found as

shown in (3) and (4).

ki =
zi+1 − zi
yi+1 − yi

(3)

kk =
zk+1 − zi
yk+1 − yk

(4)

The variance of si and skof set {ki}and {kk} can be found as
shown in (5) and (6).

si =

n∑
i=1

(
ki − ki

)2
/n (5)

sk =

n∑
k=1

(
kk − kk

)2
/n (6)

where ki and kk are the average set of {ki}and {kk} as shown
in (7) and (8).

ki =

n∑
i=1

ki/n (7)

kk =

n∑
k=1

kk/n (8)

The object characteristic can be analyzed from si, sk , ki and kk
1) In the case of the values of si, sk are very small and

→ ki − kk0. It means the object’s shape is the plan.
2) In the case of the value of si, sk are very small and ki -

kk ≫ 0). It means the object’s shape is a fold surface
of two planes.

3) In the case of the value of si, sk are only one biggest
and one smallest. It means the object’s shape is a fold
surface consisting of a plane and a curve surface.

4) In the case of the value of si, sk are both significant
values. It means the shape of the object is a curve
surface.

However, the object is complicated, the touching areas have
many patterns, and the objects’ shape is directly affected
by the touching objects. Therefore, the development of a
humanoid robot hand is also based on the holding object
position, as shown in Figure 3.
When the robot hand holds the objects, the sensor on the

palm and fingers generates different signals, as shown in
Figure 3. In Figure 3 (a), the robot hand holds the circular
object, and the touching point occurs in every sensor. It dif-
fers from Figure 3 (b), in which the robot hand holds the

FIGURE 3. The holding pattern of the robot hand with the sensor on the
palm and fingers (a) holding the circle objects (b) holding the rectangular
objects (c) vector data of circle objects (d) vector data of the rectangular
object.

rectangular objects. Therefore, the shape of objects can be
analyzed with tactile images from the tactile sensor on the
robot’s hand. If the number of sensors increases, the tactile
images are also increased. However, the shape analysis with
the three-dimensional surface morphology [46] can not be
used with a complicated shape, such as one object having
various surface types.

B. FULL HAND TACTILE SENSOR AND ROBOT HAND
The tactile sensor used in this research was developed from
a square electrode piezoresistive sensor [6], [45] by dividing
the number of sensors into 15 parts according to the char-
acteristics of the palm [8], [10]. The sensor is designed to
be a Full Hand Tactile Sensor, as shown in Figure 1. The
installation position is based on the structure of the fingers,
divided into 3 types: 1) The palm tactile installation is a single
position with a size 16 × 16 pixels or 56.0 × 56.0 mm2 at the
palm center (Metacarpals), 2) The position of the thumb by
attaching 2 sensors along the knuckle, which installed at the
position of distal phalanges by the size of 5 × 6 pixels or
17.5 × 21.0 mm2 and installed at the position of proximal
phalanges by the size of 5 × 5 pixels or 17.5 × 17.5 mm2

and 3) finger position of 4 fingers with 3 sensors attached
to the knuckle, position of Distal phalanges 4 × 6 pixels or
14.0× 21.0 mm2, Install at Intermediate phalanges 4× 2 pix-
els or 14.0× 7.0 mm2 and Proximal phalanges 4× 4 pixels or
14.0 × 14.0 mm2. Therefore, there are 15 sensor installation
points totaling 551 pixels. The entire sensor assembly is
mounted onto a humanoid robot hand. The complete sensor
assembly is shown in Figure 4.
The piezoresistive sensor used in this research was a

conductive polymer (capLINQ, MVCF-40012BT50KS/2A).
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TABLE 3. Tactile sensor for humanoid robot hand sensor.

FIGURE 4. Design of sensors based on the location of the human hand,
(a) the structure of the human hand [31] (b) the position of the designed
sensor.

The surface resistance of the conductive polymer is
50,000 ohm/cm2. The PCB technology was applied to fab-
ricate the sensor structure using epoxy PCB as a substrate
with a thickness of 0.5 mm. The electrode made of Cu with
a thickness of 0.2 mm was gold-plated at 18 µm. Sensors are
divided into 6 sizes, as shown in Table 3. The electrode is
designed using a pixel size of 3.5 × 3.5 mm2. The external
and internal size of the electrode was 3.0 × 3.0 mm2 and
1.4 × 1.4 mm2, respectively. The gap between the internal
and external electrodes was 0.1mm, and the distance between
each pixel was 0.5mm, as shown in Figure 5 (a) [6]. An essen-
tial part of the Tactile Sensor Array is the elastic overlay layer.
It is responsible for transmitting and distributing pressure to
the Tactile Sensor Array. This research uses foam rubber with
a thickness of 3 mm. A Tactile Sensor Array is obtained when
all are assembled, as shown in Figure 5 (b).
In developing the tactile sensor, a square electrode design

[6] was developed to reduce the dead area to a circuit elec-
trode, and a piezoresistive tactile sensor was used because
it has a simple structure. The reading circuit is simple and
highly sensitive.

The developed piezoresistive tactile sensor was introduced
by Karsten Weiß and Heinz Wörn in 2005 [47], as shown
in Fig. 6. The piezoresistive layer is in contact with the
rough surface electrode when a load is applied to the sensor.
The piezoresistive will be pressed onto the surface of the
electrode, and this compression directly increases the contact
area, and it makes the reducing resistance between the sensor
material and the electrode. The output resistance of the sensor

FIGURE 5. The sensor used in this research: (a) Sensor Electrode [6]
(b) The actual sensor assembly.

FIGURE 6. The working principle of piezoresistive tactile and resistive
sensors [47].

consists of three resistors, as shown in Fig. 6. The RV is the
resistance of the piezoresistive between the electrode, and the
RS is the surface resistance that varies with the load applied.
As shown in (9), the stress-strain relation is the relation
between applied load F and the deformation ε of a linear
elastic body, where E is the flexural modulus, and A is the
body’s cross-section area.

F = EAε (9)

Moreover, the RS can be calculated as the pressure force,
as shown in (10), in which the RS is the surface resistance of
the sensor material.

RS (F) =
1

A (F)
· RSO (10)
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where the sensor resistance (R) is the total resistance of RS
and RV as shown in (11)

R (F) = 2RS + RV (11)

where RV is the volume resistance of the sensor material
over the electrode gap, which can be calculated from the
piezoresistive characteristic, as shown in (12).

RV =
ρ · K
F

(12)

where ρ is the resistivity of the piezoresistive, F is the force
applied to the sensor, and K is a function of the elastic
properties of the piezoresistive.

The tactile sensor is mainly developed in a square electrode
type, which has the advantage of increasing the contact area
over a circle electrode sensor because it can reduce the dead
area [6]. Also, developing a piezoresistive sensor reading
circuit is more accessible, which is the circuit’s basis for
measuring the current flowing through the sensor [19]. The
developed sensor is calibrated the resistance value with a
force gauge and an ohmmeter to measure the initial sensor
resistance of the sensor. The sensor sensitivity is shown in
Figure 7. The relation of the pressure and resistance can be
defined as R = aPb, where R and P are the pressure and
resistance of the sensor, respectively. This relation can be
calculated with (13).

R =232 × 103P−0.97 (13)

where R is resistance in�, and P is the acting pressure in kPa.

FIGURE 7. Sensor Sensitivity.

When the sensors are assembled according to Table 3, they
are assembled into the robot hand. The 16× 16 pixels sensors
are in the palm, and a robotic hand suitable for this sensor
is a flat palm. The robot’s hand must have five fingers with
4 fingers except for the thumb, which must be divided into
3 parts according to the knuckle Sensor size 4 × 6 pixels,
4 × 4 pixels, and 4 × 5 pixels. The thumb has 2 parts, the
size of 5 × 6 pixels and 5 × 5 pixels, respectively, as shown
in Figure 8.

FIGURE 8. Installation of the sensor array to the robot hand and Tactile
image pattern.

FIGURE 9. Tactile Image Acquisition Method (a) Toolkit diagram used for
Tactile Image Acquisition (b) Tactile image pattern.

C. FULL HAND TACTILE SENSOR AND IMAGE
ACQUISITION
Data acquisition uses Arduino microcontroller board mega
2560 model with Multiplexer number CD74HC4067. The
work sequence is a Multiplex to scan the sensor in each
position. Start by doing a multiplex in the Row position so
that the output is logic ‘‘1’’ in Row that the system wants to
read. (Ri = 1,) and logic ‘‘0’’ in other rows (R1, . . . , R(i−1),
R(i+ 1), . . . , Rn = 0). Then multiplex the column position to
read the values in each sensor in the column starting from
C1 to Cm. The reading used A/D in the microcontroller,
converted it to digital data, and transmitted it to the computer
signal processing part. Scan the digital line in the next row
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position when reading all columns until all sensors are read.
The operation is shown in Figure 9.
The sensor touching area is much smaller than the object;

therefore, the sensor sequence information consists of many
surface areas of the objectO =

{
o1, o2, . . . , on

}
. When the

full-hand tactile sensor, which contains 15 sensors, is used.
The sensor provides information as P =

[
p1, p2, . . ., p15

]
which is the sequence of images. It can be noticed in
(14) and (15).

P =



p1 0 p2 0 p3 0 p4 0
0 0 0 0 0 0 0 0
p5 0 p6 0 p7 0 p8 0
0 0 0 0 0 0 0 0
p9 0 p10 0 p11 0 p12 0
0 0 0 0 0 0 0 0

0 0 0 p14
0 0 0 0
0 0 p13 0 0
0 0 0 p15


(14)

px =


s1,1 s1,2 s1,3 . . . s1,n
s2,1 s2,2 s2,3 . . . s2,n
s3,1 s3,2 s3,3 . . . s3,n
...

...
...

. . .
...

sm,1 sm,2 sm,3 · · · sm,n

 (15)

D. OBJECT EXPLORATION AND DATASET
The tactile images are obtained by touching different posi-
tions of the objects, while the grasping position is obtained
by rotating an object on the 3D Coordinate. Once the robot
has grasped an object, the physical characteristics of the
robot’s hand can freely manipulate the object, as shown in
Figure 10. The experiment tests the proposed system with
20 objects or 20 classes. It consists of objects, as shown in
Table 4. The dataset is created by grasping an object and
saving 200 images per object, containing all 4000 images.
The object is randomly positioned and rotated to obtain an
image around the object. Therefore, it is an image obtained
by capturing objects from different positions, as shown in
Figure 11. It showed the tactile sample images of three classes
of objects at different positions. (Five images per class).

The cylindrical grasp is applied chiefly to this proposed
method to take the object information when grasping the
object. Themethod of sample image collection from an object
was carried out by random sampling of the object positions,
and the images obtained from touching resulted from dif-
ferent object positions. The handle position resulted from
rotating the object on 3D axes before entering the robot’s hand
and then allowing the physical characteristics of the robot’s
hand to handle the object freely to obtain tactile images
representing the object at angles obtained randomly from the
actual position. Figure 10 shows the sample object handle in
this experiment, obtained from random object rotation in the
XY-plane and along the Z-axis. The robot hand was allowed

TABLE 4. Dimensions of objects used in the model training.

to handle the object, and tactile images were obtained from
random positions and stored as a dataset for further testing.

FIGURE 10. (a) handle the object of the robot hand (b) handle the object
of the robot hand using the tactile image.

E. TACTILE OBJECT RECOGNITION METHOD
When grasping an object by hand, tactile image data is
obtained from 2 main parts; the small image data is obtained
from each finger part and the other image from the palm.
In each image, there is a Local Shape Image; grabbing an
object has the nature of grasping an object around the object.
When arranging all the resulting image data, it will be a
Global Shape Image. Therefore, the methods for analyz-
ing the recognition can be done by the Local Shape Image
Recognition method using the BoW and Global Shape Image
Recognition models. CNN was used in this work, so both
methods were used to compare performance.
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FIGURE 11. Sample tactile images from a dataset created for the
experiment. (a) Tactile image from the ‘‘Plastic tongs’’ class, (b) Tactile
image from the ‘‘remote controller’’ class, and (c) Tactile image from the
‘‘Variable wrench’’ class.

F. BAG OF WORD METHOD
The first method uses a BoW Model [34] with a work-
flow, as shown in Figure 12 [40], [45]. The workflow starts
by dividing the dataset into 2 sets: Training Set and Test-
ing Set. The Training Set teaches the model by clustering
object properties using K-mean Clustering and creating a his-
togram representing each object class. Define the Cluster for
K-Mean to 30 clusters. Then build the Histogram to train
to a classifier. In this research, we tested with 3 classi-
fiers: K Nearest Neighbors (KNN), Support Vector Machine
(SVM), and Artificial Neural Network (ANN). In the model
of KNN, K = 10.
Clustering for BoW was applied to image recognition and

tactile object recognition [34], [35], [39]. Use the K-Mean
method as an unsupervised learning method for grouping
data. K-means perform clustering, which is based on a sta-
tistical basis. The number of data groups K was set and was
grouped in the sample sets {x1, x2, x3, . . ., xn} when xi ∈

Rd The grouping method organized similar data into the
same group. The clustering result was a group of samples
and the centroid, which usually represented the group and
was centered and created functions. The objective of this
group organization was to identify the minimum value of the
sample distance and the centroid of each group ck was as
follows in (16):

J (r, c) =

n∑
i=1

K∑
k=1

rik ∥xi − ck∥2 (16)

FIGURE 12. Work Flow of used BoW for object recognition [40], [45].

when rik ∈ {0, 1} is a variable that tells the members of the
group k of the sample i. when xi was assigned to the group k
has a value of 1 and will have a value of 0 for another group.

Three classifier methods were tested in the experiment:
KNN, SVM, and ANN. For each classifier, three descriptors
were tested: Moment Analysis (MA) [20], Scale Invariant
Feature Transform (SIFT) [38], and Pola Furrier (PF) [35].
The experiment was tested on 30 clusters. The results were
obtained from the test reported by the Classifier method. All
tests were performed in 10 iterations, and average accuracy
was determined. The operation is shown as Work Flow in
Figure 12. The BoW method was used to test object recog-
nition from a local shape tactile image, which is an image
obtained by mounting a small tactile sensor on a finger.
Therefore, it has presented a method for segmenting the
image into sub-images divided into 14 finger images. The
size of the image is according to the size of the sensor, which
is 4 × 6 pixels image size 4 images, 4 × 4 pixels number
4 images, 4 × 5 pixels size 4 images, 5 × 6 pixels size
1 image, size 5 ×5 pixels amount of 1 image. The image
from the palm position sensor has been divided into 16 sub-
images and used the overlapping technique to maintain the
suitable image size calculation. There is a partial overlap of
the image, as shown in Figure 13. In the experiment, the
image was divided into 4 × 4 sub-images, Overlapping into
16 sub-images (sub-images of 8 × 8 pixels). Therefore, there
will be 30 sub-images used to make a descriptor for creating
a data vector to represent the image obtained by capturing an
object once.

G. BAG OF WORD TRAINING PROCESS
In order to get the object’s information, it needs to touchmany
times on the object. The information of each touch can be
defined as P =

[
p1, p2, . . ., p15

]
. The Bag of Words (BoW)

is applied to analyze the object, as shown in Figure 14. The
proposed process is as follows:
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FIGURE 13. Dividing a Sub Image of a Full Hand Tactile Image for a
Descriptor (a) Full Hand Tactile Image and (b) Sub image.

1) The tactile image data is collected using the full-hand
tactile sensor. This image data is divided into the training and
testing data set.

2) An image is divided into 30 sub-image as P =[
p1, p2, . . ., p30

]
and then the feature extraction is

employed using MA, SIFT, and PF techniques. The results
provide a descriptor as W = [F1,F2,F3, . . .,F30], and also
the feature vector is given as Fx =

[
fx,1, fx,2, fx,3, . . ., fx,n

]
.

3) Then, the descriptors operate into a vector quantization
technique using k-means clustering with 30 clusters. The
‘‘word’’ is defined to represent each data of cluster.

4) The histograms of ‘‘word’’ in each cluster are created.
5) Finally, the histogram of training and testing is com-

pared to find the winner using KNN, SVM, and ANN.

H. CNN METHOD
The secondmethod used a CNNnetworkwith a diagram, as in
Figure 15. The dataset was divided into 2 sets as the training
data for network learning and then tested with testing data.

Convolutional neural networks are an architecture of feed-
forward neural networks developed for image-learning pur-
poses. In 1998, LeCun et al. [48] presented a convolutional
neural network with LeNet-5 that consists of three important
layers:

1. Convolutional Layer Convolutional to do feature extrac-
tion or extract important features of the image by calculating
the dot product between the image sub-region and a filter or
a kernel that looks like a square matrix, such as size 3 × 3.
The result will be a new data set generated from h∗F is
obtained. The newly created data set is called the Feature
map. Convolution equation as shown in (17).

G [i, j] =

k∑
u=−k

k∑
v=−k

h [u, v]F [i− u, j− v] (17)

where h is the image matrix,
F is Kernel matrix of size k ∗ k

2. Pooling Layer It is the layer next to the convolution
layer. The function of this layer is to reduce the size of the
feature map to a smaller size for sensitivity in calculations.
The maximum calculation method is max pooling, where the
feature map is divided into sub-region, the size is P × P, such
as 2 × 2, then find the most significant value in each sub-
region to create a new feature map.

3. Fully-Connected Layer is the network’s last layer that
is part of the Multilayer Perceptron (MLP) neural network
classification, where the feature map in the last layer is the
input imported into the neural network. The result obtained
from the fully connected layer is an output prediction calcu-
lated by the softmax function to convert the prediction to the
probability form (18).

σ (j) =
exp

(
zj
)

K∑
k=1

exp (zk)

(18)

where σ is a softmax, z is an input vector, ezi is a standard
exponential function for the input vector, K is a number
of classes in the multiclass classifier, and ezj is a standard
exponential function for the output vector.

In this work, we tested all 7 CNN models that were used
in previous research [6], including AlexNet [49], VggNet19
[50], GoogleNet [51], InceptionNetV3 [52], InceptionRest-
NetV2 [53], XceptionNet [54], NASNetMobile [55], all of
them are the most widely used CNNs in Computer Vision.
They have been used to recognize objects from tactile images,
providing high performance [6], [31], [32], [40], [41], [43].
A full-hand tactile sensor has been applied to object recog-
nition using the Transfer Learning method [56]. To test the
dataset with CNN, training parameters as in Table 5. The
appropriate initial learning rate of each network is shown in
Table 6. Each network model was tested 10 times, and the
average accuracy was determined to compare the results.

TABLE 5. Training parameter.

The object recognition using the full hand tactile image
is operated with 4,000 images within 20 classes, and these
2,000 images are separated into training and testing data sets
each. Then the training data set is passed to each CNNmodel,
and then each CNN model is tested with the testing data
set, as shown in Figure 16. The process can be explained as
follow.

Pre-image processing – Each CNN model requests a dif-
ferent input image size according to using the Transfer learn-
ing in the testing step. Therefore, pre-image processing is
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FIGURE 14. Recognition Analysis Process using BoW.

TABLE 6. Initial learning rate.

appled to adjust the input image size to be suitable for
each CNN model such as AlexNet, Vgg19, GooLeNet, and

FIGURE 15. Work Flow of used CNN for object recognition [40], [45].

NASNetMobile uses 224 × 224 pixels, respectively Incep-
tionNetV3, InceptionRestNetV2, XceptionNet uses 299 ×

299 pixels.
Convolution layer – The feature extraction performs in this

stage by the Dot Product calculation between the sub-region
and filter or 3 × 3 kernel square matrix, creating a new data
set called Feature Map.

Pooling Layer – This layer continues from the Convolution
Layer, as shown in Figure 16. The pooling layer function is
used for downsampling the feature map size using the max
pooling or average pooling technique. The feature map is
divided into the sub-region P × P pixels, such as 2 × 2,
and the maximum values of each sub-region are calculated to
create the new feature map to be the input of the next pooling
layer. Each CNN model has a different number of pooling
layers depending on the feature map size.

Dense Layer – This layer is a part of the multi-layer per-
ceptron (MLP) structure classification. The feature map of
the last pooling layer is activated by flattering and then pass
it through the Artificial Neural Network (ANN). The output
of the dense layer is then calculated by the softmax function,
as shown in Equation (17), to predict the probability pattern.

IV. RESULT AND DISCUSSION
The experiment consisted of 2 parts: 1) the results of the
recognition rate from the BoW model and 2) the results of
the recognition rate from the CNN model, follows as:

A. RECOGNITION RESULT FROM BoW
In the BoW experiment, three classifiers were tested: KNN,
SVM, and ANN. Each classifier was tested with Moment
analysis, Pola furrier, and SIFT descriptors. There are 30 clus-
ters. The results of the tests were divided by the classifier
method, with every test performed 10 iterations, and then the
mean was averaged. All test results are shown in Figure 17.

VOLUME 11, 2023 20293



S. Pohtongkam, J. Srinonchat: Object Recognition for Humanoid Robots Using Full Hand Tactile Sensor

FIGURE 16. the process of analysis and recognition by the CNN
technique.

The dataset obtained from the experiment was tested
for recognition by the BoW method and shown in
Figures 17 and 18. The test was performedwith the classifier
of 3 methods consisting of KNN, SVM, and ANN methods
in Figure 17(a). The test results of the BoW method using
the KNN method as a classifier by using all 3 methods of
descriptor, compared to all descriptors, found that in the first
period, the Moment analysis had higher accuracy than other
methods. However, when holding the object up to 4 times
onwards, it was found that the SIFT method gave higher
accuracy.

The result of the SVM method is the classifier, as in
Figure 17(b). the comparison results of all descriptors showed
that the first period found the Moment analysis had higher
accuracy than other methods, but when the object is kept up
to four times, the SIFTmethod also provides higher accuracy.
As for the result of the ANN classifier in Figure 17 (c).,
it was found that the Moment analysis had higher accuracy

than other methods in the first period. However, the SIFT
method gives higher accuracy when holding the object up
to four times. The test results showed that the BoW model
characteristics have to grasp the object multiple times to
predict the results accurately, and the classifier that gave
the best test results was SVM, where the descriptor of the
3 methods had different recognition results. The Moment
analysis descriptors are best at recognizing objects 1 to 4 as
the first period, but when an object is grasped more times,
the accuracy of each descriptor differs slightly. However, the
SIFT method provides slightly higher accuracy than other
methods.

FIGURE 17. Recognition rate results were obtained from the Model BoW
test using (a) KNN, (b) SVM, and (C) ANN.

B. RECOGNITION RESULT FROM CNN
The same data set as the BoW method was tested using
the CNN 7 model consisting of AlexNet, VggNet19,
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FIGURE 18. The BoW object recognition results when the object is once
grasped by the SVM method and SIFT descriptor (a) object is one-time
grasp (b) object is 10 times grasp.

GoogleNet, InceptionNetV3, InceptionRestNetV2, Xcep-
tionNet, and NASNetMobile. The test results are shown in
figure 19. The results showed that the highest prediction
accuracy was InceptionNetV3, with an accuracy of 98.28%,
and InceptionNetV3 gave similar results, with an accuracy
of 98.26%. The results show that the CNN method is more
accurate than the BoW method. Therefore, that is suitable
for application to the recognition system of humanoid robots.
In Figure 20., the recognition results of InceptionNetV3 show
the recognition results in each class. It is found that the objects
that the system has high efficiency are Cup, and a Tape
measure, which has an accuracy is 100%. The class object
with the lowest recognition was the Sphere because the tactile
image of the Sphere was similar to a golf ball. It was predicted
to be a golf ball, and it was found that many standard-shaped
objects have more errors than everyday objects because many
standard-shaped objects are similar. The comparison is in
Figure 21. The error occurring with Class 5 (a golf ball)
is related to Class 20 (Sphere) since the tactile image of a
golf ball is similar to that of a Sphere. Moreover, it was
found that AlexNet had significantly higher predictive errors
in Class 5 and Class 20. Therefore, the accuracy is lower than
the InceptionNetV3 method.

FIGURE 19. Comparison recognition rate from CNN.

Object Exploration to examine objects in detail by handling
multiple objects grasps before prediction. It is a human-like
behavior to be able to predict accurately. Therefore, the object
survey was conducted several times by holding the object,
using the CNNmethod to analyze it, and then determining the
maximum probability (Pmax) and summation of Probability
(Psum). The results are shown in Figure 22. by comparing the
results with two analysis methods between the AlexNet and

FIGURE 20. Recognition result for each class object from InceptionNetV3.

FIGURE 21. The confusion matrix of object recognition with CNN
(a) AlexNet and (b) InceptionNetV3 methods.

InceptionNetV3. The results showed that increased object
grasp would result in higher accuracy. When using the Incep-
tionNetV3method, the accuracy of 97.2% increased to 99.0%
when holding objects increased to 2 times. The accuracy rate
is stable and does not increase when the object is grasped
more than 6 times, whereas, in InceptionNetV3, accuracy was
100% for more than 6manipulations, and after about 10 times
grasp prior to the prediction, both themaximumof probability
and summation of probability methods were 100% accurate
in the prediction.

FIGURE 22. Results from Object Exploration.

In the efficiency test used in this study, DCNN training
employed a CPU AMD Ryzen7 3750H 1200MHz and GPU
(Nvidia GTX1650, US). The Bow and the CNN technique
utilizes the CPU and GPU resources, respectively. The time
consumption of each model is shown in Table 7. The results
illustrated that the BoW technique used the time calculation
at 0.113 – 0.208 s/image, and the BoW(KNN+SFIT) used
the least time calculation at 0.113 s/image. On the other
hand, the CNN indicated that it used the time calculation
at 0.757 – 24.210 s/image, and the Alexnet used the least
time calculation at 0.757 s/image due to its uncomplicated
structure. The model that requires the most training time is
VggNet19 (24.210 s/image), due to its more complicated
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structure and more parameter and Network size. Inception-
NetV3 requires 4.717 s/image, which is higher than the con-
sumption time for AlexNet but provides a higher recognition
rate.

TABLE 7. Training time.

V. CONCLUSION
This research studies object recognition from image process-
ing obtained by touch by developing a Full Hand Tactile
Sensor. It consists of a tactile sensor array of 15 points along
the touchpoints of the palm. Twenty objects were tested, and
recognition was analyzed using BoW and CNN methods.
The BoW method found that using SVM as a Classifier and
Moment Analysis Descriptor provides the highest accuracy.
It provides more than 80% accuracy in 5 object captures
(p = 5) when clustering is divided into 30 clusters (w = 30).
When using the CNNmethodwas tested on the CNN7model.
InceptionNetV3 Provides the highest accuracy, with 98.28%
accuracy in a single capture. Therefore, all these develop-
ments are for object recognition based on touching objects
obtained by processing the data read from the tactile sensor
for further use in humanoid robots.
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