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ABSTRACT It is common for older people to live alone, which can have tragic consequences if they have an
accident and can’t call for help in time. This is particularly acute in an aging society where falling is one of
the most common accidents. According to the CDC, 1/4 of people over the age of 65 in the United States fall
each year. The development of IoT and MEMS has made it possible to detect falls in time and automatically
call for help. The presented fall detection system focuses on the walk-fall-still pattern, collects accelerations
through the wrist-worn M5StickC-Plus watch, analyses the data locally in the watch, detects falls using an
algorithm based on observations in the statistics of acceleration in one second, and then transmits the alarm
signal to a remote healthcare system in real-time via WIFIL. The lightweight algorithm has been proven to
be 90% accurate in detecting falls, and the system can notify service staff of accidents within 1 second.
The features of comfort, lightness, and timeliness make the device more practical than similar products. The
low-cost, non-intrusive device can be used in care homes and is also suitable for elderly people living alone.

INDEX TERMS Fall detection, acceleration, wrist-worn, statistics.

I. INTRODUCTION

According to the report [1] from CDC (Centers for Disease
Control and Prevention), more than 1 in 4 people over the age
of 65 falls each year, and 1 in 5 falls result in serious injuries,
such as broken bones and head injuries. In 2019, 3 million
seniors across the United States went to the emergency room
for a fall, and 34,000 seniors died as a result of a fall. There-
fore, falls are a serious threat to the health of older adults.
If an elderly person falls unexpectedly but is unable to get
help in time, this can be a tragedy because untreated falls can
aggravate the condition or even cause death. This problem is
particularly acute for seniors who live alone or are alone for
most of the day. A fall is a loss of balance. For the elderly,
most of the external causes are related to the environment,
such as lights, carpets, and floor, while the internal causes
may be the effects of diseases and medications. Whatever
the cause, if the elderly cannot regain their balance on their
own to seek proper help, this could be the beginning of
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a tragedy. With today’s highly advanced technology, is there
a way to accurately and reliably identify accidental falls?
Many researchers are using new devices and algorithms to
identify falls and send out timely warning signals so that
elderly people who have fallen can receive timely care and
avoid tragedies.

Wang et al. [2] presented a literature survey of elderly fall
detection systems, in the paper, they concentrated on sensors
and investigated this topic comprehensively from multiple
perspectives such as data collection, data transmission, data
fusion, data analysis, security, privacy, and applications, etc.
Data collection is mainly through 3 types of sensors, wearable
sensors based on Accelerometer [3], [4], [5] and Gyroscope,
vision sensors based on camera [6] and Kinect [7], and
ambient sensors based on RF [8], Wi-Fi [9], Radar or Cel-
lular, etc. Accordingly, the wearable is usually fixed around
the waist, and the dominant algorithms are threshold and
Machine Learning (ML), and for the latter two sensors, ML is
the dominant algorithm. The summary is listed in Table 1.
The advantages and disadvantages of both Threshold and ML
are prominent, the former being simple and fast but relatively
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TABLE 1. Various sensors applied in fall detection.

Type Location Sensors Algorithm
Wearable waist Accelerometer and Gyroscope Threshold/ML
Ambient ambient RF, Wi-Fi, Radar or Cellular ML

Vision indoor Camera and Kinect ML

low accuracy, and the latter being highly accurate but also
computationally intensive, so sensor data fusion serves as
a compromise and strikes a balance between accuracy and
computational effort. Data fusion often uses information from
two or more sensors to complement each other and increase
the accuracy of results or the efficiency of calculations.

Some conclusions they came up with attracted attention,
firstly, sensor data fusion [10] is mainstream, and its results
are relatively stable but require high-intensity computation,
so reducing the computational intensity of data fusion is
one of the challenges of the topic. Secondly, many systems
transfer data to the system server for analysis, not in the
device, which affects response time and causes data security
problems, so how to process data efficiently in real time
becomes another challenge [11]. They also mentioned that
there is no suitable standard dataset for evaluating and com-
paring the effectiveness of algorithms because the existing
data sets [12], [13], [14] are simulated and not actual data
on the behavior of elders.

Visual sensors will have the problem of privacy, and the
corresponding algorithm is usually based on ML [15] whose
high computational volume is not suitable for light-weight
low-power processors. In contrast, for wearable sensors,
mainly Accelerometer and Gyroscope, many previous studies
have fixed the sensor in the waist [16] because the waist has
a limited range of activities so the data changes significantly
when falling. For person the most reasonable wearable device
is watch alike, so the wrist is the most feasible location.
The hands involve or with a variety of human actions, so
the hand movements are the most frequent and diverse, from
which distinguishing the fall is relatively more complicated.
Fortunately, some researchers work on the area consistently
with solid output.

A wrist-worn fall detection system using Accelerometers
and Gyroscopes is proposed by Hsieh et al. [17]. They employ
2 devices on 2 hands, both with a tri-axis accelerometer
and gyroscope, all the data collected from sensors will be
transmitted to the computer by Zigbee. They set up a flow for
detection, first, they check if the value from Gyroscopes is
greater than 3500/s, then if at least one acceleration is higher
than 6g, and a standard deviation of 0.4 seconds before or
after the highest point must be less than 1.5, finally, they
calculate the sum of acceleration of 2 seconds, if the sum less
than 200g, the fall is true. They claim the average sensitivity
and specificity of the system reach 95% and 96.7%. The
way they treated the data in different sections is informa-
tive, but they do not explain how to combine data from the
two devices because hands could be asynchronous while
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falling, and all the thresholds are empirical and need more
clarification.

Interestingly, they gave up the wrist-worn way in the
other paper [18], in which only one device is fixed around
the waist. They propose a novel hierarchical fall detection
algorithm including threshold-based and knowledge-based
approaches. The absolute fall and activities of daily living
(ADLs) are identified by the threshold-based classification,
then the unidentified data frames flow to a knowledge-based
fall detection algorithm, which first uses a multiphase fall
model to segment the data, then features cover mean, standard
deviation and skewness, etc. are extracted from signal to be
fed to the SVM classifier, which is trained to classify the
fall event into three distinct phases, freefall, impact and rest.
They announce that the overall performances of sensitivity,
specificity, precision, and accuracy were 99.79%, 98.74%,
99.05%, and 99.33%, respectively. It is close to perfect, but
the sensor is moved from wrist to waist, it is a downgrade for
a product in convenience, and the data is analyzed offline, not
in the device. The algorithm waits 2.5 seconds for the rest data
after impact, not counting the time for data transmission and
classification, extra 2.5 seconds are delayed for the possible
alarm.

Warunsin and Phairoh use a wristband with an ESP32
microcontroller to detect falls by Deep Learning [19]. Ten-
sorFlow [20] lite library is used to develop models to identify
falls, the training dataset is MobiAct [12], and training and
testing were performed on a laptop. They claim that the
proposed model has an accuracy of 96.55%. Some issues
are raised from the paper, first, they employ 128 sampling
data points or 6.4 secs to predict activity, if half of them
are after the fall, at least 3.2s delays of alarm are added.
Secondly, the application of TensorFlow requires intensive
computation and massive memory, this is the weakness of
the microcontroller, although it does work, the battery will
die quickly. The third is about the training dataset, from the
description of MobiAct, data are measured by mobile phone
in a pocket, not the wrist, the real data, and the training
data from different sources, so the reliability of the result
is not solid.

Khojasteh et al. [21] try to improve fall detection using an
on-wrist wearable accelerometer, they reduce the computa-
tional constraints to embed the solution in smartphones or
smart wristbands, and find that the rule-based systems with
a reduced computational cost represent a promising research
line as they perform similarly to neural networks, especially
support vector machines performed with high specificity.
de Quadros et al. [22] present a fall detection system for wrist
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wearable devices by movement decomposition and Machine
Learning. Different sensors, signals, and direction compo-
nents were combined and a comprehensive set of thresholds
based and machine learning methods were applied to define
the best approach for fall detection in the research. They
get 91.1% accuracy for the threshold method and 99% for
the machine learning method. Both methods have advantages
and disadvantages, the choice depends on the application
scenarios.

A ground-level fall is a fall in which the feet are on the
ground, such as when standing, walking, or during the pro-
cess of changing from seat to stand. The problem with the
watch on the wrist is that the hands are flexible and not even
synchronous with the trunk, when we reference fall, we mean
the fall of the body, mainly the trunk, not the hands, but the
hands fall with the body in the moment of fall.

The paper proposes a ground-level fall detection algorithm
with a wrist-worn watch by observations in statistics of accel-
eration. The research concentrates on falls with the pattern
of walk-fall-still, from walk to fall, then being still. Only
two seconds of acceleration data are analyzed, one before
the fall and the other after the fall, so it will be a one-second
delay to alarm if a fall happens. A threshold of acceleration
is applied as the trigger, for a typical fall, high acceleration
implies touching down, then the context of the fall will be
analyzed, the 1-second data before the threshold should be
walk and fall, the 1-second data from the threshold moment is
a touchdown and being still. If the 2-second data matches the
pattern, it is a walk-fall-still fall. The decision of fall is based
on the combination of a series of thresholds and ranges.

The research follows two main principles in the design
of the fall detection algorithm. First, more conditions and
loose threshold. The watch on the wrist is flexible and many
unintentional actions could produce false falls, so more con-
ditions are set to eliminate some ADLSs, but less restriction
on thresholds, as the elderly are vulnerable even if the fall is
light but the damage could be serious. The second principle is
lightness in the program, which means less computation and
fewer resources used to conserve the battery, which in turn
keeps the device working as long as possible.

In summary, the proposed algorithms, which are based
on two basic principles, are characterized by lightweight
procedures, fast 1-second responses, and data analysis within
a wrist-worn device.

Il. MATERIALS AND METHODS

The algorithm of fall detection will be elaborated in this part.
The wrist-worn device, M5StickC Plus will be introduced
first, followed by related concepts, such as quartiles and
Standard Deviation (SD), then the workflow of the watch and
core algorithms including freefall check and fall detection are
explained.

A. AXIS DIRECTIONS

The device used in the project is M5StickC Plus [23], it is
compact and portable with a size of 48 x 24 x 14mm but
integrated with rich and powerful built-in hardware resources:
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1) ESP32-PICO-D4 WITH WI-FI,

2) 6-AXIS IMU;

3) 120MAH LITHIUM BATTERY;

4) PASSIVE BUZZER;

5) 1.14-INCH LCD.

Just the parts related to the project are listed, our light-
weight algorithm is run on an ESP32 processor; an alarm
message will be sent out by Wi-Fi; the 3-Axis MEMS
accelerometer is the data source of the project; Lithium bat-
tery and LCD make the device a real and practical watch, not
just for experiments. The main concern is the data source, the
6-Axis MEMS IMU, which is a 3 mm x 3 mm x 0.75 mm
24-pin LGA package with a 3-Axis gyroscope and 3-Axis
accelerometer, fixed inside the device, so the values of all
6 axis change with the movement of the hand. Only accelera-
tion is employed in the project. The unit of acceleration values
provided by the device is g, aka gravitational acceleration,
which is 9.8ms 2. 3-Axis exists in 3 dimensions, their actual
directions relative to the surface of the device are shown
in Fig. 1.

FIGURE 1. 3-Axis directions relative to the surface of the device.

From Fig. 1 we can see that the z Axis is vertical to the
screen, the direction from the bottom to the screen is the
positive z Axis, the text on the surface of the device from “M”
to ““5” direction is the positive x Axis, the direction from text
“MS5” to the screen is the positive y Axis.

b

FIGURE 2. Two common states of rest with the watch, Stand (a) vs
OnPlate (b).

Two common states of rest with the watch, Stand and
OnPlate are compared in 3-Axis accelerations. The states are
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shown in Fig. 2 and the comparisons of 3-axis accelerations
are shown in Fig. 3.

From Fig. 1 we know that the positive y-Axis is from
text “M5” to the screen, so in Fig. 2 (a), the y-Axis is
vertically downward in the state of Stand, accordingly, on the
left side of Fig. 3, acceleration of y-Axis is about -1g, as we
known acceleration of freefall is g, in this state of Stand, the
watch is held still against the gravitational acceleration, so the
acceleration is -1g.
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FIGURE 3. Accelerations of 3-Axis in Stand vs. OnPlate.

The positive Z-Axis acceleration in Fig. 1 is vertical to the
screen and upward, so in Fig. 2 (b), in the state of OnPlate, the
Z Axis is under the same condition as y Axis in the state of
Stand except for the direction. On the right side of Fig. 3, the
acceleration of z Axis is about 1g, all the support is concen-
trated on Z Axis and against the gravitational acceleration, but
it is upward so the z Axis acceleration is 4+1g. On both sides
of Fig. 3, Ax, acceleration in x Axis is about 0.25g because
the watch is not exactly horizontal in Fig. 2.

B. RELATED STATISTICAL CONCEPTS

In the process of detecting falls, quartiles and Standard Devi-
ation (SD) are applied to measure the dispersion of data.
Quartiles are 3 values that divide the dataset into 4 groups
evenly by quantity, they can be described in Box Plot intu-
itively. Specifically, a dataset with n items, marked as D[n],
in ascending order, is separated into 4 identical parts, Q (1)
is the value of the first quartile, or the 25th percentile, for
i = 1~3, the position of Q(i) is:

P(iy=@m+1)xi/4 (1)
And if P(i) is Integer,
0(i) = D[P(i)] @
or if P(7) is Float,
Q (i) = (D [floor (P ()] + D [cell (P (i))])/2 3
The implication of their names, floor (2.5) = 2 and

cell (2.5) = 3, Interquartile Range (IQR) is the difference of
Q (3)and Q (1), IQR = Q (3)-Q (1), and Q (2) is Median,
upper limit equals Q (3) +1.5*IQR, and the lower limit is
Q (1)-1.5*IQR, then all the other data in the dataset beyond
Upper and Lower limit are called Outliers. Outliers play
significant roles in the detection of falls as extreme values
lead suspects of falls. Those definitions in Box are shown
in Fig. 4.

IQR is the length of the Box, it represents the spread of the
middle 50% of values in the dataset, called midspread as well.
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FIGURE 4. Definitions in box plot.

TABLE 2. Comparison of stand and walk in statistics.

Status Stand Walk
Mean 0.99 1.04
Median 0.99 1.05
IOR 0.01 0.18
SD 0.01 0.16

SD is the other typical measure of variation which can be
calculated by:

o= \/Z; (i = w2 [ @)

w is the mean of the dataset and o is the average distance
from the mean. Smaller SD means items in the dataset closer
to the mean. From the formulas, we can see that SD is
calculated by all the items in the dataset, and includes outliers,
but IQR is decided by only the middle 50% of the dataset.
In the proposed algorithm, SD or quartiles are used to assist
judgment in some key points, if the dataset is not skewed,
SD is employed, otherwise, quartiles are preferred.

SD is employed to analyze the states of the user, for
instance, Fig. 5 is the comparison of the compositive acceler-
ation (Ac) of Walk and Stand, Ac is calculated by:

Ac = JAx? + Ay’ +AZ? (5)

Ax, Ay, and Az are accelerations in x-Axis, y-Axis, and
z-Axis respectively. Fig. 5 shows that Ac for Stand is about
1g, g is the acceleration of gravity. Details of all 3 Axis are
presented on the left of Fig. 3, but Ac for Walk swings from
0.7g to 1.3g.

1.2

E) / / \ \
;‘tf’ 1.0 \/v—\_/—-—-—,v_/\/\,_\/\/\
0.8 — stand
— walk
0 5 10 15 20 25 30

FIGURE 5. The comparison of the compositive acceleration (Ac) of Walk
and Stand.

The differences between them are reflected in key statisti-
cal indexes, the values are shown in Table 2.

For both Stand and Walk, the Mean and Median are close,
this proves that no outliers in both states, but IQR and SD of
Walk is greater than Stand, which proves the swing of Walk
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and stability of Stand in acceleration. Besides Standing and
walking, the feature of freefall is significant although the fall
studied in this paper is not exactly the same as free-fall but
the process is similar. The variety of accelerations of freefall
in the device from a height of 1 meter is shown in Fig. 6.

12
— freefall
10 A

Ac(g)
o

0 2 a 6 8
FIGURE 6. The wave of accelerations in freefall.

The data in Fig. 6 is collected in a second with a fre-
quency of 10 Hz, so the unit of the x-axis is 1/10 second.
At 0.1 seconds, the device is released from a height of 1 meter,
it falls freely with no support so the acceleration from the
device is Og, then touches the ground at 0.6 seconds, with
an acceleration of 12g. According to the equation of distance
d = 1/2g1?, as time is 0.5s, then d = 0.5%9.8*0.5%0.5=1.225
meter, not exactly 1 meter, the error is related to the frequency
of data access. The pattern of acceleration from 1g to Og and
then 12g in freefall will help in the following fall detection
algorithm.

The combination of BoxPlot and SD can reveal statistical
details of the dataset while it is lightweight in computation
and perfectly suited to be performed on a microcontroller like
ESP32. A typical process of fall with pattern walk-fall-still,
specifically from walk to fall, then being still, whose change
of acceleration is shown in Fig. 7.

3.0 4 — walk2fall

2.5 4

2.0 1

Ac(g)

1.0 4

0.5 4

0 5 10 15
FIGURE 7. Acceleration of the process from walk to fall to still.

The figure includes the change of acceleration in all
3 phases, walk, fall, and still. The sampling frequency of
acceleration is 10 Hz, 10 times per second, the x-axis is times,
20 times means 2 seconds, the data are separated into 2 parts,
time O to time 9 is the left part, and time 10 to time 19 is the
right part. In the left part, time O to time 8 is the state of a
walk, at time 9 the Ac drops dramatically, it is the process
of falling, similar to Freefall, then the right part, time 10 is
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the state of touching the ground, the Ac experience a change
from minimum (Min) to maximum (Max), after that Ac keep
vibrating but between the Min and Max, and becomes still
gradually. The vibration is because the sponge mat is used as
protection when experimenting. The first 8 times match the
feature of Walk and the last 5 times match Still in Fig. 5, from
time 8 to time 10 is the process of fall. The peak acceleration
is just 3g, which is far from 12g of the real free fall, but the
process of this typical fall is similar to freefall. If the feature
of the right part is not Still, but Walk or similar to fall, the user
is probably working out or falling then standing up quickly.

8

) o
all left right

FIGURE 8. Acceleration of the process of walk-fall-still in BoxPlot.

Fig. 8 is the boxplot of 3 group data, all, left part and right
part. When the data is treated as a whole, the Max and Min
are outliers, the Min in the left part is still an outlier but Max
is not an outlier in the right part. Outliers could be used to
judge for fall. The key statistical indexes of fall are listed in
Table 3. The values will be employed as a reference for the
following algorithms.

TABLE 3. Key statistical indexes of fall.

All Left Right
Mean 1.27 1.08 1.46
Median 1.13 1.12 1.13
IOR 043 0.32 0.72
SD 0.61 0.37 0.73

The main feature of fall is a Min Ac followed by a Max Ac.
This feature trigs a possible fall judgment, the final decision
depends on the following status of the user, for being still,
it is probably a fall, otherwise, not. And the feature of Still,
Walk, or Workout is judged by statistical indexes. These will
be explained in the following algorithms.

C. WORKFLOW OF THE DEVICE

As mentioned before the device employed in the system is
M5StickC PLUS, and the integrated development environ-
ment used in the project is Arduino, all programs of Arduino
are running on two functions, one is Setup(), which will be
executed once if the device is restarted or reset so it is suitable
for initialization; the other function is Loop(), which runs
repeatedly like the implication of its name so all the routine
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codes are located inside. The workflow of fall detection in the
device is shown in Fig. 8.

Based on the second principle of design, lightweight, the
program just applies two integer variables and a float array of
10 elements from the beginning, one integer variable is index,
which is the current writing position for the circular list made
by the float array. The circular list is designed to promise that
the last ten values of the Ac are kept. This is described on
the left side of Fig. 8, the index is initialized as 0, the first
Ac will be written to Ac[0], then index plus 1, so the second
Ac will be written to Ac [1], the circular list keep going until
index reaches 10, it means the array is full, it keeps the last
10 Ac-s, the oldest is Ac[0], the newest is Ac [9], so when the
next one comes, Ac[0] should be replaced, this is why on the
left side of Fig. 8 when the index reaches 10, it returns to 0,
then the circle starts over. In this way, when the index is 5,
the oldest Ac is Ac [5] and the newest is Ac [4], the sequence
from oldest to newest is Ac [5] to Ac [9], then Ac[0] to Ac [4],
always 10 last Ac values. The process is shown on the left side
of Fig. 9.

y

count=0
Ac[10]
index=0

————————
g
100ms trigger
y

y
Acfindex++] 'y
y |«
n
B Ac[index]>2
Check freefall
A
y y

H n

Fall detection
count=0
n ‘

7y
A

é

FIGURE 9. Workflow of the device.

The other integer variable is count, which is set to O at the
beginning too, it is the counter for incoming Ac-s if the fol-
lowing 2 conditions are met, one is the threshold of Ac, which
is set to 2g, it is smaller compared to the other algorithm [17],
they use 3g or 4g as the threshold. The setting meets the
first design principle. The other is that freefall is found in the
last 5 Ac-s. If the conditions are satisfied, the counter starts,
then counter pluses one on every 100ms. Totally 10 Ac-s are
collected, and those data will be applied to the fall detection
algorithm. No matter if it is a fall or not, after 1 second the
counter is reset to 0, which means it is ready for the next round
of detection. The procedure of conditions checks and counter
is shown on the right side of Fig. 9.

Index and counter work separately, without interference.
They both are from O to 10, but index is continuous and
counter has to wait for the satisfaction of the conditions.
The two key algorithms, which are check of freefall and fall
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detection, referring to Fig. 7, check of freefall works on data
of the left part, from time O to 9; fall detection employs data
of the right part, from time 10 to 19, they will be explained in
more detail in the following. Their workflows are shown in
Fig. 10 and Fig. 11.

D. CHECK OF FREEFALL

The step before checking for freefall is preparing data. The
last 10 Ac-s are retrieved from the circular list in time order,
from the oldest to the newest. The check includes two steps,
the first is calculating the SD of the last 10 Ac-s to make sure
that the user is in the state of Walk as the detection pattern
is walk-fall-still. Technically, taking results from Table 2 for
consideration, SD should be more than 0.1, and from Table 3,
the left side data from O to 9, its SD is 0.37, so the range for
SD is set to [5, 0.1], to avoid being still and workout.

The second step is finding a freefall sign in the last 5 Ac-s.
For freefall, the Ac should be zero from experience in Fig. 6,
but practically the device is attached to the wrist, it is droved
and supported by hand, so Ac is only close to zero given the
short time and short distance. Reference from Fig. 5, the Ac
of a normal walk is more than 0.6g.

Reorganizing last 10 Ac in time order

Calculating SD of Ac

) 4
SD>0.1
SD<0.5

A\ 4
Y
finding freefall from last 5

l

Found ?
Yy ] v
(' Return true

Return false )<
FIGURE 10. Workflow of check freefall.

The threshold of Ac for fall is set to 0.5g. The freefall
should be found in the last 5 Ac-s, as the interval of the trigger
is 100ms, 5 Ac-s is half a second, it is the empirical value
from freefall of 1 meter which is more than half the height of
a normal person, so is reasonable for the condition. The flow
of this freefall check is shown in Fig. 10.

E. FALL DETECTION

According to the focused pattern of fall, walk-fall-still, walk,
and fall are confirmed in check of freefall. The last task is
confirmation of being still. First of all, the 10 last Ac-s are
reorganized from the circular list in time order, those data
are the right part in Fig. 7. Ac[0] is the oldest and Ac [9]
is the newest, then Ac [9] is checked to decide if the state of
being still can be denied, the range is [0.8g,1.2g]. If Ac is far
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from 1g, it means the user is acting, so it is not a fall needs
alarm. More evidence needs to prove that the user is in the
state of still, so the Ac-s are iterated from Ac [9] to Ac[O0]
to find how many continuous Ac-s less than 1.5g, marked
as p. If p<5, this cannot be detected as fall for two reasons,
one is no enough data support that the user is still, the other
is the user probably move in the first part of this second as
Ac>1.5g.If p>5, the SD of those p Ac-s is calculated, it must
be small to prove the state of stillness. Being still, the SD
should be close to 0, but in experiments using a sponge mat,
the rebounds exist, and the empirical value is set to 0.2. If all
the conditions are met, the decision of fall is true, an alarm
will be sent out. There are 3 thresholds in the block, Ac,
time (p), and SD for being still. The workflow of fall detection
is shown in Fig. 11.

’ Reorganizing last 10 Ac in time order

508 N

/ y;"
(_ Return true )

—
P ~
(_Return false )

FIGURE 11. Workflow of fall detection.

In conclusion, the simple version of the whole fall detec-
tion process is shown in Fig. 12.

Y y
>| Wait 1 sec -| Fall detection

FIGURE 12. Workflow of the whole process.

The pattern of fall in the research is walk-fall-still. If the
threshold of Ac is met, fall detection is trigged, the last
10 Ac-s are checked for a walk, and the last 5 Ac-s are
checked for freefall, if they are satisfied, the program waits
for a second for 10 new Ac-s to decide fall or not. Totally
20 Ac-s need, 10 before the possible fall and 10 after the
possible fall, the same as the descriptions in Fig. 7.

IIl. RESULTS

This section begins with a description of the experiment setup
and experimentation process, followed by an explanation
of the evaluation criteria and the impact of daily activities
(ADLs) on fall detection. The algorithmic accuracy is then
discussed.
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A. EXPERIMENTS SETUP
The device, M5StickC Plus is worn on the wrist of the left
hand, the screen is on the back of the hand and the positive
y-axis is in the same direction with the fingers, which is
shown in Fig. 2a. In the experiment, there is a 2-meter type-c
data cable connecting the device and computer to provide
real-time measurement results. The sample rate of acceler-
ation is 10 Hz, 10 times per second, and the interval for a
sample is 100ms.

Other tools include a sponge training mat and a chair with
arms. The tools are shown in Fig. 13.

FIGURE 13. Auxiliary experimental tools.

B. THE PROCEDURE OF THE EXPERIMENT

One of the distinctive features of our study is the device, the
watch on the wrist, its flexibility and mobility could confuse
detection. When designing of experiment procedure for fall
detection, it is important to try actions that could create a
similar data sequence to the real fall. Based on different tools,
the procedure is divided into 2 parts, one part is on a chair,
simulating some actions that may cause misdetection, and the
other is on a sponge mat, performing real falls forward and
backward. The procedure is shown in Fig. 14.

A

| Stand ‘ >| Workout| -| Sit down | >‘ Hand fall

Hand up } '| Wave }

chair
mat

I«

l«

<

[ Stand up Fall backward }- |Turn around }< | Stand up Fall forward

FIGURE 14. The procedure of the experiments.

To explain why some actions like sit-down, hand-fall, and
hand-wave are selected, a typical Ac-s for the whole experi-
ment procedure is shown in Fig. 15. The wave is divided into
sections A to G in the order of the procedure. Section A is a
workout, like doing exercises, hands up and down, left and
right, for participants, this is the freestyle stage. From the
Fig. 15 we can see some parties look like a feature of fall,
local minimum then local maximum, similar to freefall then
atouchdown, it can trig the detection, but the concentration of
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the research is walk-fall-still, the algorithms check all 3 parts,
so workout does not make much trouble for the algorithms in
general. Section B is the action of sit-down, the wave looks
like a fall as well, but the trigger is Ac>2g, and the walking
part is not qualified. The action of section C is that the left
hand drops from the handle of the chair naturally, the wave is
very close to a typical fall except for the walking part, which
is the most possible part to be mis-detected. Hanging is not
comfortable, soon left-hand lifts up and back to the arm of
the chair, this is Section D. It does not meet the fall part of
the algorithm. Section E is the hand wave then back to the
arm of the chair, this could happen when sitting in a chair,
but for detection, there is no freefall part. Section F and G are
typical walks to fall forward and backward, then being still,
the difference is when falling backward hand could act more
than forward as users try to get some support.

Aclg)

\
L -

[ 50 100 150 200 250 300 350 400

0

FIGURE 15. The typical Ac for the whole procedure of the experiments.

Ten young participants are invited to join the experi-
ment, 7 males and 3 females, they are all students, aged
from 19 to 22. They wear the device on the left wrist, the
device connecting to the computer by Type-c cable, so the
results of experiments are shown on the computer in real-
time by the serials monitoring provided by Arduino, mainly
fall alarms from the watch, and all the data are saved in
the computer for further analysis. Participants are suggested
to keep 2 or 3 seconds still between actions to make the
boundary clear. All the participants follow the procedure and
experiment 5 times, so 50 group data like Fig. 15 are used to
evaluate the performance of the fall detection algorithm.

C. EVALUATION CRITERIA

The result of the core algorithms is always a true or false fall,
it belongs to the area of binary classification, the common
evaluation criteria of which is the confusion matrix [25]. The
structure of the confusion matrix is shown in Table 4.

TABLE 4. Structure of confusion matrix.

Prediction
Positive Negative
Truth Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

The meaning of the four elements TP, FP, FN, and TN can
be explained by the experiments data, for instance, taking
10 groups data for consideration, there are 10 tries of fall
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forward, if the device reports 8 falls, then TP=8, FN=2, in the
meantime, 10 tries of hand-wave report 1 fall, then FP=I1,
TN=9. So FP and FN are the numbers that the algorithms
try to push to zero. Multiple accuracy metrics are defined
based on the confusion matrix. Calculation and value from
the example of metrics are listed in Table 5.

TABLE 5. Calculation and value of metrics.

Metric Definition Value
Sensitivity TP/(TP+FN) 0.8
Specificity TN/(FP+TN) 0.9
Precision TP/(TP+FP) 0.89
Accuracy (TP+TN)/(TP+FP+TN-+FN) 085

" - e
F1 score 2*Precision*Sensitivity/ 084

(Precision+Sensitivity)

From the definitions, we can see that the calculation of
metrics needs only the sample of two actions in the same
numbers. Accuracy is useful for reference, so it is suitable for
our experiments as fall and hand-wave are in every trial. The
F1 score is a combination of Precision and Sensitivity, so it
is more informative. Overall, a higher value of those metrics
means better performance of the algorithms. The metrics will
be employed to evaluate the performance of the algorithm.

D. RESULTS OF THE EXPERIMENTS

The collection of results in the experiments is simple,
as mentioned before, the device connects to the computer
by a Type-c cable to send messages to serial monitoring of
Arduino. Itis called alog. A section of data with fall detection
in the log is shown in Fig. 16.

/dev/cu.usbserial-8552CF7F1E

0.302734 -0.175781 0.395020 0.527814
-0.493408 -0.960693 0.126465 1.087371
trig!
start!
0.257262

-1.973877 -4.779297 -1.718018 5.448803
-0.557861 -1.087158 0.033203 1.222385
0.141113 -0.911865 -0.464844 1.033194
0.197754 -1.045654 0.527588 1.187791
0.330811 -0.829102 0.245117 0.925704
0.327393 -0.945801 0.101807 1.006027
0.243652 -0.932129 0.171387 0.978572
0.220947 -0.954102 0.149902 0.990756
0.212891 -0.937744 0.244629 0.992235
time!
0.098625
fall!

0.243164 -0.937012 0.305420 1.015087
0.263184 -0.963379 0.341553 1.055473

FIGURE 16. A section of data with fall detection in the log.

Every row of the normal data in the log has 4 columns, they
are Ax, Ay, Az, and Ac respectively. And the promotion of
key events is added to the messages, such as the Ac threshold
is trigged, fall detected and the related SD value, they are
beneficial to debug.

For result collection, every time participants finish a round
of procedure, the messages from the serial log are saved and
drawn similarly to Fig. 15, if any fall messages are presented
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in the log, they are marked manually with the corresponding
actions.

As mentioned before, 50 groups of data on the procedure
are collected. The total recorded falls from different actions
are listed in Table 6.

TABLE 6. Distribution of falls with actions.

Action Fall Total
Workout 1
Hand fall 6
Hand up 2 12
Wave 3
Fall forward 47
92
Fall backward 45

If all the results are correct, there should be 100 falls,
50 falls forward and the same backward. From the results,
a total 104 times of falls are reported, as analyzed before,
the most possibly led to mis-detected actions are hand-fall
and hand-wave, the result reflected the theory basically, but
Workout making false fall is unexpected. When checking the
data, it seems the Workout in the experiment is a little tender
and slow. We separate the truth as fall and not fall, and get the
confusion matrix in Table 7.

TABLE 7. Confusion matrix of results.

Prediction
Positive Negative
100 TP=92 FN=8
Truth 109 FP=12 TN=88

As a result, the metrics are shown in Table 8.

TABLE 8. Metrics of the experiments.

Action Fall
Sensitivity 0.92
Specificity 0.88
Precision 0.88
Accuracy 0.9

F1 score 0.9

Accuracy and F1 score are the same, 90%, and Sensitivity
is slightly higher than Specificity as TP is higher than TN.
In the experiments, M5StickC Plus is employed as a watch
on the left wrist of participants who do experiments following
a designed procedure of some ADLs and two common ways
of fall, the results are evaluated by a confusion matrix, and
the accuracy of fall detection is about 90%. The result will be
discussed in the next section.
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IV. DISCUSSION

In this section, the comparison with other algorithms based
on wrist-worn devices is presented first, followed by the con-
sideration of thresholds and ranges, the issue of experiments,
and finally the future direction of research.

A. COMPARISON WITH OTHER ALGORITHMS OF
WRIST-WORN DEVICES

The main concern about the system is its accuracy. From the
result of the last section, the experiments based on 50 round
procedures reach an accuracy of 90%. The comparison
with other algorithms based on wrist-worn devices is listed
in Table 9.

TABLE 9. Comparison with other algorithms based on wrist-worn devices.

Hsieh et al. Warunsin et al.
Authors [17] [19] proposed
Year 2014 2022 2022
Sensors Acceleromete Accelerometer Accelerometer
r& Gyroscope
Methodology Threshold Deep Learning Threshold&
range
Accuracy 95% 96.55% 90%
On-site result No Yes Yes
Length of data 2.8s 6.4s 2s
Alarm delay >2.4s >3.2s >1s

To the best of my knowledge, wrist-worn devices are not
the first choice for fall detection schemes because of the
flexibility and freedom of hands, but as mentioned before,
the watch is the device that the user is used to and does not
feel redundant. The flow of Hsieh et al. [17] started with
Gyroscope, they defined a threshold for Gyroscope in y-axis
and z-axis. We find that the values of Gyroscope are too
volatile to be applied as a threshold. Both Hsieh et al. [17]
and the proposed algorithm use thresholds to detect falls, the
difference is that Hsieh et al. [17] transmit collected data
to the computer through Zigbee, and the analysis of data is
executed in an extra computer, but the proposed algorithm is
carried out in the device. The decision of Warunsin et al. [19]
is made in the device as well, but the training of the model
is run on an extra computer. The advantage of calculation on-
site is that the device does not transmit data to outside devices,
the process of transmission could exhaust the device. Only the
proposed algorithm does not depend on extra devices. The
other advantage of the proposed algorithm is response time.
The length of data in Table 9 is the length of time for the
necessary data of one detection in seconds. Hsieh et al. [17]
employed 0.4s data before possible fall and 0.4s after that,
then 2s after, a total of 2.8s data. Warunsin et al. [19] demand
anumber of 128 sampling data points or 6.4 seconds period to
predict activity, the proposed algorithm need only 2s data, s
before fall and 1s after to detect fall. Alarm delay includes two
parts, one part is from fall to detection of fall, Hsieh et al. [17]

19575



IEEE Access

S. Li: Fall Detection With Wrist-Worn Watch by Observations in Statistics of Acceleration

need 0.4s+2s=2.4s, and Warunsin et al. [19] provide 6.4s
data for deep learning but no details about the trigger for the
data, so average value 6.4s/2 is used. The proposed algorithm
needs 1s after the possible fall. The other part of alarm delay
is from the detection of fall to the system sending out an alarm
message, Hsieh et al. [17] do not provide related information,
and Warunsin et al. [19] employ LINE, the proposed algo-
rithm sends out an alarm message by a health sensing system
[26], [27]. The delay of alarm must be more than 2.4s, 3.2s,
and 1s respectively.

Compared to other published algorithms claimed more
than 90%, this result is relatively lower. This is the weakness
of the proposed algorithm, but the advantage is evident too.
First of all, the judgment of fall is made in the device. Our
target is to make the device a real practical product, it does not
depend on the auxiliary device to make a decision. Secondly,
the response time is the shortest. Time is life, we manage
to send out an alarm message as soon as possible. Thirdly,
energy efficiency is a priority. When designing the algo-
rithm, the most complicated computation is SD. Transmission
is exhausted, so only the necessary alarm message is sent
out, not the original data. Finally, threshold and ranger are
adjusted to meet the situation of the elderly although the
young are invited to the experiments. We insist on using the
watch because it is the most convenient and reasonable way,
but we narrow down the fall detection to the pattern of walk-
fall-still, three parts make the algorithm reliable.

B. THRESHOLDS AND RANGES

Back to the algorithm, thresholds and ranges are used to guide
the workflow. The first threshold is Ac>2g in Fig. 9, this is the
trigger for fall detection. It is relatively low compared to other
algorithms [17], [18], [19]. The threshold was deliberately
lowered in consideration of the fact that the ultimate service
recipients are the elderly. Even light fall hurts. This setup
causes some issues which can be seen in Fig. 15, section C,
hand fall, and section D, hand up can meet the requirement
easily, in turn, increase the FP value and decrease the accu-
racy. On the contrary, if the threshold is raised, FP will drop
but TP could drop too as for some light falls the touchdown
Ac does not meet the threshold. In the experiments, as all the
participants are young students, raising the threshold should
decrease FP and not affect TP, then increase accuracy. So, this
dilemma is the art of balance.

The first range is the SD range of walk, which is defined
as [0.1,0.5]. From Table 2, we can see that the typical SD for
standing is about 0.01, and for walking is 0.16, so the lower
limit is set to 0.1. From Fig. 7 and Table 3, the SD of the
typical left side data is 0.37, so the upper limit of SD for the
walk is set to 0.5, the other basis of this decision is the SD of
Section A, workout in Fig. 15 is 0.73, so 0.5 can exclude the
workout. In our experiments, there is 1 FP from the workout,
it is related to the range.

The second threshold is the Ac for freefall. Theoretically,
Ac for freefall is close to O from Fig. 6, based on observation
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from Fig. 5, Ac is no less than 0.6g for a normal walk, so 0.5g
is chosen as the threshold for freefall. This threshold could
cause FP as well, for example, the feature of the hand-wave
(Section E in Fig. 15) is without fall before the trigger, and
it does not match the walk-fall-still pattern, but in the experi-
ments, there are 3 FP from the hand-wave because of this. But
if the threshold is set lower, some true fall could be missed
because Ac is not low enough to meet this threshold. The
choice of thresholds 1 and 2 fully reflects the first principle,
loose threshold, for threshold 1, the Ac should be very high,
we lower the threshold; for threshold 2, the Ac should be low,
so we raise the threshold.

The second range is to decide if the user is in the state
of still, the Ac should close to 1g, so it is set as [0.8,1.2].
The third threshold is the value of p, it is the time for the
user being still, 5 means half a second. From Fig. 7 we can
see the 1-second data on the right side, half second change
dramatically half second being still. This is why p is set
to 5. Technically, Touchdown following Fall, the wave of
Ac-s should become still quickly, actually, the half-second
dramatic waves are the rebounds from the sponge mat which
we used in the experiments. We could use knee and elbow
pads, but no appropriate protection for the hip, so a sponge
mat is a better choice. The mat brings out the other issue that
for some true falls the time of being still is less than half a
second, this is where FN from. This is the main reason that
Sensitivity is only 92%. One way to improve the result is to
wait one more second or at less half a second so the still will
be confirmed, but the 1-second response time of the fall alarm
has to be changed to 2 seconds or 1.5 seconds. The other
way is to raise the sampling frequency, the current is 10 Hz,
10 times a second, for 20 Hz, the data will certainly have more
details with 20 Ac-s in a second, but we can already see the
full picture by 10 Hz, and higher sample rate will result to
faster battery drain of the device.

The last threshold is SD for being still, it should be close
to 0, but affected by the waves caused by the sponge mat,
0.2 is a value of compromise.

C. ISSUES OF THE EXPERIMENTS
As mentioned before 10 young students perform the series
of actions from the designed procedure 5 times, and results
are summed up manually based on the log from the serial
of the device. Protection for the fall is a sponge mat for
sport. The setup brings an obvious issue that the data is not
really from the elderly, but this is the reality, even some open
datasets of falls can provide none or a small group of data
from the elderly. FAR-SEEING [12] (Fall Repository for the
design of Smart and self-adaptive Environments prolonging
independent living) is a dataset of falls in real life, but the
falls of the elderly are from vision sensors. UMAFall [13]
and Dal.iac [24] include data from acceleration on the wrist
but do not mention any from the elderly.

In our research, some thresholds and ranges are intention-
ally lowered to meet the requirement of the elderly. First of
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all, the first threshold of Ac as the trigger for fall detection is
set to 2g. Only slight movement can reach 2g of Ac, this is the
first principle of design, more conditions, loose thresholds.
When filtering walks, the SD is lowered to 0.1 as seniors
could walk tenderly and slowly. And the Ac for fall is set at a
high value of 0.5g based on the same reason. In conclusion,
we know the experiment is a simulation, and the algorithm
has been designed to take into account the deviation of data
as much as possible.

The other issue is caused by the sponge mat, exactly the
rebounds from the sponge result in the dramatic change of
Ac-s in the first half second after the fall, in turn, causes the
increase of FN and decrease in Accuracy. Fig. 6 is the freefall,
almost no rebounds appear after the fall because a book is put
on the sponge mat for the device, fall on the normal ground
should be similar.

We emphasize that the device is a real practical product,
but in the experiment, we found that the fully charged device
working on the algorithm can only last about 2 hours because
the volume of the battery is only 120mAh. The full plan of
the system is that when falls are detected the devices search
and connect to a platform by Wi-Fi or Bluetooth to send an
alarm message to the related responder. This part consumes
the battery heavily too.

D. FUTURE RESEARCH DIRECTIONS
In response to the previously mentioned issues, some
improved solutions could be feasible.

First of all, research on this topic will be consistent on the
employment of the watch on the wrist because it is the natural
and convenient way without intrusion. Currently, the device is
a general development device, the physical interfaces and the
trademark occupy 1/3 of the surface, for a real product this 1/3
will be taken and the battery of volume will be increased. The
normal battery capacity of the Apple Watch is 250 mAh to
300 mAM, if the battery of the device can be doubled, not only
the time of endurance we can also try some other algorithms.

TensorFlow Lite Micro is announced to support the ESP32
in 2020. It introduces Machine Learning and even Deep
Learning algorithms into the device, but the requirement of
heavy computation and massive memory for TensorFlow is
still a huge challenge for a watch with a limited battery.

The research concentrates on the fall pattern of walk-fall-
still, but the other pattern of fall is common for the elderly,
for example, stand up but fall. The research makes every
effort to eliminate this pattern as the walk is checked first
in the algorithm, but as a general device, only detecting falls
of a certain pattern is not good enough, making the device
versatile in fall detection is another future research direction.

We develop a health sensing system [26], [27] for Smart
pillow in other research and ESP32 works as an agent in
the system between pillows and the platform. The watch can
access the platform by the ESP32 agent using Wi-Fi or Blue-
tooth too, the watch will expand and enrich the application
range of the system.
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V. CONCLUSION

In this paper, a ground-level fall detection system is pre-
sented, which uses a wrist-worn watch as the hardware, and
detects falls on observations in statistics of acceleration. The
system concentrates on the pattern of walk-fall-still and has
the following features.

First, the product is practical, it is a watch with a recharge-
able battery and screen, compared with some big brands,
the product has the advantages of low cost and a dedicated
function for fall detection.

Secondly, the algorithm is lightweight. There is no heavy
computation in the algorithm, no extra algorithm library is
used, only the basic statistical concepts are employed, and the
most complicated calculation is SD. This can keep the watch
working as long as possible.

Thirdly the response time is 1 second. From the fall detec-
tion being trigged to the final judgment, there is only a
1-second delay, to the best of my knowledge, this is the fastest
response in the fall detection research employed watch.

Finally, the algorithms are designed with the elderly in
mind, with key thresholds and ranges optimized for the
elderly, and the ultimate goal of this project is to integrate
the device into the health sensing system we have previously
designed for nursing homes.

The prototype of the watch is designed as a development
kit, if it is reshaped to be square and its battery capacity
increased, it will be a practical product.
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