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ABSTRACT Photovoltaic energy production is an important factor for increasing the electricity supply.
The ability to predict the electric power production (EPP) of a photovoltaic (PV) farm supports from the
management process of the power grid to the trade in the energy market and much more. Also, by predicting
the production of PV power (PVP), it is possible to monitor the lifetime of the solar cells that form the
backbone of any solar PV system. As a critical result, sudden failures of the PV plant can be avoided.
Using a long short-term memory recurrent neural network (LSTM-RNN) model, this work evaluates the
prediction accuracy of two forecasting strategies: the recursive strategy and the non-recursive Multiple-Input
and Multiple-Output, respectively. The dataset consists of 5-years in-filed production data measurements
collected from the CETATEA photovoltaic power plant, a research site facility for renewable energies located
in Cluj-Napoca, Romania. The high granularity of the electric power production dataset values recorded each
1 hour guarantees the overall prediction accuracy of the system. The impact of the dataset size, the number
of previous observations, and the forecast horizon on the neural network prediction accuracy is evaluated for
each strategy. The performance metrics used to evaluate the prediction accuracy are the root mean square
error, the mean bias error, and the mean average error. The results analysis demonstrates the ability of the
implemented machine learning models to predict electric power production, as well as their importance in
the energy loss management process.

INDEX TERMS Power generation prediction, prediction accuracy, forecasting horizon, PV farm, solar
energy.

I. INTRODUCTION
Industrialization and globalization determined an increase in
energy consumption worldwide, as fossil fuels represented
80% of the world’s energy use in 2019 [1]. What started
as an unavoidable form of development became one of the
biggest threats modern societies has ever faced: energy crisis,
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environmental pollution, and global warming, to mention a
few well-known effects of energy overconsumption.

Renewable energy resources come as a sustainable alter-
native solution to this problem, with solar energy being
considered one of the most promising alternatives to fossil
fuels [2], [3]. The main advantage of solar power is its poten-
tial, knowing that, if captured, it would represent 5000 times
more than the current world energy need [4].

The most used technology for converting solar energy into
electric power is the photovoltaic (PV) cell. This technology
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is integrated in the national utility power grid through solar
grids. Solar grid integration requires smart grids: intelligent
systems aimed to prevent a potential outage of power over the
grid [5]. Unfortunately, the intermittent nature of PV energy
production has a great impact on the system‘s performance.

Therefore, accurate PV power forecasting represents a
key element of the energy management systems, improving
its reliability and maintaining the power required parame-
ters [2], [6]. PV power generation is directly influenced by the
weather conditions, i.e., temperature, humidity, and clouds
movement, thereby making the prediction accuracy much
more complex.

Artificial intelligence (AI) is a common approach for PV
power forecasting [2], therefore it is used also in the current
study.

The aim of this work is to predict the generation of PVP of
a PV power plant using a neural network (NN) model and to
analyze its performance on different forecasting horizons.

This work proposes hereby a long short-term memory
recurrent neural network (LSTM-RNN) model that predicts
the PVP output. LSTM can capture both, short-time and long-
time dependencies in data, making it suitable for the purpose
of this work. Its performance on different prediction horizons
is analyzed using two forecasting strategies, recursive and
Multiple-Input and Multiple-Output (MIMO). These strate-
gies are evaluated with respect to three characteristics: root
mean square error (RMSE), mean absolute error (MAE), and
mean biased error (MBE).

As a software component, the test environment Google
Colab was chosen to write, edit, and execute the models.
Colab has integrated Python 3 modules used in building our
models. Some examples of used modules are Pandas, Keras,
Numpy, and Sklearn [7]. Python is a powerful tool used
for its capabilities to work with machine learning models,
incorporating advanced NN [8].

The originality of this work consists in the processing
of real data collected from a PV power plant located in
Cluj-Napoca, Romania. The PV consists of 102 PV solar pan-
els. The data used in the prediction process are collected over
6-year time span, from 2016 to 2022. The number of samples
used in our dataset is 43824, each sample representing the
power generated in an hour.

The contributions of this work are summarized, but not
limited to, as follows:

1) Firstly, the proposed strategies (recursive and MIMO)
used by our models provide versatility for a forecaster
to choose the best model based on his case scenario.

2) Secondly, analysis of the methods regression using
the window technique and regression with time-steps
allows the decision to select the best recursive model
to compare with MIMO one.

3) Finally, this work evaluates the impact of the amount
of data used as on the prediction accuracy.

The present study is organized in six sections. Section II
presents the state-of-art regarding prediction methods for
power generation. The solar panels and the PV power plant

is described in Section III. Section IV presents the neural
network processing algorithms and the proposed analyzing
approach, while Section V outlines the prediction results.
Finally, Section VI concludes the work.

II. LITERATURE REVIEW
PV power forecasting is a topic widely investigated due to
its economic and ecologic impact [2], [9], [10], [11], [12],
[13], [14], [15], [16], [17]. Research by Wan et. al. [2] pro-
vides a review and comparison of the most used methodolo-
gies for PV power prediction: statistical approach, artificial
intelligence (AI) approach, physical approach, and hybrid
approach. Another classification of PV power forecasting is
realized by Antonanzas et. al. in [15], according to the pre-
diction horizon: intra-hour (less than 1h), intra-day forecast
(1h-6h), six hours to-day ahead (6h-48h) and two days ahead
or longer forecasts. Each category has its own applications,
intra-day forecasts having for example load-following pur-
poses, while two days ahead or longer predictions playing an
important role in transmissionmanagement, trading, hedging,
planning and asset optimization.

The proposed model performs multistep ahead forecasts,
using a LSTM neural network and analyzes different pre-
diction horizons, covering several categories from intra-day
to two days ahead forecasts. Because prediction of the PV
power plant energy production can be seen as a time-series
forecasting problem, the chosen network is an extension of
Recurrent NN (RNN).

RNN is the most commonly used neural network archi-
tecture for this kind of assessments, having a feedback con-
nection that stores information about recent input events in
the form of short-term memory [18]. Even if classical RNNs
perform satisfactorily in the case of short-term time depen-
dencies, in the case of long-term time dependencies they
have poor performance due to the vanishing gradient problem
[18], [19]. A solution for this limitation is the Long Short-
Term Memory (LSTM) Network proposed in [19].

LSTM represents an extended version of RNN that is able
to learn short-term as well as long-term time dependencies,
this characteristic making it suitable for our task. Moreover,
the decision of using the LSTM neural network in our work is
supported by the results obtained in [9], [10], [11], and [12],
where the PV power is predicted also using this neural net-
work, proving its performance in the PV forecasting problem.

Similar to [20] and [21], two strategies characteristic of
multistep ahead time series forecasting problems are exam-
ined using the LSTM network, namely the recursive strategy
and Multiple-Input and Multiple-Output (MIMO) strategy,
respectively. Our analysis offers a clear vision of the differ-
ences between the strategies mentioned before, concluding
that MIMO strategy performs better than the recursive one,
the forecast horizon being increased.

The recursive strategy is based on a model that performs
a one step ahead forecast, meaning that the performance of
the model on any prediction horizon is strongly dependent
by its performance in the case of one step ahead prediction.
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Therefore, the optimization of the model is performed taking
into consideration a one step ahead forecasting model.

It is essential to state that compared to [9], [11], and [12],
our approach uses the grid search algorithm for hyperparam-
eter optimization.

Moreover, the dataset used, spanning over 5 years of
observations is more significant than the data sets used by
Abdel-Nasser et. al. [9] and Harrou et. al. [12], that train and
test the model on data collected in a single year, respectively
Akhter et. al. [11] uses four years of data.

Similar to [9], our approach compares two different archi-
tectures of the one step ahead prediction model: regression
using window technique and regression using time-steps, the
evaluation metric used to choose the best configuration being
RMSE. The conclusion is that the regression using time-steps
has better performance than the one using window technique.

MIMO strategy presents a model that aims to predict a
large number of values at once, which defines a time sequence
of the predicted values. This approach is well illustrated in
other articles such as [21], [22], and [23]. Therefore, the grid
search technique is also used to optimize the hyperparameters
of the model.

This optimization method for the MIMO strategy is also
used in [22] to determine the number of neurons in each layer,
the number of samples used as input, the batch size, and the
number of epochs. Moreover, the data set used is composed
of samples at a 15-minute interval, collected over a month,
in comparison with our dataset that is composed of samples at
a 1-hour interval, collected over 5 years. In this work, a model
performs well if the RMSE value is as small as possible, this
approach being frequently found in the literature [21], [22],
[23], [24], [25], [26].

Studying a different approach [27], hyperparameters of the
studied model are optimized using Tree-Structured Parzen
Estimator (TPE), an iterative process that uses a history of
evaluated parameters to create models, which are used to
suggest the next set of parameters to evaluate. Compared to
this, our MIMO model uses the grid search method to deter-
mine the best combination of hyperparameters, evaluating all
the combinations of the hyperparameters and goes for the
best one. In the case of MIMO strategy, the results are not
influenced by the accumulation of errors as in the case of the
recursive strategy. Our work presents the methods to obtain
the best results of RMSE values for each strategy.

III. CENTER FOR RESEARCH AND ADVANCED
TECHNOLOGIES FOR ALTERNATIVE ENERGY (CETATEA)
PHOTOVOLTAIC POWER PLANT
The Center for Research and Advanced Technologies for
Alternative Energy (CETATEA) resulted as a response to the
transition need to renewable energy. It was created, within
the National Institute for Research and Development of Iso-
topic and Molecular Technologies (INCDTIM) form Cluj-
Napoca, Romania, based on a project co-financed by the
European Regional Development Fund, and it was completed
in November 2015 [28].

Themain research topics in CETATEA are related to devel-
opment of techniques and capabilities to harvest, convert, and
store the alternative produced energy (solar, wind, hydroelec-
tric power). Furthermore, the Center is equippedwith a 25 kW
PV farm.

Figure 1 illustrates CETATEA building and the PV farm.

FIGURE 1. CETATEA research center at INCDTIM Cluj-Napoca, Romania.

The energy produced by the PV system is converted by a
SMA Sunny Tripower 25,000 TL-30 inverter and transferred
to be consumed locally. The excess of energy is either stored
in a Vanadium redox flow battery FB 10–40 or transferred to
the national power grid. The PV farm consists of 102 solar
panels arranged in 17 rows, with 60 cells per panel, making
a total of 6120 cells. The PV panels are connected according
to the wiring diagram presented in Figure 2.

FIGURE 2. Electric schematic of CETATEA Research Center PV system.

The PV panels are polycrystalline type, JC245M-24/Bb
model, produced by ReneSola Jiangsu Ltd. company [29].

Their main characteristics are presented in Table 1.
The data analyzed in this study were collected directly

from inverter via Sunny Portal online platform [30].
Over the time, the panels elements can break one by one.

The impact is felt over long intervals, directly into the power
generation.
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TABLE 1. Units for magnetic properties.

Inspections of PV plants performed with thermal vision
drones is one of the most efficient the solution. It is reli-
able, precise using state of the art equipment for the best
quality data, and it can produce automatic reports with pin-
pointed anomalies and certain numbers for comparisons.
Drone inspection is about 10 times more efficient and needs
90% less inspection time than traditional methods.

To confirm if there is any power production drop of the PV
pharm considered in our study, a thermal inspection of the
panels was performed.

During the solar inspection, we utilized an industrial-grade
drone fitted with a specialized thermal camera capable of
producing high-resolution thermal images. The drone used
was the DJI M300 RTK, equipped with a Zenmuse H20N
sensor, which has a 640 × 512 pixel image resolution for
thermal imaging.

The temperature range captured by the camera is -20◦C
to 150◦C (High Gain) and 0◦C to 500◦C (Low Gain), with
a spectral band of 8-14µm and a sensitivity (NETD) of
≤50 mK at aperture f/1.0.

A comparison between RGB image and thermal view of
the PV farm is presented in Figure 3.
The thermal inspection revealed 3 panels with faulty cells

due to solar anomalies and a total of 8 faulty cells were
detected. This indicates that 99.87% of the park is functioning
properly.

The inspection shows that power generation is efficient,
and the produced power is close to the estimated output.

IV. MACHINE LEARNIG/NEURAL NETWORK
PROCESSING ALGORITHMS
Due to the increasing availability of data in recent years,
artificial neural networks (ANNs) have become popular for
many ML tasks [18]. Various studies highlighting the advan-
tages of using ANNs in prediction problems are also pre-
sented [31]. Being universal approximators, ANNs canmodel
any relationship in the data and generalize them to unseen
data, covering a much higher range of functions than the
classical statistical techniques [18].

A. LONG SHORT-TERM MEMORY NETWORK (LSTM)
LSTM is a type of RNN that is able to learn both short-term
and long-term time dependencies. Unlike the classical ANNs

FIGURE 3. Thermal scanning using drone inspection displays the hot
sport on the PV farm using an industrial-grade drone: 8 faulty cells in
3 PV panels.

that are composed of neurons, the LSTM network consists of
memory blocks with components (gates) that control the state
of the block and the output. The structure of a LSTM unit is
shown in Figure 4.

FIGURE 4. LSTM unit.

There are three types of gates in the LSTM block which
control the cell state ct at the time t: forget gate ft , input gate
it , and output gate ot . The LSTM unit receives at each time
step inputs from two external sources, namely the current
sample xt and the hidden state of the previous sample ht−1.
Each gate has an internal source, also, the cell state at the

previous time step ct−1.
The mathematical relationship between inputs and outputs

is expressed as follows:

ft = σ
(
Wf [ht−1, xt ] + bf

)
(1)

ct = ftct−1 + it c̃t (2)

it = σ (Wi [ht−1, xt ] + bi) (3)

c̃t = tanh (Wc [ht−1, xt ] + bc) (4)

ot = σ (Wo [ht−1, xt ] + bo) (5)

ht = ot tanh (ct) (6)
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where Wf ,Wi,W o,Wc represent weight parameters, bf , bi,
bo, bc are bias parameters, x stands for the input and h for
the output. The recurrent activation function is denoted by σ ,
representing the sigmoid function and the activation function
is the hyperbolic tangent function.

The forget gate decides what information to keep and what
information to erase from the cell state based on the value
outputted by the recurrent activation function. The sigmoid
function takes values between 0 and 1, where 0 means ‘‘com-
pletely keep’’ and 1 means ‘‘completely forget’’. In equation
(3) is expressed the input gate that sets the input values to be
updated, quantifying the importance of the new information.

In the same way, the output gate decides which part of the
cell state to be exposed as output. The activation function
tanh scales the value of the candidate memory cell c̃t (4)
and the value of the hidden state element ht (6) between [-
1,1]. The operation of the gates is controlled by the values
of the weights and biases, values adjusted by an optimization
algorithm [9], [19].

B. EVALUATION INDICES
There are a number of indicators which evaluate the forecast-
ing performance of a model.

The most common indices are mean bias error (MBE),
mean absolute error (MAE), and root mean square error
(RMSE), expressed in the following equations [2].

MBE =
1
N

∑N

i=1
[x̂i − xi] (7)

MAE =
1
N

∑N

i=1
|x̂i − xi| (8)

RMSE =

√
1
N

∑N

i=1
(x̂i − xi)

2 (9)

where x̂i represents the ith prediction, xi is the ith observation
and N denotes the size of the test dataset.

Each metric provides different information about the accu-
racy of the model. MBE indicates if the model over or under-
estimates, while RMSE penalizes large errors. On the other
hand,MAE is used for evaluating uniform errors, showing the
average distance between the real and predicted values [15].

In our study, the RMSE is employed in the optimization
process, when the best configuration of each strategy is con-
sidered to be the one with the lowest RMSE.

In the final step, in order to validate the performance of the
chosen configurations, each of them is evaluated in terms of:
RMSE, MAE, and MBE on a different dataset than the one
used in the optimization process.

C. PROPOSED APPROACH
The aim of this study is to forecast the production of energy
of a PV power plant using the LSTM network. Being reduced
to a multi-step ahead time series forecasting problem, it can
be approached in various ways.

Ben Taieb et al. [21] have identified 5 different strategies
for this task: recursive strategy, direct strategy, DirRec strat-
egy,MIMO strategy, andDIRMO strategy. The direct, DirRec

and DIRMOstrategies imply multiple models to be trained,
these approaches being time consuming.

Therefore, in this work we analyze the recursive strategy
and the MIMO in order to compare their performance on a
specific dataset.

1) RECURSIVE STRATEGY
The recursive strategy is the most intuitive forecasting strat-
egy. A model trained to perform a one-step ahead forecast
predicts the entire horizon, using previously predicted values
as part of the input to estimate the next value [21].

The forecasts are indicated in equation (10):

ŷN+i =


M (yt−N+1, . . . , yt) , if i = 1
M

(
yt−N+i, . . . , yt , ŷt+1, . . . , ŷt+i−1

)
if 2 ≤ i ≤ N

M (ŷt+i−N , . . . , ŷt+i−1) if i > N

(10)

where yi is the observed value at the time i, ŷi represents the
predicted value at the time i, N is the number of the past values
of the time series and M is the trained model.

Figure 5 illustrates the principle of the recursive strategy.

FIGURE 5. Recursive multi-step prediction.

Because the predicted values are used for forecasting the
next steps, the strategy is susceptible to the accumulation
of errors with the increase of the prediction horizon [21].
As a result, the performance of the model for the multi-step
prediction is directly affected by its accuracy in the case of
the one-step ahead forecast.

Abdel-Nasser and Mahmoud [9] have shown that two
LSTM architectures are efficient for PV power forecasting,
namely, LSTM for regression using the window technique,
respectively the time steps.

Both use PVprior times (t, t-1, t-2, . . . ) to predict the PV
power at the next time (t+1), performing a one-step ahead
prediction. In the case of the window technique, the previous
observations are used as separate input features, whereas in
the second approach they are used as time steps of one input
feature.

Both architectures are analyzed and the best one is used to
perform multi-step ahead predictions by applying the recur-
sive strategy detailed above.

2) MIMO STRATEGY (NON-RECURSIVE STRATEGY)
MIMO strategy stands for multiple input, multiple out-
put and is also known as many-to-many relationship.
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The non-recursive strategy’s primary goal is to use a sequence
of data to predict next H values, using previous N values [21].

Prediction of the model is indicated in the following
equation:

M ([X1, . . . ,XN ]) = > [YN+1, . . . ,YN+H ] , n = 0

M
(
[X1+H , . . . ,XN+H ]

)
= >[YN+H+1,. . . ,YN+2H] n = 1

M
(
[X1+nH , . . . ,XN+nH ]

)
= >

[
YN+nH+1, . . . ,YN+(n+1)H

]
n ≥ 2 (11)

where M is the trained model, [X1+nH , . . . ,XN+nH ] is the
real data sequence,

[
YN+nH+1, . . . ,YN+(n+1)H

]
is the pre-

dicted sequence while n is the number of times predicted.
Figure 6 illustrates the principle of the non-recursive strategy.

FIGURE 6. Vector output prediction.

3) PROPOSED MODEL
Both recursive and non-recursive strategies use a 3 layers
LSTM networks as illustrated in Figure 7.

FIGURE 7. LSTM network: recursive strategy (A) and MIMO strategy (B).

Each layer contains several nodes, their number influenc-
ing the performance of the model. The number of nodes in
the input layer represents the number of time steps taken
into consideration when making a prediction and the number
of nodes in the output layer equals the number of predicted
values.

Therefore, as presented in Figure 7, this is the only dif-
ference between the two strategies used in our study: the
recursive strategy uses only one node in the output layer (A),
predicting a single value, while the non-recursive strategy
requires multiple nodes in this last layer (B).

The hidden layer is formed of LSTM units, the number
of nodes in this layer representing a hyperparameter that
has to be optimized. Hyperparameters are parameters of the
model that are set prior to the learning process and affect its
performance.

The learning process is iterative, each iteration updating the
weights and the biases of the model. The model is updated
using an optimization algorithm which calculates the error

between the predicted values and the expected ones based
on the loss function, adjusting the internal parameters to
minimize this error.

Hyperparameters such as number of epochs and batch size
directly affects this process. The number of epochs repre-
sents how many times the entire dataset is passed completely
through the neural network and the batch size is the number of
processed samples before the internal parameters are updated.

There is no clear relationship between the values of the
hyperparameters and the accuracy of the model [32], there-
fore a proper combination must be identified for each case.

The hyperparameter optimization is performed with the
grid search algorithm [33], that trains a model for every
combination of hyperparameters and evaluates its accuracy
according to a predefined metric, as indicated in [32].

The chosenmetric is RMSE and the tuned hyperparameters
are the number of nodes of the hidden layer, the number of
epochs, batch size and the number of previous observations
used as input (number of nodes in the input layer).

Given the high computation time of the grid search
technique, other hyperparameters such as loss function
(i.e., mean square error) and optimizer (Adam) are selected
as in [9] and [10].

4) PROPOSED ANALYSIS METHOD
To compare the two forecasting strategies, each strategy is
analyzed separately, evaluating both their performance on
different forecasting horizons and the impact of the amount
of data used for training and the impact of the number of pre-
vious observations used as input for the prediction accuracy.

The dataset is divided into three subsets, namely training
set, validation set, and test set. The validation dataset is used
in the hyperparameter optimization step, the best model being
considered the one that has the smallest RMSE on this set of
data.

In order to provide an unbiased evaluation of the chosen
final model, its performance is evaluated finally on the test
dataset, this time considering 3 different evaluation metrics:
RMSE, MAE, and MBE.

The main steps of the proposed analysis method are pre-
sented in Figure 8.

V. PREDICTION OF ENERGY PRODUCTION
A. DATA COLLECTION AND DATA PREPROCESSING
The study is based on data collected from 16 April 2016 to
15 April 2022 every 15-minutes from a PV power plant.
Because the dataset is not complete, the discontinuities are
filled replacing the missing values with the power produced
at the same hour in the previous day.

As illustrated in Figure 9, there is a longer period of time in
2019 when the PV power generated by the solar panels was
not recorded, therefore one year is removed from the dataset.

To preserve the seasonality of data, the gap in the dataset
corresponds to exactly 365 days (28th October 2018-27th

October 2019), so that the analysis is not by affected by
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FIGURE 8. Prediction Block scheme of the proposed analysis method.

uneven distribution of data. In thismanner, 5 continuous years
of data from every 15-minutes can be simulated.

The model used in this study operates with the PV power
produced every hour. Consequently, the power generated in
an hour is calculated as the mean of 4 samples from every
15-minutes.

The hourly distribution of the PV power generated in the
5 years is illustrated in Figure 9.

FIGURE 9. Five years (2016-2022) of energy production with a
one-year gap.

B. RECURSIVE STRATEGY
From here on, both architectures are evaluated on validation
dataset in terms of RMSE, using different amounts of data for
training and a forecast horizon of one hour. The scenario that
gives the best results is selected to analyze the impact of the
forecast horizon on the prediction accuracy.

1) IMPACT OF DATASET SIZE
To study the impact of the amount of data used for train-
ing on the prediction accuracy, two different time-intervals

TABLE 2. Hyperparameter search space.

are proposed for model training: data from a single year
(16 April 2019 to 15 April 2020), and data from three years
(16 April 2016 to 15 April 2020). The model is validated in
both cases on data recorded in the interval 16 April 2020 to
15 April 2021 (i.e., one year). A grid search is performed in
each case for both architectures with a search space defined
in Table 2.

Table 3 presents the best configuration of hyperparameters
for each scenario.

TABLE 3. Best configuration of hyperparameters for each scenario.

Training both architectures with bigger dataset results in
the decrease of the RMSE. The result analysis indicate that
the accuracy of the models is improved using more collected
data.

The best configuration proved to be obtained in sce-
nario IV, where the architecture is the LSTM for regression
with time steps and the training dataset is composed of data
collected over a period 3 year.

2) IMPACT OF THE NUMBER OF PREVIOUS OBSERVATIONS
USED AS INPUT ON THE PREDICTION ACCURACY
The results analysis indicate that the proposed architectures
are differently affected by the number of samples used as
input.

Table 4 presents the first 10 ordered RMSE values obtained
after applying the grid search algorithm for each scenario and
the corresponding number of previous observations used as
input.

If in the case of the window technique the best results are
obtained when the number of samples used as input is smaller
(i.e., 24, 36), for the second architecture (regression using
time steps) it results that the accuracy of the model is not
influenced by the number of previous observations used as
input, as presented in Table 4.

Because the smallest RMSE is obtained in a configuration
that uses 48 samples as input data, this number of samples
will be used also when analyzing the recursive strategy on
different forecast horizons.
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TABLE 4. Ordered RMSE values after grid search and the corresponding
number of inputs.

3) IMPACT OF THE FORECASTING HORIZON ON
PREDICTION ACCURACY
The best configuration obtained in scenario V estimates the
PVP produced in the next hour based on observations from
the last 48 hours.

To study the impact of the forecasting horizon on pre-
diction accuracy, the testing dataset is divided into sets of
lengths equal to the forecast horizon. The first value from
each set is estimated using 48 real observations as input and
the next predictions from the set are performed based on
values estimated previously.

In this manner, the entire testing dataset is covered,
as shown in Figure 10.

FIGURE 10. Multi-step recursive prediction of the entire year with a
forecast horizon of 72 hours.

The dataset used for the test consists of 365 days
(16.04.2021-15.04.2022). The accuracy of the model is
improved by limiting the predicted power to 0, avoiding the
case of negative values. The evaluation is made using three
different evaluation metrics, namely RMSE, MAE and MBE,
calculated after the entire testing dataset is predicted.

Table 5 presents the performance of the model considering
different forecast horizons.

TABLE 5. RMSE, MAE and MBE corresponding to each forecasting
horizon.

FIGURE 11. Measured power vs. predicted power corresponding to a
forecasting horizon of 1h along 7 days (09 - 15 April 2022).

For smaller forecasting horizons, the RMSE, MBE and
MAE increase significantly with the horizon, while for
greater forecast horizons, the increasing trend is milder.

Moreover, except when the forecasting horizon is 1 hour,
the negative values of MBE indicate that the model tends to
underestimate the results.

Figures 11 and 12 illustrate the differences between the real
data and the forecasted values over 7 days when the forecast
horizon is 1 hour, respectively 24 hours.

Figure 12 shows that the prediction accuracy of the model
is worsened with the increase of the forecasting horizon, thus
proving the poor performance of the recursive forecasting
strategy for longer term forecast.

C. MIMO STRATEGY
The non-recursive strategy implies a model that predicts a
sequence of values using the previous sequence as input.

As a result, the performance of the model is directly
affected by input sequences. As seen in the case of recursive
strategy, the best LSTM architecture is regression based on
the time steps, this architecture being used for analyzing the
MIMO strategy.
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FIGURE 12. Measured power vs. predicted power corresponding to a
forecasting horizon of 24h along 7 days (09 - 15 April 2022).

TABLE 6. Hyperparameter search space.

TABLE 7. Best configuration of hyperparameters.

The selection process to determine the best scenario for
the model based on the non-recursive strategy is illustrated in
Figure 8.

1) IMPACT OF DATASET SIZE
To study the impact of the amount of data used for training
on the prediction accuracy and to compare the results of
strategies used, are proposed the same approaches as for the
recursive strategy: model training with data from a single year
(i.e., scenario V), and model training with data from three
years (i.e., scenario VI). Also, the datasets used for training
and testing the models are the same as in the previous studied
strategy, namely the recursive one.

A grid search is performed, for the non-recursive strategy,
with a search space defined in Table 6.

Table 7 presents the best configuration of hyperparameters.
Training the model with a bigger dataset result in the

increase of the RMSE. This suggests that, unlike the recursive
strategy, in the MIMO case the collection of more data will
not improve the performance of the model. Also, the number
of input variables is higher than the number of output vari-
ables, meaning that the size of the input sequence needs to be
larger than the forecast horizon.

2) IMPACT OF THE NUMBER OF PREVIOUS OBSERVATIONS
USED AS INPUT ON THE PREDICTION ACCURACY
Results analysis indicates that the performance of the model
is decreasing by increasing the size of the sequence provided
as input.

Table 8 presents the first 10 ordered RMSE values obtained
after applying the grid search algorithm for each dataset used
for the two scenarios.

TABLE 8. Ordered RMSE values after grid search and the corresponding
number of inputs/outputs.

3) IMPACT OF THE FORECASTING HORIZON ON
PREDICTION ACCURACY
Using the non-recursive strategy, the LSTM model estimates
the PV power produced in the next hours based on past values.

Because the best results were obtained in scenario V, where
the training dataset is composed of one year, the configura-
tions obtained after the grid search process in this scenario
are analyzed on the test dataset.

Table 6 illustrates the values of forecast horizon used for
the model training process. Consequently, the best results of
RMSE obtained after grid search for models are presented in
in Table 7. The most advantageous forecast horizon consists
of 12 samples using 24 samples as input.

In this manner, the representation of the testing dataset can
be seen in Figure 13.

FIGURE 13. Multi-step non-recursive prediction of the entire year.

For a better view of the results, in Figure 14 is presented
also graphically the performance of the configuration with
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24 samples as input and 12 samples as output on the testing
dataset. It can be observed that the values of the predicted
PV power are close to the real ones, proving the advantage of
using the MIMO strategy.

FIGURE 14. Measured power vs. predicted power corresponding to a
forecasting horizon of 12h along 7 days (09 - 15 April 2022), using 24h as
input.

In order to make a comparison between the MIMO and the
recursive strategy, in Figure 15 is illustrated the performance
of the MIMO strategy in a similar situation as the one pre-
sented in Figure 12.

The configuration used to analyze a forecast horizon of
24 hours is the one that had the smallest RMSE for this
forecasting horizon after the grid search process.

As presented in Table 8, the configuration with 36 input
samples and trained with one year of data gave the best
results, thus it is used to compare the two strategies.

It can be observed that for the same forecast horizon and
on the same testing dataset, the MIMO strategy gives better
results than the recursive one.

The best configuration obtained after the grid search pro-
cess for each forecast horizon was analyzed also for the
testing dataset in terms of RMSE,MBE andMAE. The results
obtained are presented in Table 9.

The RMSE value gets worse with the increase of the fore-
casting horizon. The MAE also has an increasing trend, even
though the forecast horizon does not directly affect its value.

For example, the MAE obtained for a 30-hour horizon is
higher than the values obtained for a 36-, 42-, or 48-hour
horizon. In the case of MBE, no correlation between the
prediction horizon and this metric can be established, the best
value being obtained for the 66-hour horizon.

To see better the difference between the above-mentioned
strategies, the results obtained in Table 5 are compared to the
results from Table 9.
For the smallest forecasting horizon (horizon of 6 hours),

the RMSE obtained with the recursive strategy is smaller than
the results obtained with the MIMO one. On the other hand,
for all the other forecasting horizons the MIMO strategy out-
performs the recursive strategy not only in terms of RMSE,
but also in terms of MAE and MBE. In both cases MBE

FIGURE 15. Measured power vs. predicted power corresponding to a
forecasting horizon of 24h along 7 days (09 - 15 April 2022), using 36h as
input.

TABLE 9. RMSE, MAE and MBE corresponding to each forecasting horizon
With 24 values as inputs.

has negative values, which means that overall, both strategies
underestimate the results.

It can be concluded that recursive strategy is suitable for
tasks where the forecasting horizon is small, while for larger
forecasting horizons the MIMO strategy is more appropriate.

VI. CONCLUSION
This study presents two different strategies (recursive and
MIMO) for forecasting the power generated by a PV power
plant using the LSTM neural network. Analyzing and com-
paring the two strategies, the following results were obtained.

The dataset used in the prediction process consists of
5-years in-filed production datameasurements collected from
the CETATEA photovoltaic power plant, a research site facil-
ity for renewable energies located in Cluj-Napoca, Romania.

The evaluation on the testing dataset of the two strategies
considered 3 metrics: RMSE, MAE and MBE. Although the
values obtained for RMSE on the testing dataset are higher
than those obtained on the validation dataset, the differences
are not significant. Furthermore, the MAE indicates that the
average distance between the actual and predicted value does
not exceed 1.91 kW for the recursive strategy and 1.22 kW
for MIMO one, proving their performance on future data.
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On the other hand, MBE evaluates the model from another
perspective, its negative values indicating the tendency of
both strategies to underestimate the results.

The recursive strategy has better performance for small
forecasting horizons, while MIMO is suitable for bigger fore-
casting horizons. The MIMO strategy is more stable with the
increase of the forecasting horizon, the accumulation of errors
being avoided by having a sequence of real values to predict
the next sequence.

In the case of the recursive strategy, the accuracy of the
model was improved when it was trained using a bigger
dataset, meaning that in time, after collecting more data, the
model performance will be improved. On the other hand,
in the case of MIMO strategy the best results were obtained
using only one year of data for training.

The regression using time steps and the regression using
window technique were analyzed for one-step ahead forecast-
ing model and it was proved that regression using time steps
provides better result than the other architecture.

Furthermore, the models presented here not just that satisfy
the needs of the market, but based on the results obtained,
problems such as the energy crisis can be avoided, providing
better management of energy and monitoring the lifetime of
photovoltaic panels.

Finally, the models analyzed in this study are univariate
models. Future research will include multi-variate models
which takes into consideration not only the PV power gen-
erated in the past, but also other factors which influence the
production of PV energy such as temperature, solar irradi-
ance, and cloud cover.
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