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ABSTRACT As a special case of a quasi-cyclic (QC) low-density parity-check (LDPC) code, a full-length
row-multiplier (FLRM) QC-LDPC code is described by a compact exponent matrix based on two sequences
of integers. The codes designed by a framework known as greatest-common-divisor (GCD) method, belong
to a salient class of FLRM QC-LDPC codes, which can eliminate cycles of length up to six by carefully
selecting a special sequence subject to a set of simple inequalities. However, the GCD method ensures the
absence of these cycles only if circulant sizes are larger than a certain threshold. By combining the existing
GCDmethod, novel sequences and a new analysis method (based on new lemmas of circulants and integers)
for modulo equations, a group of novel FLRM QC-LDPC codes free of 4-cycles and 6-cycles are explicitly
proposed for column weights from three to five in this paper, which possess circulant sizes much smaller
than the forgoing threshold. Simulations show that the new FLRM QC-LDPC codes with shorter lengths
perform almost the same as the existing FLRM QC-LDPC codes with longer lengths, and that the novel
FLRM QC-LDPC codes noticeably outperform their counterparts with (nearly) identical lengths.

INDEX TERMS Cycle, greatest common divisor (GCD), low-density parity-check (LDPC) code,
quasi-cyclic (QC).

I. INTRODUCTION
As is well known, performance of long low-density parity-
check (LDPC) codes can approach theoretical limits by
iterative decoding procedures. However, when code lengths
are medium or small, it is necessary to skillfully design
parity-check matrices (PCMs) to attain satisfactory perfor-
mance. Eliminating short cycles is an effective way to obtain
reasonably good PCMs for LDPC codes [1], [2], [3], [4], [5].
As an important category of LDPC codes, quasi-cyclic (QC)
LDPC codes have attracted increasing attention in theoretical
research [4], [6], [7] and engineering practice [8], due to their
highly structured PCMs which greatly simplify the imple-
mentation complexity of encoders and decoders. The PCM of
a QC-LDPC code is composed of circulants of the same size.
Basically, there are two classes of methods to eliminate short
cycles for QC-LDPC codes. One class is based on computer
search (such as [9] and [10]), and the other class is based on

The associate editor coordinating the review of this manuscript and

approving it for publication was Zihuai Lin .

explicit constructions via simple formulas (such as [11], [12],
and [13]). Compared with methods relying upon computer
search, the advantage of explicit constructions is that the
acquisition of PCMs is extremely simple and does not require
any computer search. In addition, simple tricks such as mask-
ing [3] and the Chinese remainder theorem (CRT) [14] can be
easily combined with explicit constructions to enhance the
randomness of PCMs and flexibility of code lengths, without
deteriorating cycle characteristics.

This paper focuses on a class of QC-LDPC codes which
are defined by two sequences of integers. One is an arithmetic
sequence starting from zero with a common difference being
one, and the other is carefully designed to guarantee the
absence of short cycles. Such QC-LDPC codes are termed
as full-length row-multiplier (FLRM) codes in [15]. Array
codes [16] are a type of FLRM codes, but they only ensure the
absence of cycles of length four. As a systematic and powerful
approach to producing FLRM codes without cycles of length
up to six, the greatest-common-divisor (GCD) method [17],
[18] adopts a set of simple inequalities to select the second
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sequence. Several schemes [19], [20], [21], [22], [23], [24],
[25], [26] which yield QC-LDPC code without cycles of
length up to six, are obviously special cases of the GCD
method. Moreover, the GCDmethod has found wide applica-
tion in building other types of structured LDPC codes [27],
[28], [29] which are different from the QC-LDPC codes
merely based on circulant permutation matrices (CPMs).
Nevertheless, the GCD method guarantees the absence of
these cycles only if the size of CPMs is larger than a certain
threshold.

By combining the existing GCD method and a novel anal-
ysis method for modulo equations, a series of novel FLRM
QC-LDPC codes without cycles of length four and six are
explicitly proposed in this paper. The prominent advantage
of our new constructions lies in that the size of CPMs can be
much smaller than the corresponding threshold determined
by the existing GCD method. For example, for certain types
of row weight L, the smallest threshold for column weight
J = 5 provided by existing explicit methods is (2L + 3)
(L − 1) [12]. A new construction proposed in this paper
(Theorem 7), by contrast, is able to offer a CPM size
((L + 2)2 − 1) about half of the foregoing threshold. Another
advantage of most new constructions is that the resultant
QC-LDPC codes noticeably outperform some existing coun-
terparts. For example, a construction presented in this paper
(Theorem 6) yields a (480, 261) QC-LDPC code which
outperforms the existing counterpart [17] ((512, 276) QC-
LDPC code) by 0.20 dB at the bit error rate (BER) of 10−5.
For another example, a novel construction in this paper
(Theorem 8) combined with the masking skill, produces
a (1305, 580) QC-LDPC code which outperforms the
masked array-based counterpart [16] ((1341, 596) QC-LDPC
code) by about 1.0 dB at the BER of 10−4. At present,
QC-LDPC codes have become an indispensable key technol-
ogy in ground communication systems and satellite commu-
nication systems. The novel constructions proposed here for
short QC-LDPC codes have the potential to be used for these
communication systems.

The rest of the paper is organized as follows. Basic def-
initions and notations concerning FLRM QC-LDPC codes
and the GCD method are introduced in Section II. New
constructions for FLRM QC-LDPC codes without cycles of
length up to six are proposed in Section III, Section IV and
Section V, respectively. Performance of the novel codes are
reported in Section VI. A byproduct pertaining to the smallest
CPMs is presented in Section VII for FLRMQC-LDPC codes
without cycles of length up to six. Finally, the conclusion is
made in Section VIII.

II. PRELIMINARY
A (J ,L)-regular LDPC code is the null space of a sparse
PCM, in which each row has L nonzero elements and each
column has J nonzero elements. A (J ,L)-regular QC-LDPC
code is a special LDPC code whose PCM is an array of
circulants with the same size P. If all circulants in a PCM
are circulant permutation matrices, the PCM of a QC-LDPC

code can be uniquely described by a J×L exponent matrix E
and the circulant size P [4]. Each element (say e) withinE is a
nonnegative integer smaller than P, and it stands for a specific
CPM determined by e. To be specific, this CPM is a P × P
square matrix, in which the only nonzero element (i.e., ‘‘1’’
for a binary code) in the first row is located in the e (mod P)-
th column, and other row is generated by cyclicly shifting its
previous row to the right by one position. In many cases, the
actual code rate for a (J ,L)-regular QC-LDPC code is slightly
larger than the nominal (or designed) code rate (L−J )/L, due
to a couple of inevitable redundant rows in its PCM.

The lengths of cycles for an LDPC code are even integers
greater than or equal to four. For a QC-LDPC code, cycles
of length 2l (denoted by ‘‘2l-cycles’’) can be efficiently
detected via its exponent matrix as follows [4]. Firstly, use
l horizontal lines and l vertical lines alternately to draw a
closed polygon in a fixed (say counterclockwise) order in the
exponent matrix. Secondly, take out the 2l elements within
the exponent matrix which correspond to as many corners of
this polygon in the same fixed order. Finally, utilize the plus
sign and minus sign alternately to connect these elements.
If the calculation result is zero modulo P, then there are
2l-cycles within the PCM of the QC-LDPC code. Girth is the
length of shortest cycles. Therefore, a QC-LDPC code free of
4-cycles and 6-cycles has girth at least eight.

This paper focuses on a class of QC-LDPC codes whose
exponent matrices can be concisely expressed by E=ST2 ·S1,
where S1 = [0, 1, · · · ,L − 1], S2 is an increasing sequence
composed of J integers, [α0, α1, · · · , αJ−1], and T denotes
transpose. The sequence S2 is also called a tuple with J
entries. Such QC-LDPC codes are referred to as FLRM
codes, because all integers from 0 to L− 1 are used in S1 and
each row of E is obtained by multiplying S1 by a correspond-
ing integer in S2. It should be noted that, asE has a sub-matrix
[[0, α0, 2α0]T , [0, α1, 2α1]T ]T , girth of an FLRM code is at
most eight [12].

The recently proposed GCD method can ensure a
girth-eight FLRM code, if S2 is in accord with a set of
inequalities, (αk − αi)/gcd(αk − αi, αj − αi) ≥ L for any
triple (αi, αj, αk ), where 0 ≤ i < j < k ≤ J − 1. Such a set
of inequalities are called the GCD constraint.
Lemma 1 [17]: If S2 satisfies the GCD constraint, then it

corresponds to an FLRMQC-LDPC code with girth eight for
any circulant size larger than (αJ−1 − α0)(L − 1).

On the other hand, the GCD constraint is also necessary for
an FLRM code with girth eight.
Lemma 2 [15]: If S2 corresponds to a girth-eight FLRM

QC-LDPC code for a certain circulant size, then S2 satisfies
the GCD constraint.

According to Lemma 2, in order to design a girth-eight
FLRM code, a sequence S2 which satisfies the GCD con-
straint must be selected. Besides, thanks to Lemma 1, if a
qualified S2 has been found, then any circulant size larger
than (αJ−1 − α0)(L − 1) is able to produce a girth-eight
FLRM code. This naturally raises a question: is it possible to
obtain girth-eight FLRM codes with circulant sizes smaller
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than the threshold? If possible, is there any way to find them
by explicit methods instead of random search procedures?
In the following sections, this issue is explored for several
small values of J .

For ease of the description of themain content in this paper,
some useful properties and notations are introduced.
Lemma 3: Let a and b be two integers. Then gcd(a, b) =

gcd(a, b− a).
Lemma 4: Let a and b be two positive integers such that

b ≥ 2a. Let i, j, and k be three distinct integers such that
0 ≤ i, j, k ≤ L−1. Then |(i− j)a+(k− i)b| ≤ −a+(L−1)b.

Proof: Obviously, (i− j)a+ (k − i)b = (k − j)a+ (k −

i)(b−a). As b−a ≥ a, it follows that |(k−j)a+(k−i)(b−a)| ≤

[(L − 1) − 1]a+ [(L − 1) − 0](b− a) = −a+ (L − 1)b. □
Lemma 5: For any given circulant size, the two sequences,

S2 = [α0, α1, · · · , αJ−1] and S′

2 = [αJ−1 − αJ−1, αJ−1 −

αJ−2, · · · , αJ−1 − α0] produce two equivalent FLRM QC-
LDPC codes.

Proof: For a circulant C defined by an exponent e, first
flip its columns in the left-right direction and then flip all rows
of the resultant matrix in the up-down direction. It is easy to
understand that the final matrix is just a circulant C′ defined
by the exponent e′ = mod(−e,P). Therefore, taking the
opposite number for each element within an exponent matrix
merely corresponds to an equivalent PCM. Moreover, adding
a constant to all elements in a column of an exponent matrix
is equivalent to permuting P consecutive columns within a
PCM. As a result, S2 and S′

2 correspond to equivalent PCMs
and hence equivalent codes. □

The flip operation in the proof of Lemma 5 is illustrated by
e = 2 and P = 5. The circulant C defined by the exponent e
is 

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 .

Byflipping its columns in the left-right direction, the resultant
matrix is obtained as 

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

By flipping all rows of the above matrix in the up-down
direction, the final matrix is obtained as

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 ,

which is just the circulant C′ defined by the exponent e′ =

mod(−e,P) = 3.

Denote by ‘‘(r, s)-4-cycles’’ the cycles of length four
located in the r-th and s-th rows of the exponent matrix.
Denote by ‘‘(r, s, t)-6-cycles’’ the cycles of length six located
in the r-th, s-th and t-th rows of the exponent matrix.

For a given exponent matrix, let LBccs be the lower bound
on consecutive circulant sizes guaranteeing girth at least
eight. That is to say, each circulant size greater than or equal to
LBccs corresponds to a QC-LDPC code without 4-cycles and
6-cycles for the same exponent matrix. The value of LBccs can
be readily calculated by Lemma 1 in [11].
Remark 1: The sequence S2 involved in the following sec-

tions of this paper is based on a large number of randomly
generated sequences and on the basis of trial and error.
How to systematically obtain such sequences deserves further
research. In addition, irregular QC-LDPC codes are more
widely used in practice than regular ones. However, since
regular QC-LDPC codes in many cases can serve as the
basis of irregular counterparts, only regular QC-LDPC codes
are considered in this paper. From the new constructions
for regular QC-LDPC codes, irregular QC-LDPC counter-
parts can be produced via certain general tricks, such as
column-splitting [15] andmasking [3], [12]. How to generate
irregular QC-LDPC codes based on the ideas of this paper
but without resort to the tricks in question, is obviously an
interesting problem worthy of further investigation.

III. NEW CONSTRUCTIONS FOR J=3
According to Lemma 1, the existing tuple [α0, α1, α2] =

[0, 1,L] is able to guarantee a QC-LDPC code without
4-cycles and 6-cycles if the circulant size is greater than or
equal to L(L − 1) + 1. In this section, it is analyzed whether
this tuple ensures a code without 4-cycles and 6-cycles when
the circulant size is smaller than L(L − 1) + 1. The answer
to the question turns out to be in the negative, which prompts
this article to try other options of [α0, α1, α2]. By changing
the value of α1, a new construction based on the tuple [0, 2,L]
is proposed to offer a noticeably smaller circulant size. Then,
the new tuple [0, 2,L] is extended to a general case [0, α1,L]
where α1 is arbitrary chosen, which can provide a signifi-
cantly smaller circulant size when α1 is properly selected.
Finally, by changing the value of α2, another construction
based on the tuple [0, 1, α2] is presented, where α2 takes
different values greater than L according to the parity of L.
Such a new construction can also provide a certain circulant
size much smaller than L(L − 1) + 1.

A. NEW PROPERTY FOR EXISTING TUPLE [0,1,L]
Due to Lemma 1, only the tuples meeting GCD constraint
need to be considered. For the existing tuple [0, 1,L] which
satisfies GCD constraint, the following theorem regarding the
choice of circulant sizes is attained.
Theorem 1: S2 = [0, 1,L] corresponds to a girth-eight

(3,L)-regular FLRMQC-LDPC code if and only if the circu-
lant size is larger than L(L − 1).

Proof: Due to Lemma 1, S2 yields a girth-eight FLRM
QC-LDPC code for any P ≥ L(L − 1) + 1. Therefore,
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it suffices to prove that S2 does not correspond to a girth-eight
FLRM QC-LDPC code for any P ≤ L(L − 1). The proof is
given by contradiction. Assume there exists a certain P ≤

L(L−1) which ensures the absence of 4-cycles and 6-cycles.
(i): Let i and j be two column indexes such that 0 < i <

j ≤ L−1. Then the 6-cycles governed by [e(0, 0)−e(2, 0)]+
[e(2, i)−e(1, i)]+[e(1, j)−e(0, j)] = 0 (mod P) cannot occur,
whichmeans (0−0)+(Li−i)+(j−0) ̸= 0 (mod P). Therefore,

P /∈ {iL + 1, iL + 2, · · · , iL + (L − 1 − i)} (1)

for 1 ≤ i ≤ L − 2.
(ii) Let i and j be two column indexes such that 0 < j <

i ≤ L−1. Then the 6-cycles governed by [e(1, 0)−e(2, 0)]+
[e(2, i) − e(0, i)] + [e(0, j) − e(1, j)] = 0 (mod P) cannot
appear, which indicates Li− j ̸= 0 (mod P). Therefore,

P /∈ {iL − (i− 1), · · · , iL − 1} (2)

for 2 ≤ i ≤ L − 1. By setting i = i′ + 1 in Eq. (2), it follows
that

P /∈ {i′L + L − i′, · · · , i′L + L − 1} (3)

for 1 ≤ i′ ≤ L − 2. By combining Eq. (1) and Eq. (3),
it follows that

P /∈ {iL + 1, · · · , iL + L − (i+ 1),

iL + L − i, · · · , iL + L − 1} (4)

for 1 ≤ i ≤ L − 2. That is to say,

P /∈ {iL + 1, · · · , iL + L − 1} (5)

for 1 ≤ i ≤ L − 2. Moreover, P cannot equal any ele-
ment within E, otherwise 4-cycles appear. Therefore, P /∈

{1, 2, · · · ,L − 1} and P /∈ {L, 2L, · · · , (L − 1)L}. Con-
sequently, all values of P smaller than (L − 1)L + 1 are
impossible, which contradicts the foregoing assumption. □

B. NEW CONSTRUCTION FROM TUPLE [0,2,L]
Next, whether the circulant size can be reduced for other set-
tings is examined. It is easily verified that the tuple [0, 2,L]
satisfies GCD constraint when L is an odd number. With this
setup, the circulant size can be reduced by (L − 3), as stated
in the following theorem.
Theorem 2: Let L ≥ 5 be an odd number. Then S2 =

[0, 2,L] corresponds to a (3,L)-regular FLRM QC-LDPC
code with girth eight for the circulant size P = L2 − 2L + 4.

Proof: Firstly, consider 4-cycles. Let i and j be two
column indexes such that 0 < i < j ≤ L − 1.

(i) (0, 1)-4-cycles can be expressed as (0−2i)+ (2j−0) =

0 (mod P), which is equivalent to

2(j− i) = n(L2 − 2L + 4) (6)

for a certain integer n. Since 0 < LHS ≤ 2(L − 1) < L2 −

2L + 4, Eq. (6) is impossible for any n.
(ii) (1, 2)-4-cycles can be denoted by (2i−Li)+(Lj−2j) =

0 (mod P), which reduces to

(L − 2)(j− i) = n(L2 − 2L + 4) (7)

for a certain integer n. As 0 < LHS ≤ (L − 2)(L − 1) <

L2 − 2L + 4, Eq. (7) cannot be true for any n.
(iii) (0, 2)-4-cycles can be represented by (0− Li)+ (Lj−

0) = 0 (mod P), which is equivalent to

L(j− i) = n(L2 − 2L + 4) (8)

for a certain integer n. Because 0 < LHS ≤ L(L − 1) <

2(L2 − 2L + 4), Eq. (8) is possible only for n = 1. However,
n = 1 means that 4 must be a multiple of L, which is
impossible because L is odd.

Next, consider 6-cycles. Let i, j and k be three different
column indexes such that 0 ≤ i, j, k ≤ L − 1. Then 6-cycles
can be represented by (0 − 2j) + (2i − Li) + (Lk − 0) =

0 (mod P), which is equivalent to

2(i− j) + L(k − i) = n(L2 − 2L + 4) (9)

for some integer n. Thanks to Lemma 4, it follows that
|LHS| ≤ −2 + L(L − 1) = L2 − L − 2 < 2(L2 − 2L + 4).
Therefore, Eq. (9) is possible only for n ∈ {0, 1, −1}.
(i) If n = 0, Eq. (9) implies L|2(i − j). As L is odd, it is

clear that L|(i− j), which is impossible.
(ii) If n = 1, Eq. (9) becomes

2(i− j) + L(k − i) = L2 − 2L + 4, (10)

implying L|[2(i− j)− 4]. Because L is odd, it is obvious that
L|(i− j− 2), which is possible only for i− j = 2 or i− j =

−L + 2. When i− j = 2, Eq. (10) yields k − i = L − 2 and
hence k − j = L, which is impossible. When i− j = −L + 2,
Eq. (10) leads to k − i = L, which is also impossible.
(iii) Similarly, if n = −1, Eq. (9) becomes

2(i− j) + L(k − i) = −(L2 − 2L + 4), (11)

indicating L|[2(i− j) + 4]. As L is odd, it is clear that L|(i−
j+ 2), which is possible only for i− j = L− 2 or i− j = −2.
When i− j = L − 2, Eq. (11) leads to k − i = −L, which is
impossible. When i− j = −2, Eq. (11) yields k − i = 2 − L
and hence k − j = −L, which is also impossible. □
Up to now, it has not been proved whether L2−2L+4 is the

smallest circulant size to guarantee girth eight. Nevertheless,
it has been empirically verified that, for each odd L in the
range 5 ≤ L ≤ 50, the smallest P which enables S2 =

[0, 2,L] to generate a girth-eight code is exactly L2−2L+4.
Therefore, the following conjecture is likely to be true.
Conjecture 1: Let S2 = [0, 2,L]. The smallest P guaran-

teeing a girth-eight (3,L)-regular FLRM QC-LDPC code is
L2 − 2L + 4 for any odd L ≥ 5.
Now, move one step toward Conjecture 1, and consider the

circulant size one less than the above value. For L odd and
P = L2 − 2L+ 3, it is obvious that e(2,L− 1) = L(L− 1) =

L − 3 (mod P). Since e(1, (L − 3)/2) is also equal to L − 3,
there are 6-cycles in the three columns indexed by (i, j, k) =

(0, (L − 3)/2,L − 1).
In addition, it has been verified that for any odd L in the

range L = 5 ∼ 50, the LBccs for the exponent matrix in
Theorem 2 (after modulo P) equals L(L − 1) + 3, which is
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marginally larger than the associated LBccs (i.e. L(L−1)+1)
for the tuple [0, 1,L] by only two.

C. NEW GENERALIZATION FROM TUPLE [0,α1,L]
Two specific tuples of the form [0, α1,L] with α1 = 1 and
α1 = 2 have been analyzed, respectively, in the previous two
subsections. For the general case, a salient feature is revealed
in this subsection.

According to Lemma 5, the two tuples, [0, α1,L] and
[0,L − α1,L], always lead to equivalent FLRM QC-LDPC
codes. Therefore, it suffices to checkα1 in the range 1 ≤ α1 ≤

⌊L/2⌋. Our observations in this range are consistent with the
following conjecture, much more general than Conjecture 1.
Conjecture 2: Let α1 be an integer such that 1 ≤ α1 ≤

⌊L/2⌋ and gcd(α1,L) = 1. Then the smallest circulant size
which enables S2 = [0, α1,L] to yield a (3,L)-regular FLRM
QC-LDPC code with girth eight is P = L(L − α1) + α2

1 .
Remark 2: It has been verified that Conjecture 2 is true for

each L in the range 4 ≤ L ≤ 50 and each α1 = 1 ∼ ⌊L/2⌋
satisfying gcd(α1,L) = 1. If Conjecture 2 is correct, then
three properties follow immediately: (i) if mod(L, 2) = 1,
then [0, (L − 1)/2,L] leads to a girth-eight FLRM code with
the circulant size P = (3L2 + 1)/4; (ii) if mod(L, 4) = 0,
then [0,L/2 − 1,L] produces a girth-eight FLRM code with
P = 3L2/4+1; and (iii) if mod(L, 4) = 2, then [0,L/2−2,L]
yields a girth-eight FLRM code with P = 3L2/4 + 4.

D. NEW CONSTRUCTION FROM TUPLE [0,1,α2>L]
In the previous three subsections, the scenarios (where α2 is
limited to L for the tuple [0, α1, α2]) have been considered.
In this subsection, the case (where α2 > L and α1 is set
to 1) is investigated.
Theorem 3: (i) If L is even, then S2 = [0, 1, 3L/2] guar-

antees a girth-eight (3,L)-regular FLRMQC-LDPC code for
P = 3L2/4+L/2; (ii) If L is odd, then S2 = [0, 1, (3L+1)/2]
guarantees a girth-eight (3,L)-regular FLRM QC-LDPC
code for P = (3L2 + 1)/4.

Proof: Firstly, consider the first part of the theorem
where L is even. The proofs of the absence of 4-cycles are
similar to those in Theorem 2 and hence omitted. Let i,
j and k be three different column indexes such that 0 ≤

i, j, k ≤ L − 1. Then the 6-cycles can be represented by
(0 − j) + [i− (3L/2)i] + [(3L/2)k − 0] = 0 (mod P), which
is equivalent to

(i− j) + (3L/2)(k − i) = n(3L2/4 + L/2) (12)

for some integer n. By arranging terms, Eq. (12) becomes

(2i− j− k) + (3L/2 + 1)(k − i) = n[(3L/2 + 1)L/2].

(13)

Therefore, (3L/2 + 1)|(2i− j− k). Since |2i− j− k| < 2L,
it is clear that (2i− j− k) = 0 or ±(3L/2 + 1).
(i) If (2i − j − k) = 0, then Eq. (13) reduces to (k − i) =

n(L/2). Therefore, it follows that k − j = nL, which is
impossible.

(ii) If (2i − j − k) = 3L/2 + 1, then Eq. (13) becomes
1 + (k − i) = n(L/2). Thus, i − j = (n + 3)(L/2), which is
possible only for n = −2 or n = −4. When n = −2, it is
obvious that (k − i) = −L − 1, which is impossible. When
n = −4, it is obvious that (k − i) = −2L − 1, which is also
impossible.

(iii) If (2i− j−k) = −(3L/2+1), then Eq. (13) reduces to
−1 + (k − i) = n(L/2). It follows that i− j = (n− 3)(L/2),
which is possible only for n = 2 or n = 4. When n = 2,
it is clear that (k − i) = L + 1, which is impossible. When
n = 4, it is clear that (k − i) = 2L + 1, which is also
impossible.

Next, consider the second part of the theorem where L is
odd. The proofs of the absence of 4-cycles are similar to
those in Theorem 2 and hence omitted. The 6-cycles can be
represented by (0−j)+(i− 3L+1

2 i)+( 3L+1
2 k−0) = 0 (mod P),

which is equivalent to

(i− j) +
3L + 1

2
(k − i) = n(3L2 + 1)/4 (14)

for some integer n. Because the LHS of Eq. (14) satisfies that
|LHS| ≤ −1 +

3L+1
2 (L − 1) < 2[3(L2 + 1)/4], it is obvious

that n ∈ {0, 1, −1}.
(i) If n = 0, Eq. (14) becomes (i − j) +

3L+1
2 (k − i) = 0,

which leads to 3L+1
2 |(i− j). It is impossible.

(ii) If n = −1, Eq. (14) turns into (i− j) +
3L+1
2 (k − i) =

−(3L2 + 1)/4, which is equivalent to

(i− j) − (L − 1)/4 + 2(
3L + 1

4
)(k − i) = −L(3L + 1)/4.

(15)

This equation can be expressed as

(i− j) − (L − 1)/4 = z(3L + 1)/4 (16)

for some integer z. Since |(i− j)− (L − 1)/4| ≤ 5(L − 1)/4,
it is clear that z ∈ {0,−1, 1}. If z = 0, Eq. (15) reduces to
(k− i) = −L/2. It is impossible as L is odd. If z = 1, Eq. (16)
becomes (i − j) = (L − 1)/4 + (3L + 1)/4 = L, which
is impossible. If z = −1, then Eq. (16) becomes (i − j) =

(L − 1)/4 − (3L + 1)/4 = −(L + 1)/2. On the other hand,
Eq. (15) yields k − i = (1 − L)/2. Therefore, it follows that
k − j = −L, which is impossible.
(iii) If n = 1, then Eq. (14) becomes (i− j)+ 3L+1

2 (k− i) =

(3L2 + 1)/4, which is

(i− j) + (L − 1)/4 + 2(
3L + 1

4
)(k − i) = L(3L + 1)/4.

(17)

This equation can be rewritten as

(i− j) + (L − 1)/4 = z(3L + 1)/4, (18)

where z is an integer. As LHS of Eq. (18) satisfies |LHS| ≤

(L − 1) + (L − 1)/4 < 2[(3L + 1)/4], it is obvious that
z ∈ {0, −1, 1}. If z = 0, then Eq. (18) yields (i − j) =

−(L − 1)/4 and hence Eq. (17) reduces to 2( 3L+1
4 )(k − i) =

L(3L + 1)/4. Therefore, (k − i) = L/2. It is impossible
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FIGURE 1. LBccs comparison: new method (Theorem 3(i)) and existing
method [17].

FIGURE 2. LBccs comparison: new method (Theorem 3(ii)) and existing
method [17].

as L is odd. If z = 1, then Eq. (18) turns into (i − j) =

−(L − 1)/4 + (3L + 1)/4 = (L + 1)/2 and hence Eq. (17)
reduces to k − i = (L − 1)/2. As a result, k − j = L,
which is impossible. If z = −1, then Eq. (18) becomes
(i−j) = −(L−1)/4−(3L+1)/4 = −L, which is impossible.

□
The LBccs for the exponent matrix generated by

Theorem 3 (i) (resp. Theorem 3 (ii)) (after modulo P) is
compared with that for the exponent matrix generated by
[0, 1,L]T · [0, 1, · · · ,L − 1] in Fig. 1 (resp. Fig. 2). It is
observed that the new construction has a smaller LBccs and
hence can offer more small circulant sizes guaranteeing girth-
eight codes.

IV. NEW CONSTRUCTION FOR J=4
According to Lemma 1, the existing tuple [0, 1,L,L + 1]
ensures a (4,L)-regular QC-LDPC code without 4-cycles and
6-cycles if the circulant size is greater than or equal to L2.
In this section, it is analyzed whether this tuple is feasible

for girth-eight code with circulant sizes smaller than L2. The
answer to the question turns out to be in the negative. In an
attempt to find tuples suitable for smaller circulant sizes,
a novel tuple permitting larger entries is proposed, which
includes the existing tuple [0, 1,L,L + 1] as a special case.
On the one hand, it is proved that the novel method also works
for the circulant size L2. On the other hand, it is empirically
found that the new method is suitable for circulant sizes
smaller than L2 for certain parameters, but no general rules
are found. Instead, another new construction is presented
based on the tuple [0,L/2,L+1, 3L+1], which can provide
much smaller circulant sizes when L can be divided by 8.

A. NEW PROPERTY FOR EXISTING TUPLE [0,1,L,L+1]
Theorem 4: S2 = [0, 1,L,L + 1] corresponds to a girth-

eight (4,L)-regular FLRM QC-LDPC code if and only if the
circulant size P ≥ L2.

Proof: Since the tuple [0, 1,L,L+1] satisfies the GCD
constraint, any circulant size P ≥ L2 can ensure a girth-
eight QC-LDPC code. Moreover, owing to Theorem 1, any
circulant size P ≤ L(L−1) corresponds to a QC-LDPC code
with girth smaller than eight. Therefore, it suffices to consider
the circulant size in the range L(L − 1) + 1 ≤ P ≤ L2 − 1.
For 1 ≤ i ≤ L − 2, the 6-cycles governed by [e(0, i) −

e(1, i)] + [e(1, 0) − e(3, 0)] + [e(3,L − 1) − e(0,L − 1)] =

(L + 1)(L − 1) − i = 0 (mod P) cannot occur. As a result,
P /∈ {L2 − 1 − (L − 2),L2 − 1 − (L − 1), · · · ,L2 − 1 − 1}.
Besides, it is obvious that P ̸= L2 − 1; otherwise, there exist
4-cycles expressed by [e(0, 0) − e(3, 0)] + [e(3,L − 1) −

e(0,L − 1)] = 0 (mod L2 − 1). □

B. NEW GENERALIZATION FROM TUPLE [0,x,yL,x+zL]
Theorem 5: Let x, y and z be three integers (not necessarily

distinct) such that gcd(x,L) = 1, gcd(y,L) = 1 and
gcd(z,L) = 1. Then S2 = [0, x, yL, x + zL] corresponds
to a girth-eight (4,L)-regular FLRM QC-LDPC code for the
circulant size P = L2.

Proof: Let i and j be two column indexes such that
0 ≤ i < j ≤ L − 1. There are six cases for 4-cycles.
(i) (0,1)-4-cycles: Such cycles can be expressed as (0−xi)+

(xj− 0) = 0 (mod P), which reduces to x(j− i) = nL2 for a
certain integer n. As gcd(x,L) = 1, it follows that L|(j − i).
Obviously, this is impossible.

(ii) (0,2)-4-cycles: The cycles can be represented by [0 −

(yL)i] + [(yL)j − 0] = 0 (mod P), which is equivalent to
(yL)(j− i) = nL2 for a certain integer n. Because gcd(y,L) =

1, it is clear that L|(j− i), which cannot hold true.
(iii) (0,3)-4-cycles: Such cycles can be denoted by [0 −

(x + zL)i] + [(x + zL)j− 0] = 0 (mod P), which reduces to
(zL+x)(j− i) = nL2 for a certain integer n. Owing to Lemma
3 and gcd(x,L) = 1, it is clear that gcd(zL + x,L) = 1.
Therefore, L|(j− i), which is impossible.
(iv) (1,2)-4-cycles: The cycles can be expressed as [xi −

(yL)i]+ [(yL)j− xj] = 0 (mod P), which becomes x(i− j)+
yL(j− i) = nL2 for a certain integer n. Since gcd(x,L) = 1,
it is obvious that L|(i− j), which cannot hold true.
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(v) (1,3)-4-cycles: Such cycles can be denoted by [xi−(x+

zL)i] + [(x + zL)j− xj] = 0 (mod P), which is equivalent to
zL(j − i) = nL2 for a certain integer n. As gcd(z,L) = 1,
it follows that L|(j− i), which is impossible.

(vi) (2,3)-4-cycles: The cycles can be represented by
[(yL)i− (x + zL)i]+ [(x + zL)j− (yL)j] = 0 (mod P), which
reduces to x(j−i)+L(z−y)(j−i) = nL2 for a certain integer n.
As gcd(x,L) = 1, it follows that L|(j− i), which cannot hold
true.

Let i, j and k be three different column indexes such that
0 ≤ i, j, k ≤ L − 1. There are four cases for 6-cycles.

(i) (0,1,2)-6-cycles: Such cycles can be denoted by (0 −

xj) + [xi − (yL)i] + [(yL)k − 0] = 0 (mod P), which is
equivalent to x(i− j)+yL(k− i) = nL2 for a certain integer n.
As gcd(x,L) = 1, it is clear that L|(i− j). It is impossible.
(ii) (0,1,3)-6-cycles: The cycles can be described by (0 −

xj)+ [xi− (x + zL)i]+ [(x + zL)k − 0] = 0 (mod P), which
is equivalent to x(i− j)+ (x + zL)(k − i) = nL2 for a certain
integer n. By arranging terms, it becomes x(k−j)+zL(k−i) =

nL2. As gcd(x,L) = 1, it is clear that L|(k − j). Obviously,
it is impossible.
(iii) (0,2,3)-6-cycles: Such cycles can be expressed as [0−

(yL)j] + [(yL)i− (x + zL)i] + [(x + zL)k − 0] = 0 (mod P),
which is equivalent to (yL)(i− j)+ (x+ zL)(k − i) = nL2 for
a certain integer n. It can be rewritten as (yL)(i− j) + x(k −

i) + (zL)(k − i) = nL2. As gcd(x,L) = 1, it is obvious that
L|(k − i), which cannot hold true.

(iv) (1,2,3)-6-cycles: The cycles can be described by [xj−
(yL)j]+ [(yL)i− (x + zL)i]+ [(x + zL)k − xk] = 0 (mod P),
which reduces to x(j− k) + (yL)(i− j) + (x + zL)(k − i) =

nL2 for a certain integer n. By arranging terms, it turns into
x(j−i)+(yL)(i−j)+(zL)(k−i) = nL2. Since gcd(x,L) = 1,
it is clear that L|(j− i), which is impossible. □
Remark 3: By setting (x, y, z) = (1, 1, 1), the sequence

S2 becomes [0, 1,L,L+1], which is just an existing method.
The new construction, however, is more general in the sense
that it is able to yield a large number of girth-eight (4,L)-
regular FLRM codes with the circulant size of L2. In addition,
it should be noted that for certain parameters, the circu-
lant size can be smaller than L2. For example, (x, y, z) =

(5, 1, 11) and (x, y, z) = (9, 13, 7) are two tuples which
ensure girth-eight FLRM codes with P = 60 for L = 8.
For another example, (x, y, z) = (4, 15, 21) and (x, y, z) =

(10, 3, 18) are two tuples which guarantee girth-eight FLRM
codes with P = 111 for L = 11.

C. NEW CONSTRUCTION FROM TUPLE [0,L/2,L+1,3L+1]
According to Remark 3, the construction in Theorem 5 may,
in very special cases, yields girth-eight FLRM codes with
circulant sizes smaller than L2, but no general rules have been
found. Instead, a new tuple of [α0, · · · , α3] is sought out,
which permits a smaller circulant size to produce girth-eight
FLRM codes for each L satisfying mod(L, 8) = 0.
Theorem 6: If mod(L, 8) = 0, then S2 = [0,L/2,L +

1, 3L + 1] corresponds to a girth-eight (4,L)-regular FLRM
QC-LDPC code for the circulant size P = L2 − L/2.

Proof: Firstly, consider 4-cycles. Let i and j be two
column indexes such that 0 ≤ i < j ≤ L − 1. There are
six cases for 4-cycles.

(i) (0,1)-4-cycles can be expressed as [0 − (L/2)i] +

[(L/2)j− 0] = 0 (mod P), which is equivalent to

(L/2)(j− i) = n(L2 − L/2) (19)

for a certain integer n. As 0 < LHS ≤ L(L − 1)/2 < (L2 −

L/2), Eq. (19) is impossible.
(ii) (0,2)-4-cycles can be denoted by [0− (L+1)i]+ [(L+

1)j− 0] = 0 (mod P), which reduces to

(L + 1)(j− i) = n(L2 − L/2) (20)

for a certain integer n. Because 0 < LHS ≤ (L + 1)(L −

1) < 2(L2 − L/2), Eq. (20) is possible only for n = 1. When
n = 1, Eq. (20) becomes (L + 1)(j − i) = L2 − L/2, where
LHS < RHS for the case j− i ≤ L − 2 and LHS > RHS for
the case j− i = L − 1. Therefore, Eq. (20) is impossible.
(iii) (0,3)-4-cycles can be represented by [0− (3L+ 1)i]+

[(3L + 1)j− 0] = 0 (mod P), which is equivalent to

(3L + 1)(j− i) = n(L2 − L/2) (21)

for a certain integer n. Since 0 < LHS ≤ (3L + 1)(L −

1) < 3(L2 − L/2), Eq. (21) is possible only for n = 1 or
n = 2. (a) If n = 1, then (3L + 1)(j − i) = (L/2)(2L − 1).
As gcd(3L + 1,L/2) = 1, it follows that (L/2)|(j − i). The
only possibility is j − i = L/2 and hence Eq. (21) becomes
3L + 1 = 2L − 1, which is impossible. (b) If n = 2, then
(3L + 1)(j − i) = L(2L − 1). As gcd(3L + 1,L) = 1, it is
clear that L|(j− i), which is also impossible.
(iv) (1,2)-4-cycles can be expressed as [(L/2)i−(L+1)i]+

[(L + 1)j− (L/2)j] = 0 (mod P), which reduces to

(L/2 + 1)(j− i) = n(L2 − L/2) (22)

for a certain integer n. However, Eq. (22) is impossible due to
the relationship 0 < LHS ≤ (L/2+ 1)(L − 1) < (L2 − L/2).
(v) (1,3)-4-cycles can be denoted by [(L/2)i− (3L+1)i]+

[(3L + 1)j− (L/2)j] = 0 (mod P), which is equivalent to

(5L/2 + 1)(j− i) = n(L2 − L/2) (23)

for a certain integer n. Because 0 < LHS ≤ (5L/2 + 1)(L −

1) < 3(L2 − L/2), Eq. (23) is possible only for n = 1 or
n = 2. (a) If n = 1, then (5L/2 + 1)(j− i) = (L/2)(2L − 1).
As gcd(5L/2 + 1,L/2) = 1, it is clear that j − i = L/2 and
hence (5L/2+1) = 2L−1, which is impossible. (b) If n = 2,
then (5L/2 + 1)(j − i) = (L/2)(4L − 2). Similarly, because
gcd(5L/2+1,L/2) = 1, it is clear that j− i = L/2 and hence
5L/2 + 1 = 4L − 2, which is also impossible.
(vi) (2,3)-4-cycles can be expressed as [(L + 1)i − (3L +

1)i] + [(3L + 1)j− (L + 1)j] = 0 (mod P), which reduces to

2L(j− i) = n(L2 − L/2) (24)

for a certain integer n. As 0 < LHS ≤ 2L(L − 1) < 2(L2 −

L/2), Eq. (24) is possible only for n = 1. However, n =

1 leads to 2(j− i) = (L − 1/2), which is impossible.
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Next, consider 6-cycles. Let i, j and k be three different
column indexes such that 0 ≤ i, j, k ≤ L − 1. There are four
cases for 6-cycles.

(i) (0,1,2)-6-cycles can be represented by [0 − (L/2)j] +

[(L/2)i− (L + 1)i]+ [(L + 1)k − 0)] = 0 (mod P), which is
equivalent to

(L/2)(i− j) + (L + 1)(k − i) = n(L2 − L/2). (25)

If n = 0, Eq. (25) becomes (L/2)(i − j) = (L + 1)(i − k).
As gcd(L/2,L+ 1) = 1, it follows that (L+ 1)|(i− j), which
is impossible. If n ̸= 0, |RHS| ≥ (L2 − L/2) but |LHS| ≤

(−1)L/2 + (L + 1)(L − 1) = L2 − L/2 − 1. Therefore, it is
also impossible.

(ii) (0,1,3)-6-cycles can be denoted by [0 − (L/2)j] +

[(L/2)i− (3L + 1)i]+ [(3L + 1)k − 0)] = 0 (mod P), which
is equivalent to (L/2)(i− j)+ (3L+1)(k− i) = n(L2 −L/2).
By arranging terms, it turns into

(L/2)[i− j− n(2L − 1)] = (3L + 1)(i− k). (26)

Since gcd(L/2, 3L + 1) = 0, it is clear that i − k = L/2 or
−L/2. (a) If i− k = L/2, then i− j = n(2L − 1)+ (3L + 1).
This is possible only when n = −2 and hence i− j = −L+3.
However, this scenario implies k−j = −L−L/2+3, which is
impossible. (b) If i−k = −L/2, then i−j = n(2L−1)−(3L+

1). This is possible only when n = 2 and hence i− j = L−3.
However, for this scenario it follows that k− j = L+L/2−3,
which is also impossible.

(iii) (0,2,3)-6-cycles can be represented by [0− (L+1)j]+
[(L+1)i− (3L+1)i]+ [(3L+1)k−0)] = 0 (mod P), which
is (L+1)(i− j)+(3L+1)(k− i) = n(L2−L/2). By arranging
terms, it becomes

2(
L
2
)(i− j) + 6(

L
2
)(k − i) + (k − j) = n(

L
2
)(2L − 1). (27)

Therefore, k − j = L/2 or −L/2. (a) If k − j = L/2, Eq. (27)
reduces to 2(L/2)+4(k−i)+1 = n(2L−1). As |LHS| ≤ 5L−

3 < 3(2L − 1) and LHS is odd, it follows that n ∈ {−1, 1}.
However, n = 1 yields k− i = (L−2)/4, which is impossible
as 8|L. Similarly, n = −1 implies k − i = −3L/4 and hence
i − j = L/2 + 3L/4 > L − 1, which is impossible. (b) If
k−j = −L/2, Eq. (27) becomes 2(−L/2)+4(k−i)+(−1) =

n(2L− 1). Because |LHS| ≤ 5L− 3 < 3(2L− 1) and LHS is
odd, it is obvious that n ∈ {−1, 1}. However, n = 1 leads to
k − i = 3L/4 and hence j− i = L/2+ 3L/4 > L − 1, which
is impossible. Likewise, n = −1 yields k − i = (2 − L)/4,
which is also impossible.

(iv) (1,2,3)-6-cycles can be described by [(L/2)j − (L +

1)j]+[(L+1)i−(3L+1)i]+[(3L+1)k−(L/2)k] = 0 (mod P),
which is equivalent to (L/2)(j− k) + (L + 1)(i− j) + (3L +

1)(k − i) = n(L2 − L/2) for a certain integer n. By arranging
terms, it turns into

(
L
2
)[(k − j) + 4(k − i)] + (k − j) = n(

L
2
)(2L − 1). (28)

Therefore, (k− j) = L/2 or k− j = −L/2. (a) If k− j = L/2,
Eq. (28) reduces to (L/2) + 4(k − i) + 1 = n(2L − 1). Since
|LHS| ≤ 4L+L/2−3 < 3(2L−1) and LHS is odd, it follows

that n ∈ {−1, 1}. However, n = 1 means k − i = (3L − 4)/8,
which is impossible as 8|L. Likewise, n = −1 leads to k −

i = −(5L)/8 and hence i − j = L/2 + 5L/8 > L − 1,
which is impossible. (b) If k − j = −L/2, Eq. (28) reduces
to −(L/2) + 4(k − i) − 1 = n(2L − 1). Because |LHS| ≤

4L + L/2 − 3 < 3(2L − 1) and LHS is odd, it is clear that
n ∈ {−1, 1}. However, n = 1 implies k − i = (5L)/8 and
hence j − i = L/2 + 5L/8 > L − 1, which is impossible.
Similarly, n = −1 leads to k − i = (4− 3L)/8, which is also
impossible due to 8|L. □

V. NEW CONSTRUCTION FOR J=5
In the literature, there are three existing tuples [12] which
can explicitly produce (5,L)-regular QC-LDPC codes with
girth eight for any circulant size greater than or equal to
α4(L − 1) + 1, where α4 stands for the last entry of the
tuples. The three existing tuples are [α0, · · · , α4] = [0, 1,L+

2, 2L+1, 2L+2], [0, 1,L,L+1, 2L+3] and [0, 2,L, 2L+

1, 2L + 2], respectively. In this section, whether these tuples
are applicable to circulant sizes smaller than α4(L− 1)+ 1 is
explored. It turns out that the latter two tuples indeed work
for certain types of L. For the rest scenarios where the latter
two tuples are not applicable, two novel tuples are proposed
to offer circulant sizes much smaller than α4(L − 1) + 1.
The five tuples are analyzed one by one in the following

subsections V-A-V-E, respectively.

A. ON EXISTING TUPLE [0,1,L+2,2L+1,2L+2]
Regarding the first tuple [0, 1,L + 2, 2L + 1, 2L + 2],
it has been empirically verified that for L in the range
L = 6 ∼ 50 such that mod(L, 6) /∈ {1, 4}, girth cannot reach
eight if the circulant size is smaller than (2L+ 2)(L− 1)+ 1.
Therefore, the following conjecture is likely to be true.
Conjecture 3: Let L ≥ 6 be an integer satisfying

mod(L, 6) /∈ {1, 4}. For S2 = [0, 1,L + 2, 2L + 1, 2L + 2],
the smallest circulant size ensuring a girth-eight FLRM QC-
LDPC code is (2L + 2)(L − 1) + 1.

B. NEW PROPERTY FOR EXISTING TUPLE [0,1,L,L+1,2L+3]
Now, consider the second tuple, [0, 1,L,L + 1, 2L + 3].
It turns out that a circulant size smaller than (2L + 3)(L −

1) + 1 does exist.
Theorem 7: If mod(L, 6) ∈ {2, 4}, then S2 = [0, 1,L,L+

1, 2L + 3] corresponds to a girth-eight (5,L)-regular FLRM
QC-LDPC code for the circulant size P = (L + 2)2 − 1.
See appendix A for the proof of Theorem 7.
It has been verified that for L in the range L = 8 ∼ 50 such

that mod(L, 6) ∈ {2, 4}, girth cannot reach eight when the
circulant size is smaller than (L + 2)2 − 1. Therefore, the
following conjecture is likely to be true.
Conjecture 4: Let L ≥ 8 be an integer satisfying

mod(L, 6) ∈ {2, 4}. For S2 = [0, 1,L,L + 1, 2L + 3], the
smallest circulant size guaranteeing a girth-eight FLRMQC-
LDPC code is (L + 2)2 − 1.
The LBccs for the exponent matrix in Theorem 7

(after modulo P) is compared with that for the original
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FIGURE 3. LBccs comparison: new method (Theorem 7) and existing
method [12].

exponent matrix [12] generated by [0, 1,L,L+1, 2L+3]T ·

[0, 1, · · · ,L−1] in Fig. 3. It is observed that the novelmethod
provides a smaller LBccs, which enables more small circulant
sizes to produce girth-eight codes.

C. NEW PROPERTY FOR EXISTING TUPLE
[0,2,L,2L+1,2L+2]
Finally, consider the third tuple, [0, 2,L, 2L + 1, 2L + 2].
It turns out that a circulant size smaller than (2L + 2)(L −

1) + 1 does exist.
Theorem 8: If mod(L, 6) ∈ {1, 3}, then S2 = [0, 2,L,

2L + 1, 2L + 2] corresponds to a girth-eight (5,L)-regular
FLRM QC-LDPC code for P = 2L(L − 1) + 1.
See appendix B for the proof of Theorem 8.
It is possible to further reduce the circulant size. It has been

verified that for L in the range 19 ≤ L ≤ 100 satisfying
mod(L, 6) ∈ {1, 3}, the sequence S2 = [0, 2,L, 2L + 1,
2L + 2] corresponds to a girth-eight (5,L)-regular FLRM
QC-LDPC code for P = 2L(L − 3) + 3.
Up to now, two tuples have been found, which guarantee

girth-eight FLRM codes with circulant sizes smaller than
α4(L − 1) + 1 for mod(L, 6) ∈ {2, 4} and mod(L, 6) ∈

{1, 3}, respectively. In regard to the non-applicable scenarios
(mod(L, 6) ∈ {0, 5}), two novel tuples applicable to the case
mod(L, 6) = 0 and the case mod(L, 6) = 5, respectively, are
empirically conceived in the following two subsections.

D. NEW CONSTRUCTION FROM TUPLE [0,1,L+1,L+2,3L]
Conjecture 5: If mod(L, 6) = 0, then S2 = [0, 1,L + 1,

L + 2, 3L] corresponds to a girth-eight (5,L)-regular FLRM
QC-LDPC code for P = L2 + 14L − 3.
The validity of Conjecture 5 has been verified for

6 ≤ L ≤ 100 such that mod(L, 6) = 0. Although Conjec-
ture 5 would probably be proved by taking full advantage of
the skills used in the proof of Theorem 7, it is not proved here
and is left as an open problem.

For certain choices of L, the circulant size can be chosen
even smaller. For L in the range 6 ≤ L < 54 such that
mod(L, 6) = 0, it has been verified that [0, 1,L+1,L+2, 3L]
corresponds to a girth-eight (5,L)-regular FLRM QC-LDPC
code for P = L2 + 10L − 3; however, for L = 54, such a
circulant size leads to girth smaller than eight.

E. NEW CONSTRUCTION FROM TUPLE [0,2,L+2,L+8,3L+8]
The validity of the following conjecture has been verified for
5 ≤ L ≤ 100 such that mod(L, 6) = 5.
Conjecture 6: If mod(L, 6) = 5, then S2 = [0, 2,L + 2,

L + 8, 3L + 8] corresponds to a girth-eight (5,L)-regular
FLRM QC-LDPC code for P = L2 + 8L + 16.
If mod(L, 12) = 5, the circulant size can be chosen even

smaller. The correctness of the following conjecture has been
verified for 5 ≤ L ≤ 100 such that mod(L, 12) = 5.
Conjecture 7: If mod(L, 12) = 5, then S2 = [0, 2,

L + 2,L + 8, 3L + 8] corresponds to a girth-eight (5,L)-
regular FLRM QC-LDPC code for P = L2 + 8L + 12.
It is probable to prove Conjecture 6 and Conjecture 7 by

taking full advantage of the skills employed in the proof of
Theorem 7; however, they are not proved here and are left as
open problems.

The new constructions (which have been proved in this
paper) for girth-eight FLRM QC-LDPC codes are summa-
rized in Table. 1. Besides, a set of conjectures raised in this
paper regarding girth-eight FLRMQC-LDPC codes are listed
in Table. 2.

TABLE 1. Summary of novel constructions.

TABLE 2. Summary of main conjectures.

VI. PERFORMANCE SIMULATIONS
In this section, a set of novel girth-eight FLRM QC-
LDPC codes or their derived codes are compared with
existing counterparts, in terms of the bit/block error rate.
The BPSK modulation, AWGN channel and sum-product-
algorithm (SPA) decoding are used in our simulations. With
the increase of iterations for SPA, decoding performance
gradually improves. However, when the number of iterations
exceeds a certain integer (such as 100), performance improve-
ment is negligible. This paper adopts the convention in some
existing papers, and set the number of iterations to 50.
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FIGURE 4. Performance comparison of (3, L)-regular FLRM QC-LDPC
codes: new code generated by [0, 2, L] (in Theorem 2) and existing code
obtained by [0, 1, L] [17], where L = 15.

Example 1: For L = 15, two (3,L)-regular FLRM QC-
LDPC codes are constructed with girth eight. According to
Theorem 2, the first code is generated based on the new tuple
[0, 2,L] and a circulant size P = L2 − 2L + 4 = 199. The
second one is obtained by the existing tuple [0, 1,L] [17] with
a circulant size P = L(L − 1) + 1 = 211. Although the new
code is 180 bits shorter than its counterpart, it is observed in
Fig. 4 that they perform almost the same.
Example 2: For L = 12, set E= [0, 1, 3L/2]T ·

[0, 1, · · · ,L − 1] and P0 = 3L2/4 + L/2 = 114 according
to Theorem 3(i). Let E’= mod(E,P0). Then select another
circulant size P = 133 to produce a (3, 12)-reguar QC-LDPC
code based on E’. For comparison, another code is obtained
by the existing tuple [0, 1,L] [17] and the same circulant size
P = 133. It is noticed in Fig. 5 that the new code performs
noticeably better than the existing one.
For L = 9, two (3,L)-regular girth-eight QC-LDPC codes

are constructed as follows. The first code is generated by the
existing tuple [0, 1,L] [17] with a circulant size P = L(L −

1)+ 1 = 73. According to Theorem 3(ii), let E= [0, 1, (3L+

1)/2]T · [0, 1, · · · ,L − 1] and P0 = (3L2 + 1)/4 = 61. Set
E’= mod(E,P0). Then the second code is obtained from E’
and the same circulant size P = 73. It is observed in Fig. 6
that the novel code markedly outperforms its counterpart.
As can be seen from the two new codes in this example,

circulant sizes different from those in Theorem 3 can be
chosen to construct girth-eight QC-LDPC codes, as long as
they are not smaller than the associated LBccs for E’.
Example 3: For L = 12, two (4,L)-regular FLRM QC-

LDPC codes are constructed with girth eight. According to
Theorem 5, the first code is generated based on the novel
tuple [0, 1, 5L, 1 + 7L] and a circulant size P = L2 = 144.
The second one is obtained by the existing tuple [0, 1,L,

L + 1] [17] with the same circulant size P = 144. It is
observed in Fig. 7 that they perform more or less the same.

FIGURE 5. Performance comparison of (3, L)-regular QC-LDPC codes: new
code generated by [0, 1, a] (in Theorem 3(i)) and existing code obtained
by [0, 1, L] [17], where L = 12 and a = 3L/2.

FIGURE 6. Performance comparison of (3, L)-regular QC-LDPC codes: new
code generated by [0, 1, a] (in Theorem 3(ii)) and existing code obtained
by [0, 1, L] [17], where L = 9 and a = (3L + 1)/2.

The advantage of Theorem 5 is that, via this theorem, many
nonequivalent girth-eight (4,L)-regular codes with the same
length can be easily found, so better girth-eight codes can be
further picked out from these candidates by utilizing certain
advanced skills.

For L = 8, two (4, L)-regular FLRM QC-LDPC codes are
constructed with girth eight. According to Theorem 6, the
first code is generated based on the new tuple [0,L/2,L +

1, 3L+1] and a circulant sizeP = L2−L/2 = 60. The second
one is obtained by the existing tuple [0, 1,L,L+1] [17] with
a circulant size P = L2 = 64. Although the novel code is
sightly shorter than its counterpart, it is observed in Fig. 8
that the new FLRM code noticeably outperforms the existing
FLRM code.
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FIGURE 7. Performance comparison of (4, L)-regular FLRM QC-LDPC
codes: new code generated by [0, 1, 5L, 1 + 7L] (in Theorem 5) and
existing code obtained by [0, 1, L, L + 1] [17], where L = 12.

FIGURE 8. Performance comparison of (4, L)-regular FLRM QC-LDPC
codes: new code generated by [0, L/2, L + 1, 3L + 1] (in Theorem 6) and
existing code obtained by [0, 1, L, L + 1] [17], where L = 8.

Example 4: Let L = 10. According to Theorem 7, a new
(5,L)-regular FLRM QC-LDPC code is constructed with
girth eight, which is generated from the tuple [0, 1,L,L +

1, 2L + 3] with a new circulant size P = (L + 2)2 − 1 =

143. By setting L = 9, a novel girth-eight (5,L)-regular
FLRM QC-LDPC code is constructed via Theorem 8 from
the tuple [0, 2,L, 2L + 1, 2L + 2] with a new circulant size
P = 2L(L − 1) + 1 = 145. Because there are no existing
girth-eight FLRM codes which are explicitly constructed with
comparable circulant sizes in the literature, two array-based
FLRM QC-LDPC codes [16] with similar prime circulant
sizes (P = 149 for both L = 10 and L = 9) are adopted
as counterparts of the two new codes. The exponent matrices
for the array-based codes are both [0, 1, · · · , 4]T ·[0, 1, · · · ,

L−1]. It should be noted that array-based codes only ensure

FIGURE 9. Performance comparison of (5, L)-regular FLRM QC-LDPC
codes: new code generated by [0, 1, L, L + 1, 2L + 3] (in Theorem 7) and
array code generated by [0, 1, 2, 3, 4] [16], where L = 10.

FIGURE 10. Performance comparison of (5, L)-regular FLRM QC-LDPC
codes: new code generated by [0, 2, L, 2L + 1, 2L + 2] (in Theorem 8) and
array code generated by [0, 1, 2, 3, 4] [16], where L = 9.

girth six. It is observed in Fig. 9 and Fig. 10 that the new
girth-eight FLRM codes significantly outperform the array-
based counterparts.
Nevertheless, performance of the new (5,L)-regular codes

is far from satisfactory, probably because the corresponding
decoding thresholds for such row/column weights are rela-
tively large. To improve performance, a binary 5×9masking
matrix (defined by Eq. (7) in [12]) is applied to the expo-
nent matrices of the new code and array-based code with
L = 9. As is well known [12], each zero within the masking
matrix implies that a corresponding P × P CPM within the
PCM of a QC-LDPC code is replaced by a P × P zero
matrix. By comparing Fig. 10 and Fig. 11, it is observed
that the two masked codes both noticeably outperform their
respective unmasked versions, and that the masked new code
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FIGURE 11. Performance comparison of the masked QC-LDPC codes
corresponding to the new QC-LDPC code and array-based QC-LDPC code
in Fig. 10, with the masking matrix defined by Eq. (7) in [12].

TABLE 3. Comparison of the minimum circulant size (Pmin) for a
randomly generated novel tuple and that [29] for the tuple with the
smallest αJ−1 [15], where J = 5.

still performs significantly better than the masked array-
based code. The desirable performance indicates that, the
novel girth-eight FLRM QC-LDPC codes with large column
weights can be well combined with masking matrices to
produce good QC-LDPC codes.

VII. A BYPRODUCT: COMPARISON OF MINIMUM
CIRCULANT SIZES FOR TUPLES FOUND BY TWO
DIFFERENT SCHEMES
As a byproduct of this paper, a set of tuples for J = 5 which
satisfy the GCD constraint have been randomly generated.
Different from those tuples found in [15] which possess the
smallest αJ−1, the new tuples are allowed to take much larger
αJ−1. In our setting, αJ−1 is limited to be at most 4L. For each
L in the range 5 ≤ L ≤ 20, the tuple randomly found (not
necessarily conducting exhaustive search) and the associated
minimum circulant size are listed in Table 3. It is noticed that
for most cases the new minimum circulant size is remarkably
smaller than the one computed in [29] based on the tuple

found in [15]. For the three cases where L ∈ {9, 10, 17}, the
minimum circulant size found here is exactly equal to that
in [29].

For small or moderate values of L, via optimizing search
space (such as Algorithm 1 in [15]), it is possible to conduct
exhaustive search in a reasonably short time, so as to find
tuples with the smallest circulant sizes (among all tuples
subject to αJ−1 ≤ 4L). However, the design of an efficient
method based on exhaustive search is outside the scope of
the paper.

VIII. CONCLUSION
New properties, constructions and conjectures are put for-
ward for FLRM QC-LDPC codes with girth eight. The con-
tributions of this paper can be summarized as four aspects.

(i) It has been proved that, for girth-eight FLRM codes, the
two existing tuples, [0, 1,L] and [0, 1,L,L+1], cannot offer
circulant sizes smaller than their LBccs bounds.

(ii) For girth-eight (3,L)-regular FLRM codes, three new
tuples ([0, 2,L], [0, 1, 3L/2] and [0, 1, (3L + 1)/2]) have
been proposed, which can provide some circulant sizes
smaller than their LBccs bounds for certain types of L. The
circulant sizes for the latter two tuples are asymptotically half
of their corresponding LBccs bounds. With regard to girth-
eight (4,L)-regular FLRM code, a novel tuple [0,L/2,L +

1, 3L + 1] has been presented, which offers a circulant size
about one third of its LBccs bound for a certain type of L.
Besides, a new tuple has been put forward, which includes the
existing tuple [0, 1,L,L + 1] as a special case and provides
the circulant size L2 regardless of the LBccs bounds. As for
girth-eight (5,L)-regular FLRMcodes, it has been discovered
that the two existing tuples, [0, 1,L,L + 1, 2L + 3] and
[0, 2,L, 2L+1, 2L+2] can offer some circulant sizes smaller
than their LBccs bounds for certain types of L. The circulant
size for the former is asymptotically half of its corresponding
LBccs bound.

(iii) A couple of conjectures (Conjectures 1 and 2 for two
new tuples with J = 3, and Conjectures 3 and 4 for two
existing tuples with J = 5) have been raised on the smallest
circulant sizes guaranteeing girth-eight FLRM codes. More-
over, for J = 5, several conjectures (Conjectures 5 ∼ 7
for two novel tuples) have been proposed on certain circulant
sizes asymptotically one third of the respective LBccs bounds.

(iv) The new constructions in this paper reveal an interest-
ing fact: if a small circulant size is required, the last entry in
a tuple does not have to choose the smallest possible value.
By adopting the same idea, a simple random search has been
employed to achieve the current smallest circulant sizes for
girth-eight FLRM codes with J = 5.

In the near future, the following work pertaining
to girth-eight FLRM QC-LDPC codes deserves further
research: (i) proving the conjectures raised in this paper
or providing counterexamples; (ii) designing tuples which
further decrease circulant sizes for J up to five, and tuples
suitable for small circulant sizes for J larger than five; and
(iii) exploring how to eliminate small trapping sets [30] or
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absorbing sets [31] for the novel girth-eight FLRM QC-
LDPC codes.

APPENDIX A
Proof of Theorem 7.

Proof: Firstly, consider 4-cycles. There are ten cases
for 4-cycles. The 4-cycles which occur in any two rows of
the first four rows are impossible due to GCD constraint.
Therefore, only the rest four cases where the last row is
involved need to be considered. Let i and j be two column
indexes such that 0 ≤ i < j ≤ L − 1.

(i) (0,4)-4-cycles can be denoted by [0−(2L+3)i]+[(2L+

3)j− 0] = 0 (mod P), which reduces to

(2L + 3)(j− i) = n[(L + 2)2 − 1] (29)

for a certain integer n. As 0 < LHS < (2L + 3)(L − 1) <

2[(L + 2)2 − 1], Eq. (29) is possible only for n = 1. When
n = 1, Eq. (29) reduces to 2(L+2)(j−i)−(L+2)2 = i−j−1.
As a result, (L + 2)|(i− j− 1), which is impossible.
(ii) (1,4)-4-cycles can be represented by [i− (2L + 3)i] +

[(2L + 3)j− j] = 0 (mod P), which is equivalent to

(2L + 2)(j− i) = n[(L + 2)2 − 1] = n(L + 3)(L + 1) (30)

for a certain integer n. Eq. (30) reduces to 2(j− i) = n(L+3).
As L is even, gcd(2,L + 3) = 1. Therefore, it follows that
(L + 3)|(j− i), which is impossible.
(iii) (2,4)-4-cycles can be described as [Li− (2L + 3)i] +

[(2L + 3)j− Lj] = 0 (mod P), which turns into

(L + 3)(j− i) = n(L + 3)(L + 1) (31)

for a certain integer n. Therefore, (L + 1)|(j − i), which is
impossible.

(iv) (3,4)-4-cycles can be denoted by [(L + 1)i − (2L +

3)i]+ [(2L+3)j− (L+1)j] = 0 (mod P), which is equivalent
to

(L + 1)(j− i) + (j− i) = n(L + 3)(L + 1) (32)

for a certain integer n. As a result, (L + 1)|(j − i), which is
impossible.

Next, consider 6-cycles. There are ten cases for 6-cycles.
The 6-cycles which occur within any three rows of the first
four rows are impossible due to GCD constraint. Therefore,
only the rest six cases where the last row is involved need to
be considered. Let i, j and k be three different column indexes
such that 0 ≤ i, j, k ≤ L − 1.
(i) (0,1,4)-6-cycles can be described by (0− j)+ [i− (2L+

3)i] + [(2L + 3)k − 0] = 0 (mod P), which is equivalent to

(i− j) + (2L + 3)(k − i) = n[(L + 2)2 − 1] (33)

for a certain integer n. Eq. (33) reduces to (k − j) + 2(L +

1)(k− i) = n(L+3)(L+1). Therefore, (L+1)|(k− j), which
is impossible.

(ii) (0,2,4)-6-cycles can be denoted by (0−Lj)+[Li−(2L+

3)i] + [(2L + 3)k − 0] = 0 (mod P), which is equivalent to

L(i− j) + (2L + 3)(k − i) = n[(L + 2)2 − 1] (34)

for a certain integer n. By arranging terms, Eq. (34) becomes
L(k−j)+(L+3)(k−i) = n(L+3)(L+1). As gcd(L, 3) = 1,
it is clear that gcd(L,L + 3) = 1 and hence (L + 3)|(k − j),
which is impossible.

(iii) (0,3,4)-6-cycles can be expressed as [0 − (L + 1)j] +

[(L+ 1)i− (2L+ 3)i]+ [(2L+ 3)k − 0] = 0 (mod P), which
is equivalent to

(L + 1)(i− j) + (2L + 3)(k − i) = n[(L + 2)2 − 1] (35)

for a certain integer n. Eq. (35) can be rewritten as (L + 1)
(i− j)+2(L+1)(k− i)+(k− i) = n(L+3)(L+1). Therefore,
(L + 1)|(k − i), which is impossible.
(iv) (1,2,4)-6-cycles can be described by (j − Lj) + [Li −

(2L + 3)i]+ [(2L + 3)k − k] = 0 (mod P), which reduces to

(L + 3)(k − i) + (L − 1)(k − j) = n(L + 3)(L + 1) (36)

for a certain integer n. As L is even, gcd(L − 1,L + 3) =

gcd(L − 1, 4) = 1. Therefore, it follows that (L + 3)|(k − j),
which is impossible.
(v) (1,3,4)-6-cycles can be represented by [j− (L + 1)j]+

[(L+ 1)i− (2L+ 3)i]+ [(2L+ 3)k − k] = 0 (mod P), which
is equivalent to

(L + 1)(i− j) + 2(L + 1)(k − i) + (j− i) = n(L + 3)(L + 1)

(37)

for a certain integer n. Therefore, (L + 1)|(j − i), which is
impossible.
(vi) (2,3,4)-6-cycles are associated with the tuple (L,L +

1, 2L+3). Therefore, such cycles cannot occur for a circulant
size larger than [(2L + 3)− L](L − 1) = (L + 3)(L − 1), due
to Lemma 1. □

APPENDIX B
Proof of Theorem 8.

Proof: Firstly, consider 4-cycles. The 4-cycles which
occur within any two rows of the first three rows are impos-
sible due to GCD constraint. Therefore, only the rest seven
cases related to the last two rows need to be considered. Let i
and j be two column indexes such that 0 ≤ i < j ≤ L − 1.
(i) (0,3)-4-cycles can be denoted by [0−(2L+1)i]+[(2L+

1)j− 0] = 0 (mod P), which is equivalent to

(2L + 1)(j− i) = n[2L(L − 1) + 1] (38)

for a certain integer n. Since 0 < (2L + 1)(j − i) ≤ (2L +

1)(L − 1) < 2[2L(L − 1) + 1], Eq. (38) is possible only
for n = 1. In this case, (2L + 1)(j − i) = 2L(L − 1) + 1,
which is 2L(j− i) + (j− i− 1) = 2L(L − 1), indicating that
2L|(j − i − 1). This is possible only for j − i = 1; however,
this means 2L = 2L(L − 1), which is impossible.

(ii) (1,3)-4-cycles can be represented by [2i− (2L+ 1)i]+
[(2L + 1)j− 2j] = 0 (mod P), which reduces to

(2L − 1)(j− i) = n[2L(L − 1) + 1] (39)

for a certain integer n. As 0 < (2L−1)(j− i) ≤ (2L−1)(L−

1) < 2L(L − 1) + 1. Eq. (39) is impossible.
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(iii) (2,3)-4-cycles can be expressed by [Li− (2L + 1)i]+
[(2L + 1)j− Lj] = 0 (mod P), which is equivalent to

(L + 1)(j− i) = n[2L(L − 1) + 1] (40)

for a certain integer n. Because 0 < (L + 1)(j − i) ≤ (L +

1)(L − 1) < 2L(L − 1) + 1. Eq. (40) is impossible.
(iv) (0,4)-4-cycles can be denoted by [0 − (2L + 2)i] +

[(2L + 2)j− 0] = 0 (mod P), which reduces to

(2L + 2)(j− i) = n[2L(L − 1) + 1] (41)

for a certain integer n. Because 0 < (2L + 2)(j− i) ≤ (2L +

2)(L − 1) < 2[2L(L − 1) + 1], Eq. (41) is possible only for
n = 1. In this case, (2L + 2)(j − i) = 2L(L − 1) + 1, which
can be rewritten as 2L(j − i) + 2(j − i) − 1 = 2L(L − 1).
As a result, 2L|2(j− i)− 1, which is impossible because 0 <

2(j− i) − 1 < 2L.
(v) (1,4)-4-cycles can be represented by [2i− (2L+ 2)i]+

[(2L + 2)j− 2j] = 0 (mod P), which is equivalent to

(2L)(j− i) = n[2L(L − 1) + 1] (42)

for a certain integer n. As 0 < (2L)(j − i) ≤ (2L)(L − 1) <

2L(L − 1) + 1, Eq. (42) is impossible.
(vi) (2,4)-4-cycles can be denoted by [Li − (2L + 2)i] +

[(2L + 2)j− Lj] = 0 (mod P), which reduces to

(L + 2)(j− i) = n[2L(L − 1) + 1] (43)

for a certain integer n. Since 0 < (L+2)(j− i) ≤ (L+2)(L−

1) < 2L(L − 1) + 1, Eq. (43) is impossible.
(vii) (3,4)-4-cycles can be described by [(2L+1)i− (2L+

2)i]+[(2L+2)j−(2L+1)j] = 0 (mod P), which is equivalent
to

j− i = n[2L(L − 1) + 1] (44)

for a certain integer n. As 0 < j− i ≤ L−1 < 2L(L−1)+1,
Eq. (44) is impossible.
Next, consider 6-cycles. There are a total of ten types of

6-cycles. Let i, j and k be three different column indexes such
that 0 ≤ i, j, k ≤ L − 1.
(i) (0,1,2)-6-cycles correspond to the tuple [0, 2,L]. There-

fore, according to Lemma 1, such cycles cannot exist for a
circulant size larger than L(L − 1).
(ii) (0,1,3)-6-cycles can be described by (0 − 2j) + [2i −

(2L+1)i]+[(2L+1)k−0] = 0 (mod P), which is equivalent
to

2(i− j) + (2L + 1)(k − i) = n[2L(L − 1) + 1] (45)

for a certain integer n. Because |LHS| ≤ (2L+1)(L−1)−2 <

2[2L(L − 1) + 1], it is clear that n ∈ {0, 1, −1}. (a) If n = 0,
Eq. (45) becomes 2(i− j) + (2L + 1)(k − i) = 0. Therefore,
2L + 1|(i − j), which is impossible. (b) If n = 1, Eq. (45)
reduces to 2(i − j) + (2L + 1)(k − i) = 2L(L − 1) + 1,
which is 2L(k − i) + k + i − 2j − 1 = 2L(L − 1). Thus,
2L|(k + i− 2j− 1). As |(k + i− 2j− 1)| < 2L, it is possible
only for (k+ i−2j−1) = 0. In this case, 2L(k− i) = 2L(L−

1), which implies k − i = L − 1. Therefore, it follows that

j− i = L/2− 1, which is impossible because L is odd. (c) If
n = −1, Eq. (45) reduces to 2(i − j) + (2L + 1)(k − i) =

−[2L(L−1)+1], which is equal to 2L(k−i)+k+i−2j+1 =

−2L(L−1). Thus, 2L|(k+i−2j+1). Since |(k+i−2j+1)| <

2L, it is possible only for (k + i − 2j + 1) = 0. In this case,
2L(k − i) = −2L(L − 1), indicating i − k = L − 1. As a
result, i− j = L/2− 1, which is impossible due to an odd L.
(iii) (0,1,4)-6-cycles can be described by (0 − 2j) + [2i −

(2L+2)i]+[(2L+2)k−0] = 0 (mod P), which is equivalent
to

2(i− j) + (2L + 2)(k − i) = n[2L(L − 1) + 1] (46)

for a certain integer n. By arranging terms, Eq. (46) becomes
2(k − j) + (2L)(k − i) = n[2L(L − 1) + 1]. Since |LHS| ≤

2L(L − 1) + 2(L − 2) < 2[2L(L − 1) + 1], it follows that
n ∈ {0, 1, −1}. (a) If n = 0, Eq. (46) reduces to 2(k − j) +

(2L)(k − i) = 0. Therefore, L|k − j, which is impossible.
(b) If n = 1, Eq. (46) becomes [2(k − j)− 1]+ (2L)(k − i) =

2L(L−1). As a result, 2L|[2(k− j)−1], which is impossible
as 2(k− j)−1 is odd. (c) If n = −1, Eq. (46) turns into [2(k−

j)+1]+(2L)(k−i) = −2L(L−1). Therefore, 2L|[2(k−j)+1],
which is impossible because 2(k − j) + 1 is odd.
(iv) (0,2,3)-6-cycles can be described by (0 − Lj) + [Li −

(2L+1)i]+[(2L+1)k−0] = 0 (mod P), which is equivalent
to

L(i− j) + (2L + 1)(k − i) = n[2L(L − 1) + 1] (47)

for a certain integer n. Since |LHS| ≤ (2L + 1)(L − 1) +

L(0− 1) < 2L(L − 1)+ 1, it is clear that n = 0. In this case,
Eq. (47) becomes L(i − j) + (2L + 1)(k − i) = 0, which is
L(i− j) + (2L)(k − i) + (k − i) = 0. Thus, L|(k − i), which
is impossible.

(v) (0,2,4)-6-cycles can be described by (0 − Lj) + [Li −
(2L + 2)i] + [(2L + 2)k − 0] = 0 (mod P), equivalent to

L(i− j) + (2L + 2)(k − i) = n[2L(L − 1) + 1] (48)

for a certain integer n. Because |LHS| ≤ (2L + 2)(L − 1) +

L(0 − 1) = 2L2 − L − 2 < 2[2L(L − 1) + 1], it follows that
n ∈ {0, 1, −1}.
(a) If n = 0, Eq. (48) reduces toL(i−j)+(2L+2)(k−i) = 0.

Since gcd(2L + 2,L) = gcd(2,L) = 1, it is obvious that
L|(k − i), which is impossible.
(b) If n = 1, Eq. (48) becomes L(i− j)+ (2L+2)(k− i) =

2L(L − 1)+ 1, which can be rewritten as L(i− j)+ (2L)(k −

i) + 2(k − i) − 1 = 2L(L − 1), showing L|[2(k − i) − 1].
Because 0 < |2(k− i)−1| < 2L, it is clear that 2(k− i)−1 ∈

{L, −L}. If 2(k − i) − 1 = L, then (k − i) = (L + 1)/2 and
hence i − j = L − 4. Therefore, when L ≥ 7, it follows
that k − j = (L + 1)/2 + L − 4 ≥ L, which is impossible.
If 2(k − i) − 1 = −L, then (k − i) = (1 − L)/2 and hence
(i− j) = 3L − 2, which is impossible.
(c) If n = −1, Eq. (48) turns into L(i− j) + (2L + 2)(k −

i) = −[2L(L − 1) + 1], which is L(i − j) + (2L)(k − i) +

2(k − i)+ 1 = −2L(L− 1), showing L|2(k − i)+ 1. Because
0 < |2(k− i)+1| < 2L, it is clear that 2(k− i)+1 ∈ {L, −L}.
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If 2(k − i) + 1 = L, then (k − i) = (L − 1)/2 and hence
(i−j) = −(3L−2), which is impossible. If 2(k−i)+1 = −L,
then (k − i) = −(L + 1)/2 and hence (i − j) = −(L − 4).
Therefore, it follows that k− j = −[(L+1)/2+L−4]. When
L ≥ 7, it is obvious that k − j ≤ −L, which is impossible.

(vi) (0,3,4)-6-cycles can be described by [0− (2L+ 1)j]+
[(2L+1)i− (2L+2)i]+ [(2L+2)k−0] = 0 (mod P), which
is equivalent to

(2L + 1)(i− j) + (2L + 2)(k − i) = n[2L(L − 1) + 1]

(49)

for a certain integer n. By arranging terms, Eq. (49) becomes
(2L + 1)(k − j) + (k − i) = n[2L(L − 1) + 1]. As |LHS| ≤

(2L+ 1)(L− 1)+ (L− 2) < 2[2L(L− 1)+ 1], it is clear that
n ∈ {0, 1, −1}.

(a) If n = 0, Eq. (49) reduces to (2L+1)(k− j)+ (k− i) =

0 and hence 2L + 1|k − i, which is impossible.
(b) If n = 1, Eq. (49) becomes (2L + 1)(k − j)+ (k − i) =

2L(L−1)+1, which is equivalent to 2L(k− j)+ (2k− i− j−
1) = 2L(L − 1). Therefore, 2L|(2k − i− j− 1). As |2k − i−
j−1| ≤ 2L−2 < 2L, it is obvious that 2k− i− j−1 = 0 and
hence k − j = L − 1. It is possible only for k = L − 1 and
j = 0; however, for this case it follows that i = 2L−3, which
is impossible.

(c) If n = −1, Eq. (49) turns into (2L+1)(k− j)+(k− i) =

−[2L(L − 1) + 1], which can be expressed as 2L(k − j) +

(2k− i− j+1) = −2L(L−1). Therefore, 2L|(2k− i− j+1).
As |2k−i−j+1| ≤ 2L−2, it follows that 2k−i−j+1 = 0 and
hence k−j = 1−L. It is possible only for k = 0 and j = L−1;
however, for this case, i = 2 − L, which is impossible.
(vii) (1,2,3)-6-cycles correspond to the tuple [2,L, 2L+1].

Therefore, thanks to Lemma 1, such cycles are impossible for
a circulant size larger than (2L − 1)(L − 1).
(viii) (1,2,4)-6-cycles are associated with the tuple

[2,L, 2L + 2]. As a result, these cycles cannot occur for a
circulant size larger than 2L(L − 1), owing to Lemma 1.

(ix) (1,3,4)-6-cycles correspond to the tuple [2, 2L + 1,
2L + 2]. Therefore, according to Lemma 1, such cycles are
impossible for a circulant size larger than 2L(L − 1).
(x) (2,3,4)-6-cycles are associatedwith the tuple [L, 2L+1,

2L + 2]. Thus, these cycles cannot exist for a circulant size
larger than (L + 2)(L − 1), thanks to Lemma 1. □
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