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ABSTRACT The growing integration of renewable energies into electricity grids leads to an increase of
grid congestions. One countermeasure is the curtailment of renewable energies, which has the disadvantage
of wasting energy. Forecasting congestion provides valuable information for grid operators to prepare and
instruct countermeasures to reduce these energy losses. This paper presents a novel approach for congestion
prediction in distribution grids (i.e. up to 110 kV) considering the n-1 security criterion. For this, our method
considers node injections and power flow and combines three artificial neural network models. The analysis
of study results shows that the implemented neural networks within the presented approach perform better
than naive forecasts models. In the case of vertical power flow, the artificial neural networks also show
better results than comparable parametric models: average values of the mean absolute errors relative to the
parametric models range from 0.89 to 0.21. A high level of accuracy can be achieved for the neural network
that predicts the loading of grid components with a F1 score of 0.92. Further, also with a F1 score of 0.92, this
model shows higher accuracy for the distribution grid components than for those of the transmission grid,
which achieve a F1 score of 0.84. The presented approaches show good potential to support grid operators
in congestion management.

INDEX TERMS Power system operation, distribution grid, congestion management, renewable power
curtailment, artificial neural network, short-term prediction, vertical power flow.

NOMENCLATURE
ANN artificial neural network.
CHP combined heat and power unit.
DSO distribution system operator.
EHV extra high voltage.
HV high voltage.
LV low voltage.
LSTM long short-term memory.
MAE mean absolute error.
ML machine learning.
MSE mean squared error.
MV medium voltage.
PV photo voltaic.
RE renewable energies.

The associate editor coordinating the review of this manuscript and
approving it for publication was Emilio Barocio.

RMAE relative mean absolute error.
RMSE root mean square error.
SCADA supervisory control and data acquisition.
TPE tree-structured parzen estimator.
TSO transmission system operator.
WP wind power.
WTPC wind turbine power curve.

I. INTRODUCTION
Due to energy transition and the consequential rise of renew-
able energies (RE) integrated in electricity grids, the amount
of congested grid components have increased [1]. One way
to ensure save operation within the limits and counteract
overload is to curtail RE [2]. In Germany the amount of
RE curtailment caused by grid congestions increased from
3.74 TWh to 6.15 TWh [3]. As curtailment results in a loss
of energy, congestion management needs to be optimized [4].
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Forecasting upcoming congestion can give network opera-
tors additional information and time to plan countermeasures
and ultimately decrease curtailment. This can contribute to
optimization of congestion management [5]. Furthermore in
Germany the regulation regarding curtailing RE is changed
from former infeed management (Einspeisemangement
defined by §14 EEG), where curtailment is carried out
on demand by grid operator [6], to ‘‘Redispatch 2.0’’ in
October 2021 [7], where RE curtailment is now regu-
lated by §§13,13a, 14 EnWG. As a consequence predic-
tions of grid congestions are also obligatory for distribution
grids [8].

So forecasts for distribution grids are required, but due
to unpredictable power flow challenging to determine [9].
History shows that deep learning is capable solving complex
systems with increasing accuracy and provides the advan-
tage of being flexible [10]. Further, Ilić et al. stated that
artificial neural networks (ANNs) have the advantage to
use a ‘‘reduced input space’’ and are suitable to be applied
in situations that require lots of parallel forecasts [11]. And
Staudt et al. showed that an ANN is a promising tool for
determining redispatch [12]. Thus, the idea of this paper is
to use ANNs for predictions in the distribution grid. Since
grid operation require a high level of security, the presented
assessment of the model’s accuracy is a first step towards
evaluating the integration of ANNs into operative grid man-
agement. As parametric models already exist that provide the
required predictions [13], [14], a comparison of the ANNs
with the parametric approaches is also conducted. Because
measured transformer power are recorded in SCADA (super-
visory control and data acquisition) systems, past grid injec-
tions are available and former grid congestions can be recon-
structed (as shown in [14]). This data can then be utilized
to predict upcoming curtailments in distribution grids using
ANN.

In literature ANN were already successfully applied in the
context of congestion detection [5], RE power [15], [16],
[17] and consumption prediction [18]. An overview of those
ANNs is given in Table 1. Staudt et al. proposed an ANN
for day-ahead prediction of redispatch of individual power
plants by using empirical data from the German electricity
market [12]. Line congestions in transmission grids are pre-
dicted via ANN in [5]. Srivastava et al. proposed an approach
relying onMonte Carlo simulation and probabilistic load flow
to predict congestions occuring in LV grid levels. In their
study generation and consumption are modeled by applying
meteorological data gathered by fisheye lens cameras to pre-
dict PV power production and ANNs for load forecast [18].
Another aproach is to use ANN for congestion prediction in
electricity grids. Fainti et al. used an ANN trained by the
Levenberg-Marqardt algorithm with implemented Bayesian
regularization in order to predict congestion on each of the
three phases of a power distribution line [19]. Alali et al.
trained two ANNs to get the probability of a congested line
in the first model (using complex bus voltage, bus active- and
reactive power) and the source of congestion (the causing bus)

in the second one [20]. The model was trained for a modified
4.16 kV IEEE standard 12-bus distribution grid.

In order to predict possible congestions occuring in the
distribution grid, injections into grid also have to be predicted.
The injections can be simulated by modeling RE injection
and load separately [18], using meteorological information
and information about consumption for phase prediction [19].
Focusing on congestion prediction in [20] they used active
and reactive power of each bus as input features.

Following requirements for congestion prediction are
addressed by the proposed models of this study: Detailed
information of node-injections into the 110 kV grid level [21],
[22], consideration of n-1 security (which means that one grid
component can fail and grid security is still maintained) [23],
[24], and the amount of required RE curtailment should
become determinable. As it is aimed to develop a method
applicable for grid operation, it should be validated against
actual grid data. The paper makes the following contribution:

• The need for curtailment forecasts is addressed, by pre-
senting a model that detects congestions and quantifies
overloading to determine the power to be curtailed.

• The methods presented are ANNs, that predict vertical
power, for MV/HV transformers and wind farms con-
nected to HV grid level, and congestions under con-
sideration of n-1 security. These methods address the
following needs identified in the context of congestion
occuring in distribution systems:
– Time series prediction of vertical power via ANN,

considering individual injection characteristic with
a time step of 15 minutes.

– Component loading prediction for 110 kV distribu-
tion grid via ANN, considering n-1 security, which
functionality includes detecting congestions and so
enables the determination of the power that needs
to be curtailed.

• ANN approaches for vertical power prediction and con-
gestion forecast are compared to a parametric model
using same input data. These are contrasted and eval-
uated to give an outlook on the potentials of both
approaches.

The remainder of the paper is structured as follows: In
Section II the methodology of different ANNs for predicting
vertical power on MV/HV transformers, generated power of
wind farms injected at HV transformers and prediction of
component loading considering contingencies are presented.
In Section III the accuracy of the models are analyzed and
compared to different approaches. The key findings are dis-
cussed in Section IV and finally concluded in Section V.

II. METHODOLOGY
The scope of this study is to enable prediction of curtailment
by designing a machine learning (ML) forecast model for
congestions induced by RE in distribution grids.

To achieve this objective three ANNs are designed.
Fig. 1 shows the interrelation between the models and the
components (each grid component type is assigned a number)
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TABLE 1. Overview of ANNs presented in literature for the prediction of wind power, vertical power flow and grid congestions.

of the 110 kV distribution grid (the grid topology was first
presented in [14]). To identify congestions, injections into
the grid must be known. So, the vertical power on MV/HV
transformers is predicted via an ANN, which is designed
using meteorological forecasts and measurements of trans-

former power. The consumed and generated power of the cor-
responding transformers are represented by bus bar 2 and 4 in
Fig. 1. The vertical power flow on transformers connecting
wind parks directly to the 110 kV grid (represented by 3),
is predicted by a second ANN.
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FIGURE 1. Description of how the ANNs forecasts are connected to the
110 kV distribution grid. Scheme of grid topology was first presented
in [14].

FIGURE 2. Possible combinations of ANNs leading to congestion
prediction.

Knowing the power injections into the grid enables the
next step: The determination of possible overloadings using
the third ANN presented in this paper. Congestions must be
determined taking into account n-1 security [23], [24]. There-
fore, a contingency analysis has to be considered. The third
ANN predicts the maximum load resulting from a contin-
gency analysis for grid components, like lines of the 110 kV
grid (described by 5) and HV/EHV transformers (symbolized
by 1).

To summarize the proposed models of this paper: Three
ANNs are presented, which contribute separately to predict
congestions. The ANN for vertical power prediction enables
DSOs of the MV grid level to predict congestions occurring
on their transformers. Furthermore, the ANNs for vertical
power prediction and wind power (WP) predictions provide
time series of power infeed, which is required as input to
calculate load flows of the distribution grid. And the ANN for
forecasts of grid component loading enables determinations
of congestions considering n-1 security.

Combining these three models, as visualized in Fig. 2,
enables a holistic approach to predict RE caused congestions,
which is required to determine RE curtailment. The injections
of the nodes are predicted by the ANN for vertical power
and the ANN for WP. These node in-feeds are input param-
eters to the ANN for predicting grid component loadings,
thus enabling congestion detection. The advantage of this
combination is that it contributes to the knowledge of the
whole system, i.e. to the detection of possible congestions on

MV/HV transformers and on 110 kV lines. However, in this
paper the models are considered separately.

One drawback of ANNs are that they are black boxes.
If they do not fulfill the security requirements of the grid
operator, the presented approach has the advantage that those
separate models can be exchanged with parametric meth-
ods. So, a comparison between ANN models and parametric
approaches is described in Section III-E of this paper. Another
advantage of this approach, is that it allows an evaluation of
the intermediate results.

A. ANN SETUP
With regard to redispatch forecasts with a forecast horizon
of 3 hours up to 33.5 hours (as day ahead forecast is needed
at 2:30 p.m the day before) are required. Therefore, dif-
ferent forecast periods are considered. For all three ANN
models, a forecast horizon of 12 steps, i.e. three hours, was
chosen. In case of the ANN for vertical power prediction a
forecast horizon of 60, i.e. 15 hours, is additionally used.
The separation of data and the supervised training of each
ANN is structured as follows: The data set, which consist of
associated input and output values [25], is divided into a set
for training and one for testing.

The training period for the ANN of WP prediction
was 01.01.2015 - 31.12.2015 and the testing period was
01.03.2016 - 16.12.2016. For the vertical power ANNs data
of the years 2015 and 2016 were available and for the
ANN of the component loading the data period 25.03.2016 -
16.12.2016 was used. These ANNs had been trained consid-
ering cross-validation [26], by splitting the data into 5 sets.
As the data are time series, the temporal order of each set is
maintained. In this study the ANNs are trained once.

The presented ANNs consist of multiple layers, which
are called dense layers in case of feed-forward layers (as
described in [27]) and Long Short-Term Memory (LSTM)
layers, where information is stored by ‘‘gates’’ [28]. To avoid
overfitting, early stopping (described in Section 4.3 of [27])
is implemented in each ANN.

The output of a neuron from a feed forward layer is defined
in [27] by

xi = f (ξ ) (1)

where ξ denotes the potential of the ith neuron and is defined
by

ξ = ϑi
∑
j∈0−1

ωijxj (2)

0 denotes a function assigning a subset containing the output
of connected neurons from previous layer0(i)−1

⊆ V to each
neuron i,ωij denotes the weight of the connection between the
neurons i and j, and ϑi is the threshold coefficient of the ith
neuron. For further information see [27].

In case of LSTMs the neurons consists of a memory cell.
The output ycj (t) of the j-th cell cj at time t is defined in [28]
by

ycj (t) = youtj (t)h(scj (t)) (3)
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FIGURE 3. ANN architecture for MVHV power prediction.

where youtj describes the ‘‘output gate’’, a function which
prevents perturbation of irrelevant information of following
units. h describes the function, that scales the output of the
cell, and scj defines the internal state of the cell.
For further information regarding LSTM see [28]. For opti-

mization the ‘‘adam’’ algorithm is used to update the weights,
which has the advantage of a adapting learning rate. [29]

B. PREDICTION OF VERTICAL POWER FLOW ON MV/HV
TRANSFORMERS
Vertical power flow on MV/HV transformers is an aggre-
gation of the generated RE power and the connected con-
sumption. The transformers differ in their amount of installed
RE units, or connected loads. So each shows a different
characteristic regarding power backfeeded into the HV level
and power injected into the MV level. These characteristics
can be clustered into five groups based on their ratio of
infeed to backfeed, as proposed in our earlier study [13]
(See Figure 11, 12 in [13]). These clusters are named accord-
ing to their dominant power flow direction. In the follow-
ing the power flow from HV into MV grid level is called
injection, and the power flow from MV to HV grid level
is called backfeed. Accordingly the resulting transformer
clusters which havemore frequent backfeeds into the HV grid
level, are called mainly backfeed, and backfeed. Those that
showmore fequent injections to theMVgrid level are referred
to asmainly demand, and demand since in these cases demand
exceeds generated power.

The available REs in the simulated region are WP, pho-
tovoltaic (PV) and combined heat and power (CHP) units.
Accordingly the descriptive features chosen are wind speed,
global irradiance, historic measured vertical power, and time.

The corresponding architecture consists of two input lay-
ers, one for the historic features and one for the meteoro-
logical forecasts. The historic input layer is connected with
a LSTM layer, while the meteorological input layer is con-
nected with a dense layer. Both, the LSTM and the dense
layers are concatenated and connected to two additional dense
layers.

For each transformer in the model region the number of
nodes for each layer of the ANN is individually adjusted by

TABLE 2. Hyperparameters for ANN predicting Transformer Power.

a hyperparameter optimization to ensure optimal results. The
optimization is performed by the python package optuna [30].

Optuna was configured to minimize theMAE of the result-
ing predictions using ‘‘Tree-structured parzen estimator’’
(TPE) sampling algorithm. For more information regarding
TPE see [31].

The parameters for the number of nodes for each layer of
the optuna optimization model has been set to discrete steps
with stepsize of 8, a minimum number of 8 and a maximum
number of 128. The nodes per layer are not mapped indi-
vidually per transformer, but the range from the smallest to
the largest number of occurring nodes is given. The occuring
hyper parameters are shown in Table 2.

The derived networks are then trained individually for
every transformer.

C. PREDICTION OF WIND POWER GENERATION
Some wind farms are directly connected to the 110 kV
distribution grid via a transformer. Because these trans-
formers have no consumers associated an additional
ANN-architecture is required.

As for these wind farms the installed capacity is the only
information available, an adjusted wind turbine power curve
is used to calculate generated wind power from wind speed
model data (for further information regarding the data see
Section III-A). A more detailed description of the calcula-
tion of WP can be found in Section II-B.1 of our previous
paper [14]. The resulting power is used as target feature for
the following ANN.

In literature approaches using ANN to predict WP gen-
eration have been proposed [15], [16], [17]. As the corre-
sponding architectures have one to three hidden layers with
a different number of neurons, the optimal number of layers,
nodes and optimizer were determined by using a hyperparam-
eter optimization, that is configured to minimize the MAE
of resulting predictions and based on a TPE sampler. As a
result the following architecture is chosen: One input layer,
two hidden layers, and one output layer. The descriptive
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TABLE 3. Hyperparameters for ANN predicting WP. Number of layers,
corresponding nodes and optimizer are selected by optuna optimization.

features are wind speed and temperature. The corresponding
hyperparameters are shown in Table 3.

D. FORECAST OF N-1 SECURITY MAXIMUM LINE
LOADING
Congestions occuring in the high voltage grid are determined
considering the n-1 security [23], [24]. Thus, the ANN is
trained with the maximum load on each line resulting from
all possible contingencies. Transformer injections into the
110 kV distribution grid are used as input features, and as
target feature the maximum loading of the components. The
maximal loading for each line, occurring during contingency
analysis, is determined via DIgSILENT PowerFactory. The
data of vertical power flow on the MV/HV transformers
is described in Section III-A2. A description of the used
distribution grid can be found in Fig. 7 of our previous
publication [14]. In the contingency analysis the load flow for
every outage is calculated and in the end the maximal loading
for each line is selected. As outages the lines of the 110 kV
distribution grid and EHV/HV transformers are considered.

The ANN model consists of one input layer, a number of
dense layers and an output layer. The number of inputs is
equal to the amount of transformers, whereas the number of
outputs is defined by number of lines. The other hyperparam-
eters are determined by a hyperparameter optimization. The
optimization model is configured to minimize the MAE of
predicted loadings and is based on a TPE sampler. The values
chosen for training are shown in Table 4. As a loss function
the mean absolute error is chosen and accuracy is applied as
metric.

E. ERROR MEASURES
et = ytrue−ypredicted describes the error of a prediction, where
ytrue denotes the actual value and ypredicted the prediction.
In order to validate the presented approaches the following
error measures are used. For time series forecast measure
Mean Absolute Error (MAE), Mean Squared Error (MSE),
Relative Mean Absolute Error (RMAE), and Root Mean

TABLE 4. Hyperparameters selected by optuna optimization for ANN
predicting maximum line loading.

Square Error (RMSE) are applied. The MAE is defined as:

MAE =
1
n

n∑
i=1

|ei| (4)

where n denotes the number of values. MSE can be calculated
as:

MSE =
1
n

n∑
i=1

e2i (5)

RMAE describes the MAE of the considered model in rela-
tion to MAE∗ of a reference model:

RMAE =
MAE
MAE∗

(6)

The RMSE is defined as:

RMSE =

√√√√1
n

n∑
i=1

e2i (7)

A detailed description of the error measures is given in [32].
For the classification task following error measures are

applied, described in [33]. Precision which is calculated as:

precision =
TP

TP + FP
(8)

recall, that is described by:

recall =
TP

TP + FN
(9)

and F1 score which can be calculated by:

F1 =
2TP

2TP + FN + FP
(10)

In the equations (8-10) TP denotes true positives, FP
denotes false positives, and FN denotes false negative values.
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TABLE 5. Python packages and the corresponding field of application.

III. RESULTS
The calculations were performed on 64-bit windows machine
with an Intel©Core i5-6500 CPU @ 3.2GHz and 16 GB
RAM. Power Flow simulations were calculated with DIgSI-
LENT PowerFactory and the programming language was
Python 3.9. The relevant Python packages used are shown in
Table 5.

In order to validate and compare the proposed ANN mod-
els, we used an additional model for evaluation. Makridakis
et al. proposed models for comparison such as, among oth-
ers, the naïve model and ARIMA [40]. The parameters for
fitting the ARIMA model were obtained by analyzing the
autocorrelation and partial autocorrelation of our data and by
an Augmented Dickey-Fuller test.

For the vertical power flow on MV/HV transformers the
augmented Dickey-Fuller test (ADF) yields a test statis-
tic of −17.09 and a p-value of 0.0 therefore, it can be
assumed that the data are stationary. The Ljung-Box chi-
square statistic results a p-value of 5.66, which is greater
than the significance level of 0.05 and therefore indicating
that the residuals are independent. After analysing the auto
correlation function (ACF) and the partial auto correlation
function (PACF) we used a parametrization of (1,1,0) for the
ARIMA model. The resulting time series, predicted for the
next 12- time steps showed a poor accuracy. Also, varying
the parametrization did not improve the results. The same
process was performed to fit an ARIMA model to predict
themaximum line load considering n-1 security. Nonetheless,
these predictions also showed poor accuracy. However, since
the fitted ARIMA model gave poor results and perform-
ing further parameter optimizations did not yield promising
results either, we decided to use the naive approach as a
comparative model.

A. DATA
For simulation, the following data were used for a region in
the north of Germany in 2015 and 2016:

• Temperature and wind speed data for a height of 73 m
with a hourly resolution are taken from the COSMO-
DE analysis of the DWD (Deutscher Wetterdienst) [41].
Our simulation time step is 15 minutes, so the data has
been interpolated. In our previous work [13], it has been
shown, that the error is acceptable.

• Global irradiance, based onMeteosat-SEVIRI data [42]
with a temporal resolution of 15 minutes.

• Historic transformer power of the MV/HV transformers
with a temporal resolution of 15minutes provided by the
corresponding DSO.

• Transformer specific historic curtailment given for the
exact minute provided by the corresponding DSO.

• Calculated wind power data per transformer, which con-
tains the generated power of all wind parks connected to
a HV transformer with a time resolution of 15 minutes.
The calculation is performed with an adjusted wind
turbine power curve and the wind speed data from DWD
for the considered years. A further description can be
found in Section II-B.1 of our previous paper [14].

• Maximum loading on each component was determined
by load flow calculations taking into account contin-
gencies in DIgSILENT PowerFactory. The time series
used has a time step of 15 minutes and was considered
for the period March-December 2016. As input for each
node, corresponding to the node type, the preprocessed
transformer data (see Section III-B) and the wind power
data (mentioned above) were used. The resulting line
loadings are shown in Fig. 12.

1) FEATURE SELECTION
The features initially considered were selected based on our
expertise gained from our previous work [13], [14], which
pursues the same objective using different methods. Sepa-
rating the electricity grid into its components, the required
features can be listed: As the vertical power flow on MV/HV
transformers is determined by its consumers and generators,
where RE account for the largest share, time is selected in
order to represent load and appropriate meteorological data
is chosen, like wind speed, temperature and global irradiance,
to represent the generation of PV and wind power. As target
feature the measurements of the transformers is applied. The
selected features for the component loading prediction con-
sidering n-1 security, are based on data, which is required
for a contingency analysis performed in PowerFactory: as
input the power-injections of all nodes and as target feature
the resulting maximum loading of all components in the
considered grid is taken. For the final selection of features
the correlation coefficients between descriptive features and
target features have been considered. The selected features
are listed per ANN model in Table 6.

2) PREPROCESSING TRANSFORMER POWER
MEASUREMENTS
As the power data of MV/HV transformers were provided
as measurements, curtailed power values are included. Thus,
at times of curtailment, low power values can be found
at high wind speeds (>15 m/s) instead of expected high
power values. Fig. 4 visualizes this effect exemplary for one
transformer. It shows transformer power over wind speed at
times of curtailment. The upper subplot represents raw data,
where negative power values (which represent demand/power
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TABLE 6. Visualization of the selected features per ANN model.
Descriptive features are assigned as ‘input’ and target features as ‘output’.

FIGURE 4. Visualization of transformer power over wind speed shown for
an exemplary transformer at times of curtailment. The right subplot
shows raw data, and the left processed data.

injections into the MV grid level) can be found at high
wind speeds. In order to identify congestions, the potential
transformer power should be represented in the data. There-
fore, curtailed power values have to be replaced by those of
potential powerwithout curtailment. The lower subplot of this
figure represents the processed data. Here the power increases
with increasing wind speed as it is expected.

The processing is done by a look-up table, assigning avail-
able transformer power to each wind speed, excluding power
at times of curtailment. The values of one exemplary look-up
table are shown in Fig. 5.

3) PREPROCESSING (TIME)
As consumers are connected to the transformers, time and
date play a certain role for the load profile. In order to use
timestamp as a descriptive feature, it has to be transformed.

FIGURE 5. Visualization of the average transformer power binned per
wind speed where values at times of curtailment have beeen excluded.

FIGURE 6. 15 hour forecast of MV/HV transformer power (of the cluster
mainly backfeed) calculated for a month, shown for three sets of a
five-fold cross-validation.

The timestamp is given as an information of weekend and
the date (with the information of season) as sinus of the year.
The time is represented by a corresponding sinus and cosinus
value.

B. VERTICAL POWER PREDICTION
The neural network predicting the vertical power is applied
for an exemplary transformer of the transformer cluster
mainly backfeed. In Fig. 6 the predictions and actual values
over time for one month are shown for three sets of a five-
fold cross-validation. These forecast horizon is set to 15 hours
which is an equivalent of 60 timesteps. Comparing the ML
prediction and target values it is obvious that the measure-
ments can be predicted with some deviations. The predictions
for the five datasets have an average MAE of 0.93 (the
minimumMAE of all five data sets is 0.78 and the maximum
is 1.05) which is 3.9% of the maximum power measurement
of the corresponding transformer for years 2015-2016.

In order to evaluate the effectiveness of the presented
approach, the ANN for vertical power prediction is compared
to a Naive-Forecast approach, using the previous values to
predict the future ones. So to predict the next 60 steps ahead,
the values of the last 60 time steps are applied. The corre-
sponding error measures are shown for each vertical power
direction (backfeed and injection) in Table 7. Following error
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TABLE 7. MAE comparison between the ANN- and the Naive-approach.
Calculated each for backfeeded power (into the HV-grid level) and
injected power (into the MV-grid level).

FIGURE 7. Averaged MAE (gained by multiple training) per forecast
horizon.

measures are considered: MAE, MSE, and RMAE for which
the Naive model is used as reference.

The RMAE of 0.37, describing the relation between the
ANN and the Naive approach, demonstrates the superiority
of the ANN in relation to accuracy. For further validation a
unpaired two-sample-t-test was performed. As the resulting
p-value was smaller than 0.01 we reject the null hypothesis
and conclude that the means of both error values are statisti-
cally different.

In Fig. 7 the impact of the predicted output length on the
accuracy is visualized. To this end ANNs have been trained
multiple times for each forecast horizon, which was set in
discrete steps between 12 and 288 steps ahead. As expected
the MAE shows the tendency to increase with increasing
output. The error growth shows an asymptotic behavior. One
exception can be seen at the mean MAE for ANNs trained
with a forecast horizon of 192 time steps, which show a
slightly lowerMAE than these with a forecast horizon of 144.

In the following, ANNs are trained for all transformers
of the model region with an output length of 12 time steps.
Again cross-validation is performed in order to ensure the
stability of the trained model. To get a better overview of the
overall performance the analysis is performed on the basis of
clustered transformers.

The resulting MAEs in MW for the calculated vertical
transformer power are shown cluster vise in Table 8. The
MAE over all transformers ranges from 0.4 MW MAE to a
MAE of 2.72MW for injected power and from 1.0MWMAE
to a MAE of 3.85 MW for backfeeded power. This range
of accuracy can be attributed to the different vertical power
flow characteristics of the transformers (see section II-B).
It can be seen that the transformer cluster Exception has
the smallest averaged MAE (2.06 MW) for power backfeed
into the HV grid level. Whereas, for power injection into
the MV grid level the transformer cluster demand has the
smallest average MAE (0.41 MW). Comparing the MAEs

TABLE 8. The transformer MAEs calculated with a time horizon of
12 steps for the ANN prediction of vertical power shown separately for
injections into the MV grid level and backfeed into the HV grid level. The
maximum, minimum and average MAE of the averaged cross-validation
test results is given for each transformer cluster.

FIGURE 8. Comparison of deviations shown per transformer cluster. The
subplot with power backfeed represents deviations at times of actual
power flow from MV to HV grid level. Accordingly, the subplot with power
injection represents deviations at times of actual power flow from HV to
MV grid level.

for the predicted backfeeded power with the injected one,
it can be seen, that the error measures are smaller for power
injections (maximum average MAE is 1.83 MW) than they
are for the backfeeded power (maximum average MAE is
2.4 MW). It has to be considered that the absolute maximum
power deviates between the transformers. Further, the power
injected into the MV grid tends to be smaller in absolute
values, than the backfeeded power.

An overview of the deviations between predicted and
actual transformer power is given in Fig. 8 where devia-
tions are shown per transformer cluster. It can be seen, that
the power injections into the MV grid level are predicted
with lower deviations than those of power backfeed. The
differences between the clusters become obvious in the dis-
tributions of the deviations, especially for the deviations of
injected power: Where the distributions of the clustersmainly
backfeed and backfeed are quite similar (in addition, the
backfeed cluster tends to have a lower spread of deviations
than does mainly backfeed), but the distributions of mainly
demand show a wider range and those of demand a much
smaller one than all of them.

Over all clusters the errors are smaller for predicted power
injections. It can be seen, that those clusters that have clear
tendency for backfeed or injection (backfeed, demand) show
the smallest error and deviations. For both clusters, there are
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FIGURE 9. Regression plots shown per exemplary transformer of each
cluster.

more cases of underestimation of actual power (shown as
negative deviation), while for the clusters mainly demand,
mainly backfeed predicted power is more often overestimated
(shown as positive deviation).

Furthermore, the distributions of deviations indicate a
tendency of errors being smaller for backfeeded power at
transformers that have smaller demand than generation.
A backfeed of power takes place when a surplus of RE power
is presented. The main share of RE power in the model region
comes from WP, which has a logistic relationship with wind
speed. Therefore, it is assumed that backfeeded power, where
WP generation is higher than demand, can be predicted more
precise than injected power, due to this simple relationship
between wind speed and generated power. Accordingly the
clusters demand and mainly demand show greater inaccura-
cies at times of backfeeding power.

Another option to analyse existing deviations between pre-
dicted and actual values is to look at corresponding regression
plots. The correlations shown in Fig. 9, deviate between
0.87 and 0.94, which indicates a good relation between pre-
dicted and actual values. The plotted data are scattered over
a wider range. Bigger deviations from the diagonal represent
values where the neural network has not learned the relation
between input and target values properly. Deviations that
occur at actual values around 0 (as seen in the example
of the mainly backfeed transformer and also the backfeed
transformer) indicate that the input parameter is associated
with a higher target value at these times than the backfeed
actually was. Reasons for that behavior could be either a
curtailment of RE generation due to e.g. bat protection or neg-
ative price, or the load has been unexpectly high. Generally
wider deviations indicate that the model has not learned the

FIGURE 10. Learning curve of an exemplary transformer of the cluster
Exception and a forecast horizon of 12 time steps.

relation between input and target values for all cases, so for
future work further adjustment is required.

A learning curve of an exemplary transformer of the clus-
ter Exception is shown in Fig. 10. It visualizes a sufficient
performance of the learning process.

During the review process of this article, we came across
another paper that also proposed a LSTM for predicting
vertical power on MV/HV transformers [9]. Both models
were developed independently of one another. The approach
proposed in [9] uses a similar architecture for the LSTM,
with two separate input layers, one for vertical power flow
measurements and the other for meteorological data and
information about the day. There are the following differ-
ences between the two approaches: Instead of connecting
both input layers with LSTM layers, the input layer for the
meteorological features of our proposed model is connected
with a dense layer. Further, in our approach, the temporal
features are connected to the same input layer as the vertical
power measurements and not to the input layer that receives
meteorological features. And the LSTM proposed in [9] uses
more meteorological information (see Section III-B in [9])
than our method: Wind speeds for 10 m and 100 m altitude;
temperature and dew point temperature; predicted albedo and
surface downward solar radiation, surface pressure, and total
precipitation.

Another difference is the number of nodes per layer: the
maximum number of nodes per layer for our LSTM is 128,
while the other model has 100 per LSTM layer and 500 per
dense layer.

In the following we compare one proposed approach
in [9] (‘‘LSTM_updated’’) with our approach in terms of
the published normalized RMSE and the Pearson correla-
tion coefficient. Accordingly, we normalized the RMSE as
Brauns et al. The normalization is described in equation 2
in [9]. The RMSE was calculated for each transformer sep-
arately. The forecast horizons considered in [9] are 3-, and
15 hours. The whiskers of the resulting boxplot over all nor-
malized RMSE values is given in Table 9. It can be seen that
the normalized RMSEof our proposedmodel is slightly lower
than those of the comparison model. The ANNs show values
of 0.16 for the top whisker at a forecast horizon of 15 hours.
Whereas, the ‘‘LSTM_updated’’ of [9] shows values between
]0.29 − 0.31[ for the top whisker for the forecast horizon of
4 hours. As already shown in Fig. 7, an increase in the errors
can be expected with increasing forecast horizon. So the
results indicate, that our approach gains slightly higher accu-
racy in the case of normalized RMSE.
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TABLE 9. Rough comparison of normalized RMSEs for ANN models
predicting vertical power on MV/HV transformers for different forecast
horizons. Since the RMSE error measures were given only as boxplots in
Fig. 7 in [9], ranges are given instead of concrete values for the whiskers.

FIGURE 11. Predicted wind power via ANN over corresponding wind
speed compared to actual values. The prediction horizon was 12 time
steps (3 hours).

In [9] the Pearson correlation coefficient is given for ‘trans-
former 5’ for 4 different forecast horizons: 1 h, 4 h, 16 h,
48 h (see Fig. 6 in [9]). The LSTM with regular training
shows a correlation of 0.9 for a 4 h and 0.91 for a 1h forecast
horizon. Comparing those correlation coefficient to the ones,
shown in Fig. 9, with a forecast horizon of 3 h it shows
a similar accuracy as our proposed model, which ranges
between [0.87-0.94].

C. GENERATED WIND POWER PREDICTION
In order to validate the ANN trained to predict the generated
power of wind farms connected via transformers to the HV
grid level, the predicted WP is plotted over its corresponding
wind speed, see Fig. 11. Here the corresponding ANN was
trained to predict the next 12 time steps for an exemplary
transformer. The relationship between wind speed and WP
can be described by a logistic curve. Since the scatter plot
follows this pattern, it can be concluded that the trained
ANN has learned the relationship between wind speed and
generated power.

For further validation error measures of the predicted
power are compared to the outcome of the Naive forecast
approach. In Table 10 the resulting MAEs, MSEs, and
RMAE, for which the Naive approach is used as reference
model, are contrasted. Comparing the MAEs it can be seen
that the ANN outperforms the Naive approach wherefore, the
RMAE confirms the superiority of the ANN with a value

TABLE 10. Comparison of error measures between ANN-predicting WP of
a wind park connected to a HV-transformer and the Naive-approach.

FIGURE 12. Histograms of the line loadings resulting from load flow
calculation considering contingencies. The main graphic shows the whole
data set and the overloadings are visualized in the zoomed area.

of 0.53. Again an unpaired two-sample-t-test was performed.
With a p-value smaller 0.01 the null hypothesis was rejected.
Thus, we conclude that the mean error values of the ANN and
the Naive model are statistically different.

D. PREDICTION OF LINE LOADING CONSIDERING N-1
SECURITY
An ANN is trained to predict the maximal loading of the
components of a realistic 110 kV distribution grid located in
the north of Germany (The topology is shown in Fig. 1. For
a more detailed description see Fig. 7 and subsection III-A
in [14]) for contingency cases. Data fromMarch of 2016 until
December 2016 in a 15 minute time resolution was used. The
distribution of the resulting line loadings are shown in Fig. 12.
The loadings have a mean of 16.54% and a standard deviation
of 20.76%. It can be seen that most of the time (in 93.77% of
all cases) the loading is smaller than 50%. In total only 1.07%
of the data show overloadings (loadings with a value equal
or greater than 100%), which can reach a maximum value
of 239.79%.

In order to describe the gained precision the predictions are
analyzed regarding the predicted line loading accuracy on the
one hand and on the other hand the capability to detect con-
gestions leading to curtailment. In Fig. 13 the predicted n-1
security loading is compared to the actual loading for two
110 kV lines and one HV/EHV-transformer. The prediction
was made for a forecast horizon of 12 time steps (3 hours).
Regarding the course of the actual loading, the ANN shows a
high match, with only minor deviations.

In Table 11 error measures are compared against a Naive
approach considering a forecast horizon of 12 steps. Error
measures are calculated for each component. In order to give
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FIGURE 13. Loading for two 110 kV lines and one HV/EHV transformer
over time.

TABLE 11. Comparison of error measures between ANN-predicting n-1
security component loading and the Naive-approach. The mean,
maximum and minimum error values of all components are shown.

an overviewmean, maximum and minimum of the error mea-
sures are given. The values of RMAE demonstrate that the
ANN shows the better performance than the Naive approach.
The ANN has a MAE of 2.59, which is quite small consid-
ering the fact, that the predicted loading represents already
the n-1 security case. Again an unpaired two-sample-t-test
was performed for each grid component individually. The
null hypothesis was rejected (p < 0.01) for 87.5% of the grid
components. No statistically significant difference in MAE
could be shown for the remaining 12.5% of grid components.

Taking only loading at times of congestions into account
(loading higher 100%), the corresponding average MAE is
8.77, which indicates higher deviations for the predicted load-
ing at times of congestion. Regarding curtailment the effect
of a higher error depends on whether the predicted loading
is over- or underestimated. In event of an overestimation, the
effects would not be so severe, since it has to be curtailed
anyway and thus grid security would be maintained. In the
worst case only the amount of curtailment could be end up
higher than actually needed. Whereas in case of an underesti-
mation, required curtailment would not be detected. In order
to determine the occurrence of under- and overestimation the
distribution of the deviations are analyzed in the following.

In Fig. 14 the distribution of deviation between the pre-
dicted and the actual component loading is shown. The dis-
tribution is nearly symmetrical with a mean of 0.09 and
a standard deviation of 4.77, showing a little tendency to
overestimate the components loading (represented by nega-
tive values). 84% of the predicted loadings show deviations
smaller than 5% loading. So overall it can be said that the
model is suitable for predictions of loadings considering n-1
security.

FIGURE 14. Histogram and empirical cumulative distribution of the
deviation between the actual component loading and the predicted one.
The upper subplots shows the distribution of the whole dataset, while the
lower subplot shows them for times of actual congestions.

Regarding the capability of predicting congestions (com-
ponents loaded higher than 100%) following statements can
be made: Deviations of predicted loadings for actual values
higher 100%, appear with a mean of 5.08 and a standard
deviation of 11.96. The corresponding distribution shows that
the predicted loadings have a slight tendency to underestimate
(represented by positive values) at times of actual conges-
tions. Thismeans that the event of undetected congestions can
occur more often. (33% of the values have an error smaller
5% and around 10% of the values an error bigger 20%).

Focusing on the accuracy regarding the determination of
curtailment requirement, three metrics are evaluated: preci-
sion, recall, and F1 score. As the ANN predicts the resulting
component loading considering contingencies, it can also
be applied to determine curtailment requirement. Defining a
component with a loading bigger than 100% as a congested
component the accuracy for the congestion forecast can be
evaluated. The results are shown in Table 12 and compared
for validation to the prediction model proposed in [12]. In this
study Staudt et al. proposed an ANN trained for the hourly
prediction of congestions occuring in transmission grids.
It can be seen that for all metrics, the presented approach of
this study shows higher values than those presented in [12].
But the difference between the predictions (transmission grid
and hourly predictions in [12] vs. distribution grid and quar-
terly predictions in the approach of this study) can also have
an impact on the achieved accuracy. At least it can be stated
that the approach is suitable to predict congestions.

The metrics were also calculated separately for each volt-
age level of the operating equipment. Comparing the metrics
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TABLE 12. Accuracy metrics for the determined congestion according to
the n-1 security line loading prediction (with a prediction horizon of
12 times steps) compared to the congestion prediction proposed in [12].
Further the metrics are compared for the TSO and the DSO components.

FIGURE 15. Confusion matrix.

for the components of the respective grid operator, it can be
seen that the model achieves higher accuracy for the DSO
components. This could be caused by the fact, that there
are more DSO-components (which make 93% of all compo-
nents), than TSO-components (which make 7% of all compo-
nents). Therefore, the ANN has more opportunities to adjust
the weights in a way, that they predict the DSO-component
loadings with smaller error, than they have for the TSO-
component loadings. It can be concluded that higher errors
have to be expected for predicted TSO congestions, than for
predicted DSO congestions.

In Fig. 15 the confusion matrix of the predicted congestion
is shown for the trained ANN line loading forecast model.
It shows that 96.5% of the values were correctly determined.
Congestions were correctly predicted in 92.2% of actual
cases. At times without congestion, a normal grid condition
was correctly forecasted for 97.8% of the cases. These results
indicate that this ANN is a promising approach to detect
congested grids considering n-1 security. The learning curve
for this ANN is shown in Fig. 16. It shows that the learning
process has performed sufficently.

FIGURE 16. Learning curve of the ANN predicting line loading.

FIGURE 17. Regression shown for target and predicted loading values.

The regression plot, shown in Fig. 17, has a correlation
coefficent of 0.98, indicating a good correlation between
target and predicted values. The wider deviations between
predicted and target values occur mainly between an actual
loading of 0% and around 150%. At actual line loading
greater 190% the deviations are smaller. This indicates that
the high loading events can be predicted with smaller errors
than for lower loading events.

In order to analyze the model performance, cross-
validation was also performed by splitting the data into 5 sets
and maintaining the temporal order. The resulting error mea-
sures are presented in Table 13. As the averaged F1-score is
0.78 instead of 0.92 emphasizes the impact of the training
data on the resulting accuracy. One reason for this effect could
be the fact, that training or test data have too few congestions
due to data splitting.

Table 14 shows the distribution of F1 scores determined
for each component individually. The impact of a generation
unit on a congested line is taken under consideration for the
selection of which unit needs to be curtailed. Hence, the
potential to predict bottlenecks for the correct line is crucial.
A high accuracy regarding location of predicted congestions
is given at high values of component specific F1 score. For
the components an average F1 score of 0.8 is reached, which
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TABLE 13. Averaged accuracy metrics for the determined congestion
according to the n-1 security line loading prediction (with a prediction
horizon of 12 times steps) considering cross-validation compared to the
congestion prediction proposed in [12]. Further the metrics are compared
for the TSO and the DSO components.

TABLE 14. Statistic of individual F1 scores for each congested grid
component.

TABLE 15. The RMAEs shown per transformer cluster considering
cross-validation, with the model presented in [13] as reference.

indicates that the model detects congestions for the correct
components with sufficient accuracy.

E. COMPARISON WITH PARAMETRIC APPROACH
In our previous works we presented parametric approaches
for vertical power flow predictions on MV/HV transform-
ers [13] and a curtailment forecast for distribution grids [14].
The vertical power flow in [13] is calculated by aggre-
gating generated and consumed power for each MV/HV
transformer. The generated PV power is calculated via
characteristic power curves and global irradiance for trans-
formers coordinates. The correspondingWP power is defined
by an adjusted function as it is the load profile. Both are
adjusted by using the identified generated WP power and
consumption from measured transformer data. By using the
according time and meteorological data as input values to
these adjusted functions, the corresponding MV/HV trans-
former power is calculated.

The curtailment prediction in [14] is realized by using the
vertical power flow (calculated according to [13]) as backfeed
into a 110 kV distribution grid. Thenwith power flow calcula-
tions considering contingencies congestion are detected and
required curtailment is determined. Both approaches have
been validated with the same data as the ANNs presented in
this study.

In order to validate whether the ANNs or the parametric
methods are superior, the methods are compared in the fol-
lowing: First the RMAEs are calculated for each transformer

TABLE 16. Accuracy metrics for the determined congestion according to
the n-1 security line loading prediction compared to the congestion
prediction proposed in [14].

cluster, with taking the model from [13] as reference model.
As in Table 2 of [13] different combinations of methods are
analyzed, these MAEs are taken for comparison, which have
the lowest value.

TheANN show lower values ofMAE. Outliers are themin-
imumMAEs for the clusters Exception and demand of power
backfeed and the minimum MAE for the cluster backfeed
of power injection. This indicates that the proposed ANNs
achieve higher accuracy and are regarding error measures
superior. Comparing the transformer clusters, the cluster
Exception show higher RMAEs for backfeeded power than
the others. With minimum value greater 1 and a RMAEs
near to 1 (0.89) describing the relation of the average MAE,
it indicates that the proposed ANNs show for some cases
only slightly better accuracy and for some transformers of the
cluster Exception even worse. For these transformers more
research is required to adjust the corresponding ANNs.

In order to evaluate the performance of congestion detec-
tion the F1 score is compared in Table 16 between the
prediction of n-1 security line loading presented in this study
and the 6m scenario presented in [14] (see Table 2 of [14]).
The comparison shows that the presented ANN outperforms
the method in [14]. Looking at the F1 scores for the indi-
vidual voltage levels shows differences between both meth-
ods in terms of accuracy of congestion prediction. While
the method presented in [14] tends to predict congestions
on TSO-components with a higher precision, the proposed
ANN achieves higher accuracy for DSO-components. One
reason could be that the frequency of congestion per voltage
level is decisive for ANNs as mentioned earlier. Whereas,
for power flow calculations the arriving aggregated power at
the HV/EHV transformers increases the probability to detect
congestions correctly. However, one restriction regarding the
evaluation of the results has to be taken into account: While
for the ANN true congestions are defined by the results of
load flow calculations (at times of line loading greater 100%),
for the method in [14] true congestion are defined by actual
curtailment. Some deviations in the predicted congestions
could be due to the fact that the behavior of grid operator
is not considered in parametric curtailment determination (as
discsussed in [14]).

F. RUN TIME ANALYSIS
For further information, the models proposed in this paper
were analyzed in terms of their computation time for training
and prediction. Measurements are taken for the ANN models
for vertical power prediction, WP prediction, and the ANN
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TABLE 17. Computational time for training and prediction of ANN models
and the contingency analysis in PowerFactory given in seconds. Time
measurements are taken 20 times.

predicting component loading considering the n-1 security.
In addition, measurements are also taken for contingency
analysis (indicated in the Table as n-1), which is performed
with DIgSILENT PowerFactory. The time measurements,
which has been performed on CPU, is taken 20 times each
and shown in Table 17.

As expected, the training time for the ANN-WP is by
far the shortest. These comparatively short times can be
explained by the relatively simple ANN structure (fewer
nodes and layers than the other two models). In addition,
the relation between input and target features that need to be
learned is simpler. TheANN for vertical power prediction and
the one for component loading forecast have almost the same
training time on average, but the standard deviation of the
second model is much higher.

Comparing the times needed for calculating line loading
considering n-1 security, it can be seen that the ANN shows
a much smaller computational time in contrast to the con-
tingency analysis performed via DIgSILENT PowerFactory.
Training of the ANN takes on average with 18.28 seconds
about 0.55 times as long as the contingency analysis.

IV. DISCUSSION
The presented ANNs for vertical power prediction on
MV/HV transformers and the forecast of component loading
considering contingencies contributes to the current need
for congestion predictions, which is caused by an unbal-
ance existing between RE integration and grid expansion,
and recent changes in regulation regarding grid congestions
(Redispatch 2.0).

The detection of overloaded components is only possible
if potential infeeds into the distribution grid are known. Such
injections are determined by the presented ANN approach
for vertical power predictions. The approach achieves pre-
dictions with small deviations. It was determined that larger
errors are to be expected with increasing forecast horizon.
Thus, larger deviations have to be considered with regard to
the day-ahead forecasts partly required for ‘‘Redispatch 2.0’’.
Therefore, further research to establish a method to quantify
the implemented uncertainty would be helpful. Furthermore,
differences in the gained accuracy between different MV/HV

transformer clusters have been identified. Especially these
transformer clusters, which have more power backfeed into
the 110 kV distribution grid (Exception, backfeed, mainly
backfeed), tend to show lower errors for prediction of back-
feeded power, compared to those which have more power
injected into the 20 kV grid. More congestions are expected
to be caused by backfeeds coming from transformers of
these clusters. Thus, the errors for these clusters tend to be
smaller. Therefore, the effect on the predicted congestion
accuracy is expected to be reduced as well. Moreover, the
difference in achieved accuracy between transformer groups
highlights that the performance of ANNs is sensitive to the
characteristics of the measured transformer power. Hence,
it is recommended to further research regarding transformer
cluster specific adjustments of the ANNs architecture.

As mentioned in the results, a LSTM predicting vertical
power flow was published in [9] during our revision process.
Those model has a similar ANN architecture to our model
and their results show similar prediction accuracy to our
approach. As both works were developed independently, this
indicates that an architecture with two separate input layers
is suitable for predicting vertical power flow. Brauns et al.
showed that using an update strategy improves the perfor-
mance of the LSTM [9]. This indicates that implementing
an update strategy in our approach will also further improve
the accuracy. Moreover, the model proposed in [9] uses more
input features than our approach. As the results of both mod-
els show similar accuracy, our approach indicates that it is
possible to achieve nearly equal accuracy with fewer features.
Given that data is often difficult to obtain, our approach has
the advantage that sufficient accuracy can be reached even
with less features.

The transformers connected to the 110 kV distribution grid
not only link MV grids, but also connect larger wind farms.
As a high amount of power is feed into the grid by these
wind farms, an ANN is designed and validated, which rep-
resents the generation of a wind farm. Solely relying on wind
speed, temperature and the corresponding generated power,
determined via a standard WTPC and scaled to the installed
capacity, the approach can easily be utilized by other grid
operators, that have no access to the information how much
these wind farms generate but also need this information in
order to determine the amount of curtailment required for
their own power plants.

In terms of grid security it is crucial for grid operators to
know whether there are upcoming congestions. Congestions
are determined by considering contingencies. Accordingly
one presented ANN predicts loadings resulting from n-1
security grid situations. Thus, occurring deviations in pre-
dictions do not have such severe consequences, since they
already include critical cases. If the forecasts are used to pre-
dict curtailments, the slight tendency to overestimate loadings
of the forecast could result inmore redispatch being requested
than necessary. But regarding the precision of predicting
congestion, the analysis showed good efficiency detecting
congestions. And results further indicate that the accuracy
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of congestion prediction is higher for DSO- than for TSO
components. Further, it was shown that the ANN has a high
accuracy in predicting congestions for the correct component.
Hence, the model could be used to select the required RE
plants for curtailment needed to eliminate congestion.

Different methods to predict curtailment have been pro-
posed in literature. In this study the presented ANN
approaches for vertical power and line loading prediction
are compared to corresponding parametric methods presented
in [14] and [13], which applied the same data. The compari-
son shows that the ANNs provide more accurate results than
the parametric methods with regard to the respective evalua-
tion measures used. In case of the vertical power prediction
one reason for the superiority of the ANNs could be that
this method works directly with the data (transformer power),
while the parametric method in [13] needs to dis-aggregate
the transformer power in order to fit the functions describing
WP or demand. As a result errors are included in the data used
for fitting. These errors are avoided by using the transformer
power directly in ANNs. Analysis showed that the ANN
requires significantly less computation time for prediction of
component loading considering n-1 security than load flow
calculations. This makes the ANN also the more promising
approach.

Following limitations of the study regarding field of anal-
ysis and characteristic of applied data have to be considered:
The ANNs for vertical power prediction of MV/HV trans-
formers were trained for transformers at which wind energy
is the dominant renewable generation technology and has a
high share of installed power. As the results already indicate,
the different characteristics of vertical power flow lead to
different accuracies. Further, the high share of installed WPs
triggered several curtailment events. An unbalanced data set
with a lack of special events like curtailments makes it more
challenging for ANNs to learn the cause of such events and
requires additional measures [43]. Furthermore, it must be
noted that the ANN for predicting the component loading of
an HV grid considering n-1 security was trained with data
from a 110 kV grid connected to the EHV grid only by three
HV/EHV transformers. Therefore, the influence of power
injections coming from the EHV grid is limited. Another
limitation is that only themaximum value of each n-1 security
case is considered for a time step, rather than considering each
contingency individually. The resulting simplification must
be taken into account when evaluating the results.

Further research should concentrate on a method to quan-
tify uncertainty of the predictions. Also ANN’s architecture
adjusted to each specific transformer should be investigated.
A necessary step towards real time application is the anal-
ysis regarding model update strategies, especially required
when the grid undergoes changes. These changes could be
caused, for example, by an increase of installed RE power,
a modification of consumption patterns, or the expansion
of grid capacity. In these cases, the training data has to be
regenerated and the ANN model has to be re-trained. If the
grid topology changes in term of number of nodes or lines,

the number of inputs, or the number of output neurons has
to be adapted in the ANN for component loading prediction.
The same adjustment has to be made, if the model is to be
transferred to another grid region: The number of input and
output neurons must be modified, and the ANN model must
be trainedwith data representing the appropriate grid. Aiming
at the improvement of predicting congestions in distribution
grids, the next step would be to combine the ANN approach
for vertical power prediction with load flow approaches to
identify grid congestion and then to evaluate this hybrid
method and its possible beneficial effects.

V. CONCLUSION
Increasing curtailment of RE enhances the need to opti-
mize congestion management in order to reduce the result-
ing energy losses. Congestion forecasts can give the grid
operator valuable time for countermeasures, and in this way
supports optimization of congestion management. In addi-
tion, the recently introduced ‘Redispatch 2.0’ regulation in
Germany makes forecasts of curtailments also necessary for
distribution system operators. This paper addresses the need
for congestion predictions by presenting three ANNs pre-
dicting vertical power flow on MV/HV transformers, wind
generation connected to HV grid, and component loading for
n-1 security cases. This enables potential congestion to be
detected in twoways: by predicting the grid injections, and by
forecasting component loads. Validation, which was carried
out on the basis of actual data provided by the grid operator,
showed that this could be promising approaches for grid
operators. The comparison of the approaches reveals that in
case for vertical power prediction, the presentedANNmethod
is more promising than the parametric approach. Future work
has to take possible uncertainties of the predictions into
account. Further, the determination of which RE plant has to
be curtailed should also be integrated.
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