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ABSTRACT In this paper, wewill propose the controller of a 2-DOF head in a snake robot for effective image
data reading when the snake robot is driving, and present an error-based adaptive robust radial base function
neural network back-stepping controller. The snake robot head system is a nonlinear system, and there are
unmeasurable disturbances that occur while driving. To solve this problem, we use back-stepping controller
and radial basis function neural network to compensate for unmeasurable disturbances to improve the steady
state. In order to further compensate for the network approximation error that occurs during training or large
signal changes, we use adaptive coefficients and error functions to approximate the network approximation
error and design adaptive robust terms. Compared to the previous controller, the proposed controller can
actively compensate for large signal changes and has the advantage of not generating residual input in a
steady state. The proposed controller is based on Lyapunov function candidate to design an adaptive law
and prove the system stability. The stability of the control system is proven through Lyapunov analysis and
bounded. The proposed controller compared and verified the controller performance for two inputs through
simulation and presented the efficiency of the controller.

INDEX TERMS Intelligent control, back-stepping control, radial basis function neural network, robust term,
snake robot.

I. INTRODUCTION
The snake robot is inspired by the locomotion of a biological
snake that can move in a variety of environmental conditions,
such as a challenging environment, a narrow space, and ver-
tical movement [1], [2], [3], [4], [5], [6]. The snake robot
has the advantage of being able to drive in a challenging
environment using a hyper-redundant structure, so it is in the
spotlight as a robot to be used in an environment that requires
mobility [7], [8], [9], [10], [11], [12]. Through research, the
snake robot can efficiently locomote in many challenging
environments using various locomotion. To apply the various
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locomotion of the biological snake to the robot, a different
sinusoidal signal is applied to the robot module [13], [14],
[15], [16], [17], [18], [19], [20], [21]. However, this control
method causes a large swing in the snake’s robot head with a
mounted camera. As shown in Figure. 1, the snake robot’s
head swing makes the video information difficult to read.
Therefore, it is difficult for the operator to control the snake
robot and obtain environmental information [22]. Therefore,
camera stabilization must be considered essential for using
a snake robot as a mobile robot. To improve this problem,
it is necessary to control the snake robot’s head like a gimbal.
In Previous research cases, using the Kinematics base control
method to change the gait [23], [24], [25], [26], [27], [28],
[29], [30]. However, despite using several drivingmodules for
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control, they do not have a rigorous analysis of driving perfor-
mance. There is only one method that can be applied to only
one locomotion. In addition, there are many unmeasurable
disturbances in a rough environment, snake robot requires an
adaptive control method rather than a kinematics-based con-
trol method. Several considerations exist to devise an adaptive
control law. The snake robot’s head is a non-linear system and
the head swings due to locomotion, and at the same time, the
control performance is affected by an unknown disturbance
depending on the environment. Therefore, the snake robot
head system is a non-linear Multi-Input Multi-Output system
with unknown disturbances, and it must compensate for head
swing due to locomotion in these conditions.

Nonlinearity, disturbance, and mathematical model uncer-
tainty are one of the major difficulties in the controller design
problem. In a robot system, it is difficult to control a robot due
to a high degree of freedom, non-linearity, and disturbance.
To solve this problem, many researchers have designed non-
linear controllers or disturbance observers or studied adaptive
control. On the other hand, intelligent control is being stud-
ied in various systems due to the development of computer
technology [30], [31], [32], [33], [34], [35], [36]. Among
them, artificial neural network control is attracting a lot of
attention. Neural network control can easily solve the effects
of nonlinearities, disturbances, and parameter fluctuations
without complex system dynamics. In addition, the self-
learning ability can avoid complex mathematical interpreta-
tions such as adaptation laws, and can solve highly non-linear
problems using multi-layer neural networks and non-linear
activation functions [37]. In this paper, we propose to use
RBF NN(Radial Basis Function Neural Network). RBF NN
has a nonlinear activate function and simple structure that
avoids unnecessary and lengthy calculations as compared
to the multi-layer neural network. Due to these character-
istics, it is useful for online control in combination with a
mechanical system such as a robot system [37], [38]. How-
ever, only using neural network control is dangerous because
it is difficult to prove the stability of the system, and the
system may become unstable due to system characteristics
and initial value problems. In this regard, many research and
application methods have been studied and applied in com-
bination with control theory. Among them, the BSC(Back-
Stepping Control) method is one of the powerful methods
that can stably control the nonlinear system by controlling the
nonlinearity step by step using a virtual control input based on
the Lyapunov theory. However, there is a limit to accurately
controlling it due to uncertainty and unknown disturbances.
To solve this problem, we estimated the disturbance including
system uncertainty through an artificial neural network and
achieved high control performance by combining BSC and
neural network. This combined controller has been applied in
various fields to prove its ability [39], [40], [41], [42], [43],
[44], [45], [46], [47], [48]. Whereas, neural networks have
problems in that convergence speed delays or instability occur
due to discontinuous signals or parameter changes in the
initial control stage. As a research case [34], [35], [38], [39],

[40], [41], [42], [43], [44], [45], a control input called robust
term was used. As a research case, an additional control
input called a ‘‘robust term’’ was applied in the study. They
could use the robust term to increase control performance.
The robust term additionally applies a fixed control input
according to the sign of the error. The stability of the control
using the Robust term has been proven based on Lyapunov’s
theory, but since it uses a fixed constant value, the unneces-
sary control input is continuously supplied even in a steady
state. In addition, since the control gain cannot be actively
adjusted, there is no change in the control input according to
the signal. So, it is difficult to respond to large signal changes.

Other recent research is [49], [50], [51], [52], and [53].
Reference [49] is a proposed adaptive funnel back-stepping
control scheme for high-order nonlinear systems with uncer-
tainty [50], [51], [52], [53] is a proposed prescribed per-
formance control with a fuzzy-neural network for nonlinear
systems with uncertainty and constraint conditions. Their
research results proved effective through simulation, but it
requires a complex design process, control gain, and strict
performance function settings to implement the system.

FIGURE 1. Image data when moving snake robot.

In this paper, we propose an RBF NN back-stepping con-
trol with an error-based robust adaptive input applied with a
reverse saturation function as a snake head module control
method for stabilizing the image data of a snake robot. The
snake robot head designs the back-stepping controller using
the 2-DOF nonlinear dynamic equation. Next, improve the
performance of the back-stepping controller by estimating
and compensating for the error generated from the influence
of disturbance and uncertainty of the mathematical model
through the RBF NN. The RBF NN consists of a mini-
mum number of nodes to minimize computing power and
approximates all disturbances by configuring the input as
an error signal without using system parameters. An error-
based adaptive robust term has an adaptive coefficient that
can respond to large signal changes, which is a disadvantage
of the previous robust term. In addition, the reverse saturation
function is applied to the unnecessary input supply occurring
in the steady state to remove unnecessary control input. RBF
NN weight update rule and robust adaptive input coefficients
are designed based on Lyapunov’s theory. Next, the pro-
posed control system uses Lyapunov’s theory and investigates
bounded to prove its stability. The proposed controller can
be easily designed through a step-by-step design sequence.
The performance of the proposed controller is verified by
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comparing it with the previous controller through computer
simulation.

This paper is structured as follows. Section II briefly intro-
duces the snake robot and the snake robot’s head system.
In section III, Design BSC with RBF NN and apply the
adaptive robust term. And prove the stability. In section IV,
simulations were performed to compare the proposed con-
troller and the previous controller. In section V, conclusions
are based on simulation results.

II. SNAKE ROBOT SYSTEM
The snake robot to be dealt with is a 2-axis snake robot [13],
[14], [15], [16], [17], [18], [19], [20], [21] with pitch and yaw
rotation as shown in Figure. 2. The snake robot head system
targets two modules adjacent to the robot head. When the
snake robot is moving, the snake robot’s head swings in the
yaw and pitch directions by locomotion is to be compensated
for the pitch and yaw rotation by using the head module.

FIGURE 2. 2-axis snake robot.

FIGURE 3. 2-axis snake robot head system.

The snake’s robot head system is similar to the two-axis
robot arm system as shown in Figure.3, so it is applied
and used. This system is a MIMO(Multi-Input Multi-Output)
system and it contains non-linearity. Using the Lagrangian
equation, the system can be expressed as (1).

M (θ )θ̈ + C(θ, θ̇ ) + G(θ ) = τ + τDisturbance (1)

M (θ ) is 2×2 inertia matrix,C(θ, θ̇) is 2×1 coriolis matrix,
G(θ ) is 2 × 1 gravity matrix, τ is 2 × 1 system input matrix,
τDisturbance is unmeasurable disturbance. The several angles,
angular velocity, and angular acceleration of module are θ =[
θ1 θ2

]T , θ̇ =
[
θ̇1 θ̇2

]T , and θ̈ =
[
θ̈1 θ̈2

]T , respectively.

The system expressed in (1) is expressed as a strict feed-
back form as follows (2) ∼ (6).

x1 = θ (2)

ẋ1 = x2 = θ̇ (3)

ẍ1 = ẋ2 = θ̈ (4)

ẋ2 = −M−1(C + G) +M−1u+ D (5)

y = x1 = θ (6)

The control input and output are u = [τ1τ2]T and y =[
θ1 θ2

]T , respectively. D is an unmeasurable disturbance.

III. CONTROLLER DESIGN
A. BACK-STEPPING CONTROLLER DESIGN
The main objective of this section is to design a BSC.

For the controller design, we define the error as the (7)
and (8) [47], [48].

e1 = x1 − x1,d (7)

e2 = x2 − x2,d (8)

ė1 = ẋ1 − ẋ1,d (9)

x1,d and x2,d are desired angles of x1, x2, respectively.
Equation (9) is the derivative (7). considering the Lyapunov
function candidate positive definite

V1 = e21/2 (10)

Its time derivative is

V̇1 = e1ė1 = e1(x2 − ẋ1,d ) (11)

For the system to be stable, the Lyapunov stability V̇1 < 0
must be satisfied. Therefore, ẋ1,d is defined as

ẋ1,d = x2 + ς = x2 + k1e1 (12)

where k1 is positive control gain and ς = k1e1 is virtual input.
So, x2,d is

x2,d = ẋ1,d − k1e1 (13)

Using (13), (8), and (9) can be expressed as follows:

ė1 = x2 − x2,d − k1e1 = e2 − k1e1 (14)

e2 = x2 − ẋ1,d + k1e1 (15)

ė2 = ẋ2 − ẍ1,d + k1ė1 (16)

ė2 = −M−1(C + G) +M−1u+ D− ẍ1,d + k1ė1 (17)

Next, considering the Lyapunov function candidate posi-
tive definite

V2 = V1 + e22/2 (18)

Its time derivative is

V̇2 = e1ė1 + e2ė2 = e1(e2 − k2e1)

+ e2(−M−1(C + G) +M−1u+ D− ẍ1,d + k1ė1)

(19)
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To realize Lyapunov stability V̇2 < 0, we can get control
input as

u = (C + G) +M (−D+ ẍ1,d − k1ė1 − k2e2 − e1) (20)

Equation (20) is the BSC control input.D includes unmeasur-
able. This paper D is tracked and compensated using an RBF
neural network.

B. RBF NEURAL NETWORK DESIGN
The RBF neural network has three layers: the input layer,
the hidden layer, and the output layer. So, the RBF net-
work has a simple network structure and good generalization
ability to avoid unnecessary long computations compared to
multi-layer networks. In general, the greater the number of
nodes in the hidden layer in a neural network, the richer the
approximation can be, but there is a disadvantage in that the
computation speed increases. In machine control systems,
computational speed is very important. Therefore, the RBF
network is suitable for application to mechanical control
systems [37], [38].

In this paper, to minimize the network input and nodes of
the RBF neural network, we use an error-based input and a
network of 2-5-1 structure as shown in Figure. 4, respectively.

FIGURE 4. 2-5-1 RBF neural network structure.

Define the neural network output for integration with
the BSC.

Y (Z ) =

∑
W TH (Z ) (21)

Z = [e1 e2]T is the input vector, W = [w1 . . .w5]T is the
weight vector, H = [h1 . . . h5]T is the activation function.
The activation function is expressed as a Gaussian function
as follows.

hij = exp(−
∥∥xi − cj

∥∥2 /2b2j ) (22)

xi is the input vector, cj represents the coordinate value of the
center point of the Gaussian function. bj represents the width
of the Gaussian function.

Next, approximate the disturbance D [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], we can get

D = W ∗TH (Z ) + ε (23)

W ∗ is optimal weight vector and ε is 2 × 1 network approx-
imation error [37], [38], [39], [40], [41], [42], [43], [44],
[45], [46], [47], [48]. W ∗ is generally unknown and is found
through learning. The estimated D is expressed as follows:

D̂ = Ŵ TH (Z ) (24)

where D̂ is network estimation disturbance and Ŵ is weight
estimation vector. Next, add the network output to the BSC
input.

u = (C + G) +M (−D̂+ ẍ1,d − k1ė1 − k2e2 − e1) (25)

Substitute (24) and (25) into Equation (5).

ẋ2 = ẍ1,d − k1ė1 − k2e2 − e1 + (W ∗T
− Ŵ T )H (Z ) + ε

(26)

Through (16) and (26), ė2 can be expressed as

ė2 = −k2e2 − e1 − W̃ TH (Z ) + ε (27)

W̃ = Ŵ −W ∗ is weight estimation error vector.
Next, considering the Lyapunov function candidate posi-

tive definite as follows:

V3 = V2 + W̃ T W̃/2γ (28)

Its time derivative is

V̇3 = e1ė1 + e2ė2 + W̃ T ˙̂W/γ (29)

Substitute (14) and (27) into (29).

V̇3 = −k1e21 − k2e22

+ W̃ T (−e2H (Z ) +
˙̂W/γ ) + e2ε (30)

Assume that the network estimation error ε is very small,
ε ≃ 0 is satisfied. To realize Lyapunov stability V̇3 < 0,
we can get weight update law as follows:

˙̂W = γ (e2H (Z ) − σ Ŵ ) (31)

where, γ and σ is positive control gain. Weight vector update
by measuring the error after system behavior at every sam-
pling time according to (31).

C. ADAPTIVE ROBUST TERM DESIGN
The network approximation error is an error that occurs dur-
ing learning. It becomes very small when training is complete
butmay affect the transient state during learning. The network
approximation error usually occurs when the signal changes
rapidly or at the beginning of learning and is included in
the overall system error. In the previous section, the weight
update law was designed by Lyapunov’s theory using the
assumption that the network estimation error is very small.
The network estimation error may affect control performance
when the estimation error increases due to disturbance or a
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sudden signal. To compensate for this, themathematical proof
is also not easy.

In previous research [34], [35], [38], [39], [40], [41], [42],
[43], [44], [45], they used the robust term as ψsgn(e). ψ is
positive control gain, sgn() is sign function, and is an error.
Therefore, it is an input to which the control gain is added or
subtracted according to the sign of the error. If tuning well,
this method is simple and effective. However, this method
generates the same output even for instantaneous large signal
changes, so the effect of improvement is small. It can be
improved by setting the control input to a large, but it can
be seen that the input vibrates in a steady state. Therefore,
we need to generate a large output depending on the situation.
In addition, it also requires an output that does not vibrate in
a steady state. In this section, considering stability, we will
design the adaptive control gain using the Lyapunov function
candidate and design the adaptive robust term without vibra-
tion in a steady state using the reverse saturation function.

To approximate the network estimation error through the
system error, expressed as (32).

ε ∼= K∗
· s (32)

K∗ is optimal estimation error adaptive coefficient, s =

e + λė, λ is control gain. As K changes, it responds to
the network estimation error that changes depending on the
various situation.

ε̂ = K̂ · s (33)

ε̂ is an estimation adaptive robust term. And K̂ is the estima-
tion error adaptive coefficient. Substitute (33) into (25).

u = (C + G) +M (−D̂+ ẍ1,d − k1ė1 − k2e2 − e1 − ε̂)

(34)

Substitute (34) into (5).

ẋ2 = ẍ1,d − k1ė1 − k2e2 − e1 − W̃ TH (Z ) − ε̃ (35)

The error of the network estimation error is expressed as
ε̃ = ε̂−ε∗. Substitute (34) into (16) to use the adaptive robust
term in the proposal controller design.

ė2 = −k2e2 − e1 − W̃ TH (Z ) − ε̃ (36)

Next, we consider the Lyapunov function candidate as

V4 = V3 + ε̃T ε̃/2α (37)

Its time derivative is

V̇4 = e1ė1 + e2ė2 + W̃ T ˙̂W/γ + ε̃T ˙̂ε/α (38)

Substitute (14) and (36) into (38).

V̇4 = −k1e21 − k2e22
+ W̃ T (−e2H (z) + Ŵ ′/γ ) + ε̃(−e2 + ˙̂ε/α) (39)

Applying the weight update laws devised in Equation (31),
To realize Lyapunov stability V̇4 < 0, we can get update law.

˙̂ε = αe2 (40)

Substituting (40) and (31) into (39), V̇4 < 0 is satisfied as
follows

V̇4 = −k1e21 − k2e22 − σ W̃ T Ŵ (41)

In order to obtain the estimation error adaptive coefficient,
differentiating (33) and substituting it into (40), the following
equation can be obtained.

K̂ = αe2/ṡ (42)

where α is the control gain of the adaptive robust term.
The configured control input can improve control perfor-

mance by compensating for the network approximation error,
but when the neural network is trained, it can affect the
steady state with an additional control input. Therefore, it is
improved by using a reverse saturation function such as (43).

satrev(u) =


− |u|
0

+ |u|

if:
if:
if:

u < −N
−N ≤ u ≤ N

u > N
(43)

N is a positive threshold of reverse saturation function. The
suggested control input is as follows:

u = (C + G) + M(ẍ1,d − kė1 − k2e2 − e1

− Ŵ
T
H(Z)︸ ︷︷ ︸

RBF NN output

− satrev(ε̂)︸ ︷︷ ︸
adaptive robust term

) (44)

D. STABILITY ANALYSIS
This section analyzes the stability of the proposal controller
devised in the previous section. The proposed controller uses
the reverse saturation function to improve the control input
in the steady state. When the adaptive robust term control
input is larger than the threshold value, stability is guaranteed
according to the Lyapunov function candidate used in the
adaptive robust term design. When the adaptive robust term
control input is below the threshold value, the function does
not generate output at a steady state. Therefore, stability can
be guaranteed for the same reason as the previous RBF NN
controller. In this section, we prove the system stability by
investigating bounded when the adaptive robust term control
input is below than threshold value.

As mentioned earlier, when the adaptive robust term con-
trol input is larger than the threshold value, the system is
stable due to the Lyapunov function candidate considered in
the adaptive robust term design. When the adaptive robust
term control input is below than threshold value, the adaptive
robust term control input becomes zero due to the reverse sat-
uration function, and the network approximation error cannot
be compensated. so it is assumed that there is an estimation
error in the system. Therefore, it is assumed that a network
approximation error exists in the control system.

To prove stability when adaptive robust term input is below
than threshold value, we choose the Lyapunov function can-
didate (28) and substitute (31) into (30) [47], [48].

V = e21/2 + e22/2 + W̃ T W̃/2γ

V̇ = −k1e21 − k2e22 + e2ε − σ W̃ T Ŵ (45)
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Equation (45) contains network approximation error. Next,
using W̃ = Ŵ −W ∗, rearrange (45) as follows

V̇ = −k1e21 − k2e22 + e2ε − σ (W̃ T Ŵ + W̃ T W̃ + W̃ TW ∗)/2

= −k1e21 − k2e22 + e2ε

− σ (W̃ T W̃ + (Ŵ T
−W ∗T )Ŵ + (Ŵ T

−W ∗T )W ∗)/2

= −k1e21 − k2e22 + e2ε

− σ (W̃ T W̃ + Ŵ T Ŵ −W ∗TW ∗)/2

≤ −k1e21 − k2e22 + e2ε − σ (W̃ T W̃ −W ∗TW ∗)/2

= −k1e21 − k2e22 − (e2 − ε)2/2 + (e22 + ε2)/2

− σ (W̃ T W̃ −W ∗TW ∗)/2

= −k1e21 − (k2 − 1/2)e22 − (e2 − ε)2/2 + ε2/2

− σ (W̃ T W̃ −W ∗TW ∗)/2

≤ −k1e21 − (k2 − 1/2)e22 + ε2/2

− σ (W̃ T W̃ −W ∗TW ∗)/2 (46)

If κmin > 0, k1 ≥ κmin/2, k2 ≥ (κmin + 1)/2, σ ≥ κmin/γ ,
equation (46) can be written as follows

V̇ ≤ −k1e21 − (k2 − 1/2)e22 + ε2/2

− σ (W̃ T W̃ −W ∗TW ∗)/2

= −κmine21/2 − κmine22/2 − κminW̃ T W̃/2γ

+ ε2/2 + κminW ∗TW ∗/2γ

= −κminV + ε2/2 + κminW ∗TW ∗/2γ (47)

Substituting ε2/2+κminW ∗TW ∗/2γ = ρ > 0, equation (47)
can be rewritten as follows

V̇ ≤ −κminV + ρ (48)

From the above (48), we can get

V (t) ≤ (V (t0) − ρ/κmin)e−κmin(t−t0) + ρ/κmin,∀t ≥ t0
(49)

V is bounded as κmin/ρ, and all system variables related
to V are also bounded. So, the closed-loop system is
bounded [46], [47], [48], [54], [55], [56]. Therefore, the
system is stable.

IV. SIMULATIONS STUDIES
A. SIMULATION SETUP
To compare the performance of the proposal controller with
the conventional controller, we verify it using the snake robot
head system. The locomotion of the snake robot is realized
by combining different phases of sinusoidal waves. Conse-
quently, the snake robot’s head also moves in a sinusoidal
wave while driving. Therefore, the proposal controller is nec-
essary to check the sinusoidal signal tracking performance.
So control input used in the simulation, we use a continu-
ous sinusoidal signal as shown in Figure. 5(a). In addition,
to check the additional performance of the proposal controller
a control input that is a mixture of continuous and abruptly
changing signals is generated, such as a sudden operation due
to an obstacle while driving or passing through a narrow pipe.

FIGURE 5. Simulation input and disturbance.

FIGURE 6. Proposed control system block diagram.

These control inputs are worst-case and do not correspond to
actual operating conditions. and the control input is shown in
the Figure. 5(b). The disturbance resembles the head motion
of a snake robot as shown in Figure. 5(c) and uses a fast
sinusoidal signal. We also assume that noise is included for
unknown reasons, such as topographical conditions, and a
large DC bias occurs within 10 seconds.

The 2-DOF snake robot’s head system parameter is m1 =

0.1 kg, m2 = 0.2 kg, l1,2 = 0.1 m. The Snake robot’s
head system initial angle value is θ1 = 1 rad, θ2 = 2 rad,
θ̇1,2 = 0 rad/s, θ̈1,2 = 0 rad/s2 BSC controller parameters
are k1 = 5, k2 = 2, RBF neural network parameters are
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FIGURE 7. Controller performance comparison for continuous input.

c = 0.5× [−1, − 0.5, 0, 0.5, 1], b = 10. All initial weights
are set to 0.1 on the assumption that offline learning is not
performed. γ = diag[500, 50, 500, 50], σ = 0.1, α = 15,
N = 0.01. The sampling time is 1 ms. In order to compare

the proposal controller with the previous robust term, the
previous robust term is ψsgn(s). s is the same as the proposal
controller, and ψ is 10. The Control system block diagram is
shown in Figure. 6. Sine all control parameters can affect the
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FIGURE 8. Controller performance comparison for mixed input.

control performance, the control parameter design sequence
is designed step by step from BSC. All control parameters
select through repeated simulation. While simulation, Back-
stepping control call BSC, Back-stepping control with RBF
NN call BSC-NN, Back-stepping control with RBF NN, and
the previous robust term call RT-BSC-NN.

B. CONTINOUS INPUT SIMULATION RESULT
The simulation proceeds using the Figure. 5(a).

The Figure. 7 compares the proposal controller with the
previous controller for continuous input. The BSC control in
Figure. 7(a) has low tracking performance and steady-state
errors due to disturbance. Figure. 7(b) is the output of BSC
with RBF NN. This controller shows high tracking perfor-
mance because it can compensate the disturbance estimation
through neural network. However, it can be seen that an
overshoot occurs due to a network approximation error in
the weight update process at the beginning of the controller
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operation. Figure. 7(c) shows the result of RBF NN BSC
with robust term in the previous research. It can be seen that
this controller can greatly reduce the overshoot occurring in
the weight update process at the beginning of the controller
operation. This shows that transient state can be improved.
Also tracking performance in steady state is satisfactory.
Figure. 7(d) shows the result of proposal controller. The
proposal controller can improve the transient state more in
Figure. 7(c) controller. And tracking performance in steady
state is also good. Next, Figure. 7(e) and 7(f) show a compar-
ison of control inputs. As common in Figure. 7(e) and 7(f),
previous robust term controller produces tracking perfor-
mance similar to that of the proposed controller, but it can
be seen that large chattering occurs in the control input. The
proposal controller produces a bigger control force as the
error increases, improving the transient state. The control
input generates a signal without chattering due to the reverse
saturation function. Looking at Figures 7(g) and 7(h), which
compare the errors, we can see that the proposal controller
converges to zero faster than the previous controller. A com-
parative analysis of the input and the error shows that the
adaptive robust term can improve more greatly. Furthermore,
we have confirmed that the reverse saturation function does
not generate unnecessary inputs in a steady state.

C. MIXED INPUT SIMULATION RESULT
The simulation proceeds using the Figure. 5(b).
Figure. 8 compares the proposed controller with the pre-

vious controller for mixed inputs. Figure. 8(a) and 8(b)
are shown Similar to previous simulation results, adding
RBF-NN to BSC could improve steady-state performance,
but overshoot occurs on average at about 14% and 25% in
abruptly changing signals intervals. Figure. 8(c) shows the
result of RBF NN BSC with the robust term in the previous
research. The controller had overshoots of 10% and 15%,
but the transient state was improved compared to the BSC
and BSC with RBF NN. As shown in Figure. 8(d), applying
the proposed controller can improve the overshoot respec-
tively by an average of 5% and 2%, and faster. As shown in
Figure. 8(e) and 8(f), even a change in the input produces a
large control force to improve the transient state when the
control signal changes abruptly, as in the previous simulation
results. Error compensation is shown in Figure. 8(g) and 8(h).
The proposal controller quickly converges to zero by gener-
ating a large control force when a large error occurs due to
the adaptive coefficient. And the reverse saturation function
eliminates unnecessary inputs to maintain a steady state.

V. CONCLUSION
In this paper, we propose an error-based adaptive robust RBF-
NN-BSC to the snake robot head system for effective image
data reading when the snake robot is driving. To accommo-
date unmeasurable disturbances, we designed an RBF-NN
BSC with minimal nodes that take the error as input. Based
on Lyapunov’s theory, we designed the weight update law
and applied adaptive robust term. In order to compensate for

the network approximation error caused by the initial weight
update or large signal changes, the network approximation
error is approximated by the error function and applying the
estimation error adaptive coefficient. The proposal controller
stability is proven through Lyapunov’s theory and investigat-
ing bounded.

The proposal controller was compared and verified with
the previous controller by simulation with disturbances using
both continuous inputs such as the snake robot’s head move-
ments caused by the snake robot driving, and control inputs
with large signal changes. As a result of the simulation,
we improved the tracking performance of the BSC via
RBF-NN.However, when the initial weight update, overshoot
occurs due to the approximation error, and the application
of the proposal controller improves the overshoot and con-
firms better tracking performance. In addition, in order to
compensate for the control input chattering that occurs in
the previous robust term, when a steady state is reached,
additional control inputs are not used compared to BSCNN
due to the reverse saturation function. In the future, we plan to
apply the proposed controller to an actual snake robot system
and verify its performance.
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