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ABSTRACT Recently, many video monitoring systems utilize deep learning technologies to recognize
locations and trajectories of people in video data. In video monitoring systems, a fast discovery of human
groups is an important task for several applications, for example, crime surveillance, contact tracing, and
customer behavior analysis. To tackle the demand, we propose a group tracking method. First, we propose a
spatial proximity definition and define a novel query type, a group tracking query that considers character-
istics of video data. A group tracking query retrieves the groups that travel for more than a certain amount
of video frame within a certain distance. We propose an efficient query processing method that exploits
the spatio-temporal characteristics of groups. Through extensive experiments using real-world datasets,
we verify the efficiency and effectiveness of our query definition and query processing method.

INDEX TERMS Spatio-temporal query processing, spatial data management, spatial databases, video query
processing, video monitoring systems.

I. INTRODUCTION
With the recent advances in deep learning, various informa-
tion can be extracted from an image. Especially, deep learning
models can detect locations for objects (i.e., object detection)
and also track object trajectories (i.e., object tracking). Even
in a video that contains a lot of people, figuring out the trajec-
tory of people becomes possible based on the deep learning
techniques. Such object tracking data (crowd tracking data)
can be produced quickly with a pretrained deep-learning
model [1]. A model proposed in the work [1] produces crowd
tracking data containing tens of people in a frame at the rate
of 27-30 frames per second (fps). Accordingly, many video
monitoring systems utilize object detection and tracking on
a video that contains a lot of people (crowded video). For
example, Briefcam [2] and Viisights [3] provide video ana-
lytics services for crowded video (e.g., surveillance systems
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for smart cities, safety and security management for crowded
stadiums, etc.).

In a video monitoring system for crowds, the fast discovery
of human groups is important. The example scenarios are as
follows.

Scenario (a) [Crime surveillance]. An investigator has
information that the three suspects of a crime move together.
Accordingly, the investigator wants to find groups as soon as
possible from various video sources (CCTVs). The investiga-
tor can arrest the suspects by utilizing the found groups.

Scenario (b) [Contact tracing]. During the recent
COVID-19 pandemic, finding out close-contacts who contact
to a super-spreader is important for early quarantine. When a
person A contacts an infected person B longer than 15 min-
utes, A is classified as a close-contact who is likely to be
infected [4]. In this case, close-contacts can be identified by
finding groups that include the super-spreader.

Scenario (c) [Customer behavior analysis]. In commer-
cial facilities that a lot of people visit, analyzing the behaviors
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FIGURE 1. Challenges in finding groups over crowd tracking data: In
Figure 1(a), pixel distances between two objects vary according to the
object locations while actual distances are fixed. In Figure 1(b), although
the pixel distances between object A and B, and B and C are the same, the
corresponding actual distances are different. In Figure 1(c), although the
object bounded with a dashed box exists in the image, it is not detected
by a machine learning model.

of customers in groups is required to establish marketing and
business strategies (e.g., determination of the locations for
services or commodities). To analyze the customer groups,
finding out the groups should be preceded.

There have been a lot of researches related to the above
tasks, which are classified into two categories: (1) Learning-
based approach and (2) spatio-temporal query processing
approach. Although machine learning has recently developed
very fast and solved a lot of problems in practice, it has
inherent limitations as follows in solving the target appli-
cation Scenarios (a)-(c). Learning-based methods need the
ground truths of not only an individual human trajectory but
also human groups in a video. Since the ground truths for
the human and human groups need to be labeled manually,
learning-based methods are not realistic in Scenarios (a)-(c).
Even if we train a model of learning-based methods with
manually labeled data, the model takes longer inference time
than the running time of a video [5]. Besides inference time,
a model also needs training time. Therefore, learning-based
methods cannot be applied to practical on-line video monitor-
ing systems where the fast discovery of groups is important.
Because of these limitations, we try to discover the groups
by a spatio-temporal query processing approach. With the
approach, the query results can also be utilized as training
data for the learning-based methods. However, the traditional
spatio-temporal query processing approach has failed to sup-
port our target applications in the following aspects.

Challenge 1 [Perspective projection]. Video data is
a projection of the three-dimensional real-world into a
two-dimensional space (image), called perspective projec-
tion. In this environment, capturing spatial proximity between
two objects and temporal consistencies of the proximity
are challenging due to the following reasons. First, for two

objects, even if a distance in the real-world (actual dis-
tance) does not change, the projected distance in an image
plane (pixel distance) in the video can be changed, or vice
versa. In Figure 1, pixel distances between two objects vary
according to the object locations while actual distances are
fixed. We call this pixel-pixel inconsistency. In Figure 1(b),
although the pixel distances are the same, the corre-
sponding actual distances are different, called pixel-actual
inconsistency.

Challenge 2 [Object occlusion]. Object occlusion is a
phenomenon that an object disappears in crowd tracking data
while the object still exists in an image. In Figure 1(c),
although the object bounded with a dashed box exists in the
image, it is not detected by a machine learning model. Amain
cause of occlusion is the overlapping of objects in video data.
Occlusion of an object may cause occlusion of groups.

In this paper, we propose a novel type of query, group
tracking query and an efficient group tracking query process-
ing method for video monitoring systems. Our query targets
crowd tracking data from cameras which have fixed angles
and locations (e.g., CCTV). The query processing method
consists of two steps for each frame: (1) group detection
and (2) group track maintenance. In a group detection step,
we preprocess the crowd tracking data and find groups based
on our group definition. In a group track maintenance step,
we capture temporal consistency of the groups and return
the query answers frame by frame. Our contributions are
summarized as follows.
• We propose a novel spatial proximity definition that
takes perspective projection into account.

• We propose a novel group tracking query for crowd
tracking data.

• We propose an efficient algorithm with a pruning strat-
egy considering proximity conditions for a group detec-
tion step.

• We propose an efficient method for capturing temporal
consistency of groups for a group track maintenance
step.

• We conduct extensive experiments to show efficiency
and effectiveness of the proposed methods.

The rest of paper is organized as follows. In Section II,
we introduce related works. In Section III, we describe terms
and problem definitions including proximity definition and a
group. In Section IV, we introduce a process to determine
proximity considering perspective projection. In Section V,
we propose a maximal group detection algorithm with prun-
ing strategies. Section VI introduces an efficient method
for the group track maintenance step. Section VII shows a
workflow of group tracking query processing. We present
experimental evaluations in Section VIII, and conclude the
paper in Section IX.

II. RELATED WORK
A. LEARNING-BASED GROUP TRACKING
In the computer vision research area, several learning-based
methods that find groups over crowd tracking data have
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been proposed [1], [5], [6], [7], [8], [9], [10], [11], [12].
Among them, the work [12] achieved the highest accuracy by
exploiting the general moving patterns of a group. However,
the inference time of its model was much longer than the
total video running time. Accordingly, the work [5] pro-
posed a fast group tracking method while achieving com-
parable accuracy with the work [12]. However, learning-
based methods are still not appropriate for video monitoring
systems for the following reasons. First, in our scenarios
(e.g., Scenarios (a)-(c)), the fast discovery of human groups
is important. However, the inference time of the model in
the work [5] is still from 1 to 4.5 times longer than the total
running time of a video. Second, to train a model, manually
labeled ground truths are needed for both individual objects
and groups. Moreover, to consider perspective projection in
crowd tracking data, the ground truths should be mapped to a
Euclidean-spaced real-world coordinate system via homo-
graphic transformation, which is not practical in video mon-
itoring systems.

B. QUERY PROCESSING-BASED GROUP TRACKING
In the spatio-temporal database research area, several query
processing-based methods that track groups of objects have
been proposed [13], [14], [15], [16]. Their target data is a
series of coordinates of moving objects (e.g., a series of
coordinates of GPS devices). However, since they defined
spatial proximities for groups in Euclidean spaces, perspec-
tive projection was not considered. To capture the temporal
consistency of groups, the works [13], [14], [15], and [16]
used the clustering-and-intersection algorithm.We described
the algorithm in Section VI.

C. PERSPECTIVE PROJECTION AND OCCLUSION
HANDLING
In existing works, there are two ways to capture spatial prox-
imity between two objects with taking perspective projection
into account. One ismapping of an image plane to a Euclidean
spaced, real-world plane via homographic transformation [5],
[12]. However, the mapping needs to know the mapping
parameters between the two planes. Because a video moni-
toring system may include a lot of cameras that take different
scenes, it is not practical to obtain every mapping parameter
for the cameras in the video monitoring system. The other is
exploiting the linear relationship between the length of a line
segment and its y coordinate [17]. With the linear relation-
ship, variation of a distance threshold becomes possible. This
approach can handle pixel-pixel inconsistency in Figure 1(a).
However, pixel-actual inconsistency in Figure 1(b) cannot be
handled.

Perspective projection also causes object occlusion which
affects temporal consistency of groups in crowd tracking data.
There was a research that considers object occlusion when
checking temporal consistency of groups [18]. They pro-
posed an evaluation method for a temporal query over video
tracking data. An example of a temporal query is as follows:

FIGURE 2. An example for perspective projection of a circle. When a
circle (in Figure 2a) is observed by a camera that has a fixed position,
it is projected into an ellipse as in Figure 2b.

‘search all the video segments with the length of 10 seconds
in which two people A and B appear continuously’. For the
temporal query processing, they use the modified clustering-
and-intersection algorithm to be tolerant to object occlusion.
However, their method considers all the objects in a frame as
a single group.

III. TERMS AND PROBLEM DEFINITIONS
A. INPUT DEFINITION
A frame of a video is an image, and a coordinate system
for a frame is defined by a horizontal x-axis and a verti-
cal y-axis based on the origin at the left-top corner of the
frame. The coordinate system of a video frame is a projection
of the Euclidean-spaced and real-world coordinate system.
A track oti of a human oi with a unique id i is defined as
{d fstarti , . . . , d fendi }(0 ≤ start ≤ end ≤ N − 1, the integer
N is the number of frames in a video), where a detection
d fni = (x, y,width, height) represents the coordinates and size
of the unique rectangular bounding box for oi at Frame fn.
We use (x + width/2, y + height) as the coordinate of oi.
Because of object occlusion, a missing detection may exist in
oti. Given a video V = {f0, . . . , fN−1}, which is a sequence
of frames, crowd tracking data of V is a set T of tracks
{ot0, . . . , otM−1} for M humans that appear in V . We denote
a human as an object for the ease of description.

B. PROXIMITY DEFINITION WITH VARIABLE ELLIPSE
The pixel distance inconsistencies in Figure 1(a) and 1(b)
make a fixed pixel distance threshold useless in crowd track-
ing data. Therefore, we use the concept of proximal boundary
for an object. In the real-world plane, as shown in Figure 2(a),
a circle centered object owith radius d contains all the spatial
points within actual distance d from o. When we observe the
circle from a camera that has a fixed position (e.g., CCTV),
as shown in Figure 2(b), it is projected into an ellipse. This
property is well-known and widely used in camera calibra-
tions [19], [20]. However, finding the shape of the ellipse
exactly matched with the circle in the real-world plane is
also a homographic transformation which is not practical
in a video monitoring system. Accordingly, we approximate
ellipse-shaped proximal boundaries based on a user input for
a sample object, which will be described in Section IV.
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FIGURE 3. An example for a group tracking query.

Definition 1 (Object Proximity): Given two objects oi and
oj and two corresponding ellipses eoi and eoj centered the two
objects, oi and oj are proximal when oj lies inside eoi and oi
lies inside eoj .

C. GROUPS AND GROUP TRACKS
Definition 2 (Group and Maximal Group (MG)): Given

a set O of objects {o0, . . . ok} and the minimum group size n,
a group g represents a set of objects, such that (1) g ⊂ O, (2)
|g| ≥ n, and (3) ∀oi, oj ∈ g, oi and oj are proximal. Given a
set G of groups, we say that a group mg ismaximal among G,
such that mg ∈ G, ∀gi ∈ G− {mg},mg ̸⊂ gi.
Definition 3 (Group Appearance, Occlusion, and

Disappearance): Given a set G of groups at Frame fm, we say
that a group gi ∈ G appears at Frame fm. After the first
appearance of a group gi, when gi does not appear at Frame
fn, we say that gi occludes at fn. There are two situations that
occlusion of gi occurs: (1) an object in gi occludes and (2)
an object in gi becomes not proximal to ∃gj ∈ G. Given an
integer occlusion threshold thresocc (≥ 0) and Frame fn, if gi
occludes in the recent thresocc frames ({fn−thresocc+1, . . . , fn}),
we say that gi disappears at Frame fn. When the members of
gi forms a group again after the disappearance, the group is
regarded as a new group gj.

Figure 3 depicts five consecutive frames of crowd track-
ing data. We assume that the occlusion threshold is 2, the
minimum group size is 2, and the lifetime threshold is 3.
At Frame 0, the groups {A,B,C}, {B,C,D}, and {B,C,D,E}
appear. Therefore, MG among the three groups are {A,B,C}
and {B,C,D,E} at Frame 0. At Frame 1, {A,B,C} occludes
due to occlusion of object A, and {B,C,D,E} occludes
because E becomes not proximal to the other objects in
{B,C,D,E}. At Frame 2 {A,B,C} disappears because it
occludes during the occlusion threshold (= 2).

Definition 4 (Group Track and Maximal Group Track):
A group track (GTR) tg = (fstart , fend ) (0 ≤ start ≤
end ≤ N − 1) is a tuple that consists of the first appearance
frame (start frame), fstart and the last appearance frame (end
frame), fend of a group g. The lifetime of g is defined as
fend− fstart+1. tg should be expired at the disappearance of g.
According to the definition of group disappearance, in frame
interval [fstart ,fend ], a sequence of occluding frames of which
length is less than the occlusion threshold may exist. Given
a set T of GTRs, a GTR tgi ∈ T is a maximal group track
(MGTR) when there is no group track tgj ∈ T that satisfies
gi ⊂ gj, tgj .fstart ≤ tgi .fstart and tgi .fend ≤ tgj .fend .

D. GROUP TRACKING QUERY
Definition 5 ((s, t, n)-Group Tracking Query): Given a

set of object tracks OT = {ot0, . . . otM−1} over a video,
a user specifies the following predicates for a (s, t, n)-group
tracking query.
• Spatial predicate s = (ypivot , rlong, rshort ), which is
a tuple of three integers: y coordinate of a pivot
object pivot in an image plane, long radius rlong, and
short radius rshort for the pivot ellipse centered on
pivot.

• Temporal predicate t = (threslife, thresocc), which is a
tuple of two integer thresholds: the lifetime threshold
threslife and the occlusion threshold thresocc.

• Group size predicate n, an integer that represents the
minimum group size.

An output of a (s, t, n)-group tracking query at Frame f is
a set of MGTRs among the GTRs, each of which is tgi =
(fstart , fend ) such that (1) tgi .fend − tgi .fstart + 1 ≥ threslife,
and (2) f − tgi .fend ≥ thresocc.
At Frame 4 in Figure 3, the GTRs, t{B,C,D} = (0, 2) and

t{B,C,D,E} = (0, 2) should be expired because they occlude
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for the occlusion threshold (=2). Both GTRs have a longer
lifetime than the lifetime threshold (=3). However, the only
MGTR between them is t{B,C,D,E} because their lifetimes are
the same, and {B,C,D} is a subset of {B,C,D,E}. Therefore,
the output of a (s, (3, 2), 3)-group tracking query at Frame 4
is t{B,C,D,E} = (0, 2). We describe the spatial predicate s in
Section IV.
In Scenarios (a), (b) and (c) in Section I, groups can exist

in various formations. Therefore, a group definition should
allow the flexible formation of a group. Meanwhile, strong
connections among the members in a group are also needed
to prevent a group from being formed over entire crowds.
Therefore, we make strong connections via temporal consis-
tency and spatial proximity, and allow flexible formations by
considering occlusion.

IV. ELLIPSE APPROXIMATION
An ellipse can be specified with three parameters: a center
point cp, a long radius rlong, and a short radius rshort . As we
mentioned in Section III-B, it is challenging to find the exact
ellipse on an image plane which is a projection of a circle on
the real-world plane. Therefore, we approximate the shape
of an ellipse by user-specified parameters. An approximation
process is as follows. Given a sampled frame in a video, a user
selects a pivot object as cp and determines the two radiuses,
rlong and rshort . To resolve the pixel-pixel inconsistency,
we should consider the different sizes of an ellipse according
to the various locations of center points in the image plane.
The work [17] made a hypothesis that the width of an object
is proportional to the y coordinate of the object. They sta-
tistically verified the hypothesis for various video data with
linear regression over minimum bounding box width and its y
coordinates. In the same context, we conduct linear regression
over the widths of an object and y coordinates in a crowd
tracking data. We change the ellipse size proportionally using
the coefficient of the linear regression. For the y coordinate
of an ellipse, we use the center point of the ellipse. To the
best of our knowledge, there is no study that defines spatial
proximity using an ellipse to consider perspective projec-
tion. Using an ellipse, spatial proximity can be determined
properly according to the relative positions between two
objects.

V. MAXIMAL GROUP DETECTION
An appearance of group gi implies appearance of gj such
that gj ⊊ gi. That is, finding groups which are not maximal
is unnecessary. In this section, given a set O of objects in
a frame, we propose an efficient method to find maximal
groups over O. The method is based on the definition of
maximal group (MG) and pruning strategies.

A. A Naïve MAXIMAL GROUP DETECTION BASED ON
GRID-BASED PARTITION
We next introduce a naïve method for our group detection
step, which is based on a grid-based partition.

FIGURE 4. Examples of a naïve maximal group detection. In Figure 4(a),
the minimum bounding rectangle of the ellipses contains all the points
that have a possibility to be proximal to an object in grseed because the
ellipses are the largest in grseed . Therefore, the grid cells overlapping
with the rectangle (proximal grid cells) should be examined. Figure 4(b)
shows the (1) find of the groups in the proximal grid cells and (2) MG
candidate set update with the groups found in (1).

1) GRID-BASED PARTITION
According to the definition of a group, an object in a group
should be proximal to all the other objects in the group.
In a naïve manner, to find groups over a set of objects in
a frame, we should check all the possible combinations of
the objects, which is inefficient. To resolve the inefficiency,
we first preprocess crowd tracking data with a grid-based
partition which consists of same-sized square grid cells on an
image plane. The ids of grid cells are allocated in the row-first
order, and the left-top grid cell is set to 0. With a grid-based
partition, given a grid cell C , we can determine the set of
grid cells which have a possibility to contain objects that are
proximal to an object in C . We call such grid cells proximal
grid cells. Proximal grid cells of a grid cellC includeC itself.

2) PROXIMAL GRID CELL COMPUTATION
In Figure 4(a), the proximal grid cells of a grid cell grseed
are filled with diagonal lines. Assume that a virtual ellipse
which has the same shape with an ellipse centered the largest
y coordinate in grseed exists on every vertex of grseed . That is,
the ellipses are the largest in grseed . A minimum bounding
rectangle can be obtained for four ellipses. The rectangle
contains all the points that have a possibility to be proximal to
an object in grseed . A grid cell overlapping with the rectangle
is a proximal grid cell.

3) MAXIMAL GROUP CANDIDATE SET
To find MG among a set of groups, we maintain a set which
contains candidates ofMG (MG candidate set). AnMG can-
didate set is always checked when a new group is found. The
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check with a new group g is processed as follows. For each
group e in the MG candidate set, if e ⊊ g, e is removed from
the MG candidate set. If there is no group e such that g ⊂ e,
g is added to theMG candidate set.

4) A Naïve MG DETECTION
Figure 4 represents an example of finding groups with the
minimum group size 2, by a naïve method with a grid-based
partition. Given a setO of objects in a frame of crowd tracking
data, an MG detection process is the same as follows. (1) An
image plane is partitioned into a regular grid. (2) After des-
ignating a grid cell as a seed grid cell grseed in an ascending
order of cell ids, a set PG of proximal grid cells of grseed is
computed (Figure 4(a)). (3) An object in grseed is designated
as a seed object oseed . Among the objects in PG, a set PO of
proximal objects is computed such that ∀po ∈ PO, po and
oseed are proximal. PO does not include oseed . In Figure 4(b),
the objects in PO are represented by the points which are A,B
and C . (4) Among all the possible combinations of objects in
PO∪{oseed }which include oseed , a combination that satisfies
group definition can be a group. Assume that the objects A
and B are proximal, and C is not proximal to both A and B.
Then, found groups are presented in Figure 4(b). (5) TheMG
candidate set is checked with the found groups. If the MG
candidate set is empty, {oseed ,C} and {oseed ,A,B} remain
after the checks. (6) For each objects in grseed , (3)-(5) are
repeated. (7) For each grid cell, (2)-(6) are repeated. (8) The
groups in the MG candidate set are returned as maximal
groups.

5) INCREMENTAL OBJECT COMBINATION FOR THE Naïve
METHOD
In the naïve method, some proximity computations may
be redundant. For example, in Figure 4(b), the proximity
between oseed and A is computed twice in {oseed ,A,B} and
{oseed ,A}. To resolve this inefficiency, we compute object
combinations incrementally in the naïve method. Given a
seed object oseed , the minimum group size 2, and a set PO
of proximal objects {A,B,C} whose elements are proximal
to oseed , incremental object combination can be presented as
a computational graph in Figure 5. Starting from a set {oseed },
the incremental object combination tries tomake all the possi-
ble combinations in a length-first order. The combinations are
conducted by adding an object in the order in PO. We assume
that the elements of PO are sorted in the order of found.
Accordingly, if we assume that A,B, and C are proximal to
each other, the order of creation is shown in Figure 5. Because
proximity checks for the combinations are conducted incre-
mentally, we can resolve the redundant proximity checks for
common prefix. If an object cannot satisfy the proximity
condition in a process, the process does not add the object and
tries to add the next object in PO. When there is no object
left to add and current combination satisfies the minimum
group size 2, the combination is returned as a group. For
example, in Figure 5, if B is not proximal to {oseed ,A},
{oseed ,A} does not create the combination {oseed ,A,B} and

FIGURE 5. An example computational graph of incremental object
combination. Starting from a set {oseed }, object combinations are created
in the order of the computational graph.

FIGURE 6. An example of an LG-MGD process. When all the oi -local
groups are checked oi -LMG candidate set, the oi -LMG candidate sets are
merged into the GMG candidate set.

tries to add C . If C is proximal to {oseed ,A}, {oseed ,A,C}
returned as a group because there is no object left to add while
satisfying the minimum group size. If C is not proximal to
{oseed ,A}, {oseed ,A} is returned because there is no object left
to add while satisfying the minimum group size. We apply an
incremental object combination to the naive method.

B. LOCAL-GLOBAL MAXIMAL GROUP DETECTION
We propose an efficient MG detection method called Local-
Global Maximal Group Detection (LG-MGD) which reduces
the number of checks and computational cost of checks for an
MG candidate set. In addition, we introduce a pruning strat-
egy for LG-MGD. At last, we describe the entire algorithm
of LG-MGD.

1) LOCAL MG DETECTION
First, oi-local groups are defined as the groups which
are found from the incremental object combination in
Section V-A5 for a seed object oi. Because the proximal
object set of oi is the domain of oi-local groups, a group in
oi-local groups is likely to have inclusion relationships with
the other groups in oi-local groups. Therefore, if we find
the MGs among oi-local groups in advance, the number of
groups that are compared to the other local groups is reduced.
We call the MGs among oi-local groups oi-local maximal
groups (oi-LMGs). We maintain a separateMG candidate set
for each seed object oi which is called oi-LMG candidate
set. As shown in Figure 6, after the oi-LMG candidate set
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is checked with the oi-local groups, groups in the oi-LMG
candidate set are returned as oi-LMGs. Note that the checks
for a group are conducted in the same manner as the naïve
method. From the computational order of an incremental
object combination in Section V-A5, there is a property about
inclusion relationships among local groups. In an incremental
object combination, because groups are returned when there
is no object to add after all the trials to add objects, a group
returned later cannot be a proper superset of a group returned
before. With the property, the oi-LMG candidate set is nat-
urally filled with oi-LMGs without removal of an existing
group in the set. This property makes an incremental object
combination more efficient in anMG detection. Note that the
check of the oi-LMG candidate set for a new group is still
necessary to determine whether the new group is maximal in
the oi-LMG candidate set.

2) GLOBAL MG DETECTION
To find MGs at a frame, we should find MGs among the
union of LMGs. Therefore, we maintain another candidate
set, a global MG candidate set (GMG candidate set). When
oi-LMGs for a seed object oi is returned, the GMG candidate
set is checked with oi-LMGs as shown in Figure 6. After the
GMG candidate set is checked by all the LMGs, the groups in
theGMG candidate set are returned as theMGs for the current
frame. We call this entireMG detection process Local-Global
Maximal Group Detection (LG-MGD). In LG-MGD, because
a group that is notmaximal is likely to be filtered in each LMG
detection, computational cost to determine whether a group g
is maximal in the GMG candidate set is reduced.

From the spatial constraint in group definition, we can
acquire a proposition about the inclusion relationship
between two groups, included in different LMGs.
Proposition 1: Given a set O of objects {o0, o1, . . . , oN−1}

in a frame and a set of local maximal groups {o0-
LMG, . . . , oN−1-LMG}, it always hold that ∀gi ∈ oi-LMG,

∀gj ∈ oj-LMG, i ̸= j, gi is not a proper superset of gj, and gj
is not a proper superset of gi.

Proof: Assume that gi is a proper superset of gj. Because
gj is an element of oj-LMG, gj includes oj. Therefore, gi also
includes oj. According to the definition of a group, it means
that all the elements of gi is proximal to oj. Therefore, gi
or a proper superset of gi should be an element of oj-LMG.
It means that a proper superset of gj exists in oj-LMG, which
contradicts that gj is an element of oj-LMG.

With Proposition 1, a removal of subsets does not occur
in a GMG candidate set. That is, all the final MGs that
include oseed are computed in oseed -LMG detection. There-
fore, we can remove oseed from the corresponding grid cell
after oseed -LMG detection. Accordingly, when an object oi
which is proximal to oseed becomes a seed, the number of
proximal objects are reduced because oseed is removed. Since
it makes less object combinations for oi, computational costs
are reduced in both LMG and GMG detection.

Algorithms 1 and 2 describe LG-MGD process at a frame.
Given a set GR of grid cells that partitions objects in a frame,

Algorithm 1 LG-MGD
Input : grid cells GR for a frame, the minimum

group size n
Output: GMG candidate set GMG

1 for each seed grid cell grseed in GR do
2 PG← proximal grid cells of grseed ;
3 for each seed object oseed in grseed do
4 get a set of proximal objects PO which are

proximal to oseed within PG;
5 lmg← ∅;
6 LMGDetection({oseed },PO, n, lmg);
7 check GMG with lmg;
8 remove oseed from grseed ; // pruning with

Proposition 1

9 return GMG;

Algorithm 2 LMGDetection
Input : current object combination Ocurrent ,

remaining proximal objects Oleft , the
minimum group size n, LMG candidate set
lmg

Output: LMG candidate set lmg
1 for each object oi in Oleft do
2 Oleft ← Oleft − {oi};
3 if oi and all the elements in Ocurrent are proximal

then
4 Ocurrent ← Ocurrent ∪ {oi};
5 if Oleft is not empty then
6 LMGDetection(Ocurrent ,Oleft , n, lmg);

7 if |Ocurrent | ≥ n then
8 sort Ocurrent in the order of object id;
9 if Ocurrent is maximal in lmg then
10 lmg ∪ Ocurrent ;

a grid cell in GR is designated to a seed grid cell grseed ,
and the set of proximal grid cells PG of grseed is obtained
(Lines 1-2, Algorithm 1). The method to get the proximal
grid cells is the same as the naïve method, as introduced
in Section V-A2. In grseed , an object is designated to a seed
object oseed and the set of proximal objects PO of oseed in
PG is obtained (Lines 3-4, Algorithm 1). An LMG candidate
set lmg is initialized to empty set (Line 5, Algorithm 1). The
algorithm calls an LMGDetection with the inputs which are a
set {oseed } as a current object combination Ocurrent , PO as a
set Oleft of remaining proximal objects, the minimum group
size n, and lmg (Line 6, Algorithm 1). The LMGDetection
performs oseed -LMG detection.
For each element in Oleft , Algorithm 2 removes oi from

Oleft (Lines 1-2, Algorithm 2). If oi and all the elements of
Ocurrent are proximal, oi is added to Ocurrent and if Oleft is
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not empty, the recursive call of LMGDetection is conducted
(Lines 4-6, Algorithm 2). After checking all the objects
in Oleft , the algorithm checks whether the size of Ocurrent
is not smaller than the minimum group size n (Line 7,
Algorithm 2). If the condition of the minimum group size is
satisfied, Ocurrent becomes a group. We sort the elements of
Ocurrent in the order of object id for the efficient comparisons
of groups (Line 8, Algorithm 2). If there is no superset in lmg,
Ocurrent is added to lmg (Lines 9-10, Algorithm 2).
TheGMG candidate set,GMG is checked with the returned

oseed -LMGs (Line 7, Algorithm 1). After that, we remove
oseed from the grid cell grseed (Line 8, Algorithm 1).When all
the objects in the current frame are processed, the groups in
theGMG candidate set are returned as theMGs for the current
frame.

The time complexity of LG-MGD isO(NP!+NM2), where
N is the number of objects in a frame, P is the number of
proximal objects of a seed object, and M is the number of
LMGs of a seed object. O(NP!) is the time complexity for
an incremental object combination, and O(NM2) is the time
complexity for the check of the GMG candidate set.

C. DISCUSSION
LG-MGD exploits the property of incremental object combi-
nation to reduce the number of comparisons of groups. The
property of incremental object combination comes from the
proposed group definition in this paper. By Proposition 1,
we show the efficiency of the incremental object combination
in LG-MGD. In addition, we acquire additional efficiency
via the removal of seed object after a combination. With
the aspects above, LG-MGD is a novel approach that finds
maximal groups over crowd tracking data.

VI. GROUP TRACK MAINTENANCE
The maximal groups (MGs) from a group detection step at
Frame f represent appearances of groups. To capture tempo-
ral consistency of the appearances, we maintain group tracks
(GTRs), each of which contains the first and last appearance
frames of a group. GTR maintenance includes the creation,
update (for appearance frames), and expiry of a GTR. In this
section, we propose an efficient GTR maintenance method
which reduces unnecessary maintenance. In addition, we use
a set-trie data structure to accelerate the proposed method.
When two groups g and e, and twoGTRs tg and te that contain
the appearance frames of g and e are given, we denote that
both (1) the intersection between tg and e and (2) intersection
between tg and te represent that the intersection between g and
e. For the other set operations, the same manner of notations
are also applied for the ease of descriptions.

A. A Naïve METHOD
As a naïve method, we use the modified clustering-and-
intersection algorithm of the work [18] mentioned in
Sections II-B and II-C. For each Frame f , given a set T of
GTRs and a set G of MGs, an MG g ∈ G conducts GTR
maintenance as follows.

• Self Maintenance
– Self Update: If tg ∈ T , tg.fend is updated to f .
– Self Creation: If tg ̸∈ T , tg = (f , f ) is created.

If there is te ∈ T such that g ⊊ e, because g exists
since te.fstart , tg.fstart is updated to te.fstart .

• Subset Maintenance
– Subset Update: For each te ∈ T , such that e ⊊ g,
te.fend is updated to f .

– Subset Creation: For each te ∈ T , such that e ̸⊂ g,
if tg∩e ̸∈ T , tg∩e = (te.fstart , f ) is created.

Because the intersection g ∩ e between g ∈ G and
each te ∈ T is needed for Subset Creation, the existence
check of tg for Self Maintenance and subset search of g
for Subset Update are conducted utilizing g ∩ e. That is,
if g ∩ e = g (g ⊆ e), one of Self Maintenance is conducted.
If g ∩ e ⊊ g, one of Subset Maintenance is conducted. The
intersection for the GTRs which are created at the current
frame is not conducted. After GTR maintenance for every
MGs at Frame f , if a group g disappears, tg is expired. Given
a set Texpired of expiredGTRs at Frame f , aGTR tg ∈ Texpired ,
such that (1) the lifetime of tg is longer than the lifetime
threshold, and (2) tg is a maximal group track in Texpired ,
is returned as an answer for a group tracking query.

Figures 7(a), (b) and (c) are the three examples of GTR
maintenance with the naïve method. For all the examples in
Figure 7, we assume that the occlusion threshold is 2, the
lifetime threshold is 3 and theminimum group size is 2. A box
that is located below a Frame f that is filled represents the
appearance of a group that has been maintained. A box that is
fully filled represents that the group is an MG at that frame.
A box that is filled with diagonal lines represents that the
group is a subset of an MG at that frame. The creation frame
of eachGTR is denoted with the bold character ‘c’. An empty
frame of a GTR, tg, represents one of three: (a) g has not
appeared yet, (b) g occludes, and (c) g appears but tg does
not contain the appearance. A red X marker represents the
expiry of a marked track.

In Figure 7(a), at Frame 0, the MG {A,B} creates t{A,B} =

(0, 0) by Self Creation. At Frame 1, theMG {A,B,C} creates
t{A,B,C} = (1, 1) by Self Creation, and updates t{A,B}.fend to
Frame 1 by Subset Update. At Frame 2, the MG {A,B,C}
updates both t{A,B,C}.fend and t{A,B}.fend to Frame 2 by Self
Update and Subset Update, respectively.

In Figure 7(b), at Frame 0, the MG {A,B,C} creates
t{A,B,C} = (0, 0) by Self Creation. At Frame 1, theMG {A,B}
creates t{A,B} = (1, 1) and updates t{A,B}.fstart to t{A,B,C}.fstart
(= 0) by Self Creation. At Frame 2, the MG {A,B} updates
t{A,B}.fend to Frame 2 by Self Update. After that, since t{A,B,C}
occludes during the occlusion threshold (=two frames), it is
expired.

In Figure 7(c), at Frame 0, the MG {A,B,C,D} cre-
ates t{A,B,C,D} = (0, 0) by Self Creation. At Frame 1,
anMG {A,B,C,D} updates t{A,B,C,D}.fend to Frame 1 by Self
Update. The otherMG {A,B,C,E} creates t{A,B,C,E} = (1, 1)
by Self Creation, and create t{A,B,C,E}∩{A,B,C,D}={A,B,C} =

(0, 1) by Subset Creation. At Frame 2, the MG {A,B,C,E}
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FIGURE 7. Examples for group track maintenance with various methods.

updates both t{A,B,C,E}.fend and t{A,B,C}.fend to Frame 2 by
Self Update and Subset Update, respectively.

1) INTUITIONS
In crowd tracking data, a person may form a lot of temporary
groups with people who pass by, which may cause a lot of
Self Creation and Update. The majority of the groups are
unlikely to be answers of a group tracking query. Moreover,
the temporary groups also cause Subset Update and Subset
Creation. If we have knowledge about the appearances of
GTRs, we may prune unnecessary maintenance. Here, we get
an intuition for making maintenance being patient. Because
the appearances of a group are lost after the expiry of a
GTR, if we perform proper maintenance at the expiry, the
appearances are not lost. At the same time, both fstart and fend
of GTRs can be exploited to determine whether maintenance
should be performed. To do that, we should determine which
maintenance would become patient.

B. OPPORTUNITIES TO BE PATIENT IN THE Naïve
METHOD
This subsection, for each type of maintenance in the naïve
method, we assume that a single type of maintenance is not

conducted and introduce observations.With the observations,
we determine which type of maintenance becomes patient.

1) SELF UPDATE
In Figure 7(d), assume that the MG at Frame 1 and 2 is not
{A,B,C}, but {A,B}. Then, the only existingGTR at Frame 2
would be t{A,B} = (0, 2) as shown in Figure 7(a). However,
because Self Update is not conducted, t{A,B} would be (0, 0)
and is expired at Frame 2.

a: OBSERVATION
At Frame 2, because we assume that theMG at Frame 1 and 2
is not {A,B,C}, but {A,B}, there is no GTR that contains
the appearances of {A,B} at Frame 1 and 2. Therefore, Self
Update cannot be patient.

2) SELF CREATION
Given an MG g, there are two steps in Self Creation. First,
the creation of tg, and second, the update of tg.fstart to the
start frame of a superset of g. If the creation of tg is not
conducted at Frame f , Self Update after Frame f also cannot
be conducted. Because Self Update cannot be patient, the cre-
ation of tg also cannot be patient. Therefore, we assume that
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the update of tg.fstart is not conducted. With the assumption,
in Figure 7(e), the appearance of {A,B} at Frame 0 is lost
because t{A,B}.fend is not updated to Frame 0, and t{A,B,C} is
expired at Frame 2.

a: OBSERVATION
At Frame 2, if t{A,B,C} updates {A,B}.fstart to Frame 0, t{A,B}
does not loss the appearance. To get the update, t{A,B} should
have been created before Frame 2. Therefore, in Self Cre-
ation, only the update for the start frame can be patient.

3) SUBSET UPDATE
In Figure 7(d), because Subset Update is not conducted, the
MG {A,B,C} does not update t{A,B}.fend to Frame 1 and 2.
Therefore, t{A,B} is expired at Frame 2.

a: OBSERVATION
Because t{A,B} can be expired earlier than the superset of
t{A,B}, t{A,B} should check all the supersets frequently to get
the appearances. For example, if {A,B,C} appears contin-
uously after Frame 2, t{A,B} should check all the existing
supersets in every two frames (=the occlusion threshold).
Accordingly, Subset Update would be better not to be patient.

4) SUBSET CREATION
In Figure 7(f), because Subset Creation is not conducted,
t{A,B,C} is not created and the appearance of {A,B,C} at
Frame 0 is lost because t{A,B,C,D} is expired at Frame 3.

a: OBSERVATION
At Frame 3, if t{A,B,C,D} creates t{A,B,C} and updates appear-
ances of {A,B,C}, t{A,B,C} would not loss the appearance at
Frame 0. Therefore, Subset Creation can be patient.

According to the observations, we conduct Subset Creation
and the start frame update in Self Creation atGTR expiry. Our
GTR maintenance consists of two phases: (1) an appearance
update phase, and (2) an expiry phase. We introduce our
appearance update phase first.

C. APPEARANCE UPDATE PHASE
GTR maintenance in an appearance update phase is con-
ducted as follows: For each MG g, if tg exists, Self Update
is conducted. If tg does not exist, Self Creation is conducted.
Different from the naïve method, Self Creation at Frame f
creates tg = (f , f ) without the update of the start frame.
In addition, for each existing subset of g, Subset Update is
conducted. In the naïve method, MGs are intersected with
all the existing GTRs for Subset Creation. However, because
we conduct Subset Creation at an expiry phase, there is no
necessity for intersection in an appearance update phase.

Figure 7(g), (h), and (i) depict three examples of our GTR
maintenance. At Frame 0 in Figure 7(g), the MG {A,B}
creates t{A,B} = (0, 0) by Self Creation. At Frame 1, the
MG {A,B,C} creates t{A,B,C} = (1, 1) by Self Creation, and
updates t{A,B}.fend to Frame 1 by Subset Update. At Frame 2,

Algorithm 3 Group Track Maintenance for Each
Frame
Input : current Frame f , set ofMGs G, the occlusion

threshold thresocc, the lifetime threshold
threslife, the minimum group size n, set of
tracks TRACK

Output: updated tracks TRACK , set ofMGTR
candidates mgtr

// Appearance update phase;
1 for eachMG g in G do
2 if tg exists in TRACK then
3 tg.fend = f ;
4 else
5 a new track tg = (f , f ) is added to TRACK ;

6 update te.fend to f such that e ⊊ g, te ∈ TRACK ;

// Expiry phase;
7 for each track tg in TRACK do
8 if g disappears at Frame f then
9 if lifetime of tg is no shorter than threslife then
10 if tg is a maximal group track in mgtr then
11 tg is added to mgtr ;

12 for each track te (e! = g) in TRACK do
13 if te is not expired at Frame f and

|g ∩ e| > n then
14 if tg∩e exists in TRACK then
15 tg∩e.fstart = min(tg.fstart , tg∩e.fstart )

; // min() returns the smaller value
16 else
17 a new track tg∩e =

(min(tg.fstart , te.fstart ), te.fend ) is
added to TRACK ;

18 tg is removed from TRACK ;

the MG {A,B,C} updates t{A,B,C}.fend Frame 2 by Self
Update, and updates t{A,B}.fend to Frame 2 by Subset Update.

Figure 7(h), at Frame 0, the MG {A,B,C} creates
t{A,B,C} = (0, 0) by Self Creation. At Frame 1, theMG {A,B}
creates t{A,B} = (1, 1) by Self Creation. Note that t{A,B}.fstart
is not updated to Frame 0 because the start frame update in
Self Creation is conducted at an expiry phase. At Frame 2,
theMG {A,B} updates t{A,B}.fend to Frame 2 by Self Update.
In Figure 7(i), at Frame 0, the MG {A,B,C,D} cre-

ates t{A,B,C,D} = (0, 0) by Self Creation. At Frame 1,
an MG {A,B,C,D} updates t{A,B,C,D}.fend to Frame 1 by
Self Update. The other MG {A,B,C,E} creates t{A,B,C,E} =

(1, 1) by Self Creation. Note that t{A,B,C} is not created
at Frame 1 because Subset Creation is conducted at an
expiry phase. At Frame 2, the MG {A,B,C,E} updates
t{A,B,C,E}.fend to Frame 2 by Self Update.

Lines 1-6 in Algorithm 3 describe an appearance update
phase. For each MG g at Frame f , the algorithm checks
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whether tg exists in a set of GTRs, TRACK (Lines 1-2). If tg
exists, tg.fend is updated to f (Self Update, Line 3). If tg does
not exist, the algorithm creates tg = (f , f ) (Self Creation
without update, Line 5). For each existing te (e ⊊ g), te.fend
is updated to f (Subset Update, Line 6).

D. EXPIRY PHASE
After an appearance update phase, given a set T of existing
GTRs, the occlusion threshold threso and Frame f , tg ∈ T ,
such that f − tg.fend ≥ threso (i.e., g disappears), is expired.
The expired tg conductsGTRmaintenance with the following
rules.
Expiry Rule 1. The intersection between tg and each te ∈ T
which is not expired at Frame f is conducted.
• Expiry Rule 1-1. If tg∩e ∈ T , tg∩e.fstart is updated to the
minimum value between tg.fstart and tg∩e.fstart .

• ExpiryRule 1-2. If tg∩e ̸∈ T , tg∩e is created. In addition,
tg∩e.fstart is updated to the minimum value between
tg.fstart and te.fstart , and tg∩e.fend is updated to te.fend .

Expiry Rule 2. If the lifetime of tg is no shorter than the
lifetime threshold, tg is added to a candidate set of maximal
group track (MGTR candidate).

By Expiry Rule 1-1, an expired GTR tg update each subset
te ∈ T , such that tg.fstart < te.fstart . Therefore, the start frame
update in Self Creation is handled as shown in Figure 7(h).
At Frame 2, the expiredGTR t{A,B,C} is intersected with t{A,B}
according to Expiry Rule 1. Because the intersection t{A,B}
exists, according to Expiry Rule 1-1, t{A,B}.fstart is updated to
the minimum value 0 between t{A,B,C}.fstart and t{A,B}.fstart .
Therefore, the appearance of {A,B} at Frame 0 is not lost.
When the two GTRs are expired at the same time as shown in
Figure 7(j), the update is unnecessary because t{A,B} cannot
be an MGTR. Even if t{A,B}.fstart is updated to Frame 0,
because the start and end frame of both t{A,B,C} and t{A,B} are
same as Frame 0 and 2, respectively, the MGTR is t{A,B,C}.
Accordingly, even if the appearance of {A,B} at Frame 0 is not
updated, the answer of group tracking query can be returned
correctly. The reduction of unnecessary updates makes our
GTR maintenance efficient.
By Expiry Rule 1-2, Subset Creation is handled as shown

in Figure 7(i). At Frame 3, t{A,B,C,D} is expired. According to
Expiry Rule 1, t{A,B,C,D} is intersected with t{A,B,C,E} which
is not expired at Frame 3. Because the intersection t{A,B,C}
does not exist, according to Expiry Rule 1-2, t{A,B,C} = (0, 3)
is created. The naïve method creates t{A,B,C} = (0, 1) at
Frame 1. Therefore, the appearance of {A,B,C} at Frame 2 is
updated by Subset Update. However, our GTR maintenance
creates t{A,B,C} after Frame 2 (i.e., Frame 3). Therefore,
we should conduct not only the creation of t{A,B,C} = (0, 1),
but also the update of t{A,B,C}.fend to Frame 2. As a result,
t{A,B,C} is maintained without any appearance loss. When
both t{A,B,C,D} and t{A,B,C,E} are expired at the same time as
shown in Figure 7(k), the creation of t{A,B,C} is unnecessary.
With the naive method, t{A,B,C} is created at Frame 1 and
expired at Frame 4. However, in our GTR maintenance,
we know that the creation of t{A,B,C} is unnecessary because

it cannot be anMGTR. Even if t{A,B,C} is created, because the
start and end frame of both t{A,B,C,D} and t{A,B,C} are same as
Frame 0 and 2, respectively, theMGTR is t{A,B,C,D}. Accord-
ingly, even if t{A,B,C} is not created, the answer of group
tracking query can be returned properly. The reduction of
unnecessary creation makes our GTR maintenance efficient.
Lines 7-18 in Algorithm 3 show a pseudo-code for an

expiry phase. At the current Frame f , for each existing
track tg, if f −tg.fend ≥ thresocc (i.e., g disappears at Frame f ),
tg is expired (Lines 7-8). If the lifetime of tg is no shorter
than the lifetime threshold and tg is a maximal group track
among the MGTR candidates found so far, tg is added to set
of MGTR candidates (Expiry Rule 2, Lines 9-11). For each
existing GTR te (e ̸= g), if te is not expired at Frame f ,
and |g ∩ e| is no smaller than the minimum group size n,
then the existence check of tg∩e is performed (Expiry Rule 1,
Lines 12-13). When tg∩e exists in the set of GTRs, TRACK ,
tg∩e.fstart is updated to the minimum value between tg.fstart
and tg∩e.fstart (Expiry Rule 1-1, Lines 14-15). If tg∩e does
not exist, tg∩e is created. In addition, tg∩e.fstart is updated to
the minimum vujpmm alue between tg.fstart and te.fstart , and
tg∩e.fend is updated to te.fend . (Expiry Rule 1-2, Lines 16-17).
Because tg is expired, tg is removed from TRACK (Line 18).
The time complexity of Algorithm 3 is O(mNT +T 3), where
m is the maximal size of a group, N is the number of MGs,
and T is the number of existing GTRs. O(mNT ) is the time
complexity for an appearance update phase, and O(T 3) is the
time complexity for an expiry phase.

E. DISCUSSION
Aswementioned in VI-A1, crowd tracking data contains a lot
of temporary groups. That is, the groups in a certain frame are
unlikely to be answers of a group tracking query. The existing
studies to capture temporal consistency of groups [13], [14],
[15], [16], [18] use the clustering-and-intersection algorithm
which is inefficient because they do not consider temporary
groups. To the best of our knowledge, there is no study that
resolves the inefficiency caused by temporary groups.

F. FAST SET OPERATIONS WITH SET-TRIE
Our GTR maintenance includes a lot of set operations which
are checking the existence of groups, and searching the sub-
sets of groups. Therefore, we can apply a set-trie index data
structure [21], [22] to accelerate GTR maintenance. Set-trie
is a tree composed of nodes labeled with an element in the
domain of [1,N]. Figure 8 presents an example of a set-trie.
The root node is an empty set, and its children are labeled
with an integer in the domain. A node labeled i cannot have
a child labeled j such that i > j. A node with a square means
the existence of a groupwhich consists of a sequence of labels
from the root to the current node. As shown in Figure 8, a set-
trie indexes GTRs. When we want to find the subsets of the
GTR t{1,2,3,4}, for example, the subsets t{1,2} and t{1,2,3} can
be found in a single traversal. Since objects in a group is
sorted in the order of object id (Line 8, Algorithm 2), there is
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FIGURE 8. An example of set-trie that indexes group tracks. A data node
contains a group that consists of a sequence of labels from the root to
the current node. In a single traversal, several sets in inclusion
relationships can be found.

no need for additional computations to apply a set-trie. The
time complexity of our GTR maintenance with a set-trie is
O(m2cN+mbT ), wherem is the maximal size of a group, c is
themaximumnumber of children of a node in the set-trie,N is
the number ofMGs at the current frame, and T is the number
of existing tracks. O(m2cN ) is the time complexity for an
appearance update phase, andO(mbT ) is the time complexity
for an expiry phase.

VII. A WORKFLOW OF GROUP TRACKING QUERY
PROCESSING
Figure 9 depicts a workflow of group tracking query pro-
cessing for a frame. The workflow proceeds in the order of
circled numbers in the figure. Given Frame f , 1⃝ Frame f is
grid-partitioned. 2⃝ A maximal group detection on Frame f
is conducted with the proposed LG-MGD process. 3⃝ Group
track maintenance is conducted for the maximal groups in
Frame f . 4⃝ Among the expired group tracks, the group
tracks satisfying the predicates of a group tracking query are
returned. 5⃝ After the expiry phase, the process is repeated
for the next frame. When all the frames are processed, group
tracking query processing is finished.

VIII. EXPERIMENTAL EVALUATIONS
A. EXPERIMENTAL SETUP
1) SETTINGS
Our evaluations were conducted on a server with Intel(R)
Xeon(R) CPU E5-2698 v4 @2.20GHz, 256GB memory, and
four Tesla V100 GPUs. The operating system for the server
was Ubuntu 18.04.6 LTS. Evaluated algorithms were imple-
mented using C++ 14. Experimental results were averaged
for 10 executions. For the visualization of results, we used
OpenCV and Python 3.6.

2) DATASETS
We used MOT (Multi Object Tracking) [23], [24] dataset
which is one of the most popular benchmarks for a
multi-object tracking task. MOT dataset provides pairs of
a real-world video and a ground truth of individual object
tracking data for the video. Among them, MOT20-02,

FIGURE 9. An example workflow of group tracking query processing.
Given Frame f , a query is processed in the order of label 1⃝- 5⃝.

TABLE 1. Dataset specifications.

MOT20-03, and MOT16-04 (denoted as MOT02, MOT03,
and MOT04, respectively) datasets were used. The example
frames for the datasets are presented in Figure 10. Because
the ground truths of object tracking data are labeled manually
for the entire frames, it does not include object occlusion.
Therefore, we generated datasets utilizing the inferences of
deep-learning based object detection and tracking models.
We adopted Yolov5-crowdhuman [25] as an object detec-
tion model and DeepSort [26] as an object tracking model.
We denote the ground truths and generated data (inferenced
data) by appending GT and IF, respectively (e.g., MOT02GT,
MOT04IF). The specifications of the datasets are presented
in Table 1. In the average number of objects per frame, the
differences between ground truths and inferenced data come
from detection errors in object detection models.

3) PREDICATES AND PARAMETERS
The default predicates of (s, t, n)-group tracking query are
determined to get reasonable groups. When a user wants to
impose different constraints (e.g., stricter spatial proximity,
looser temporal consistency, etc.) on a group, the user can
vary the predicates.

In the grid-based partition that introduced in Section V-A,
grid granularity represents the number of grid cells in
a row (x-axis). The number of grid cells in a column
(y-axis) is depending on the grid granularity because a
grid cell is a square. We empirically set the granularity
which shows the best performance in the naïve method as a
default. The default predicates and parameters are presented
in Table 2.
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FIGURE 10. The sample frames of three datasets (MOT02, MOT03, and MOT04).

TABLE 2. The default parameters for each dataset.

4) EVALUATED ALGORITHMS
We evaluated the performances of the methods introduced in
each query processing step (group detection and group track
maintenance). The methods are as follows.
• Group detection

– N-DET: Incremental object combination with a
grid-based partition in Section V-A

– P-DET: LG-MGD with the pruning strategy in
Section V-B

• Group track maintenance
– N-TRK: The clustering-and-intersection algorithm

in Section VI-A
– P-TRK: The proposed method which conducts

someGTRmaintenance at expire phases, and accel-
erated by set-trie in Sections VI-C and VI-D

ForN-TRK, we also applied an additional optimization which
was introduced in the work [18]. The optimization makes
connections among the group tracks in inclusion relationship.
When an existing group track te is intersected with an MG,
if the intersection is empty, Subset Creation is not conducted.
Therefore, the connected subsets of te also do not need to be
intersected to conduct Subset Creation.

B. EXPERIMENTAL RESULTS
1) PERFORMANCE EVALUATIONS FOR THE GROUP
TRACKING QUERY
This section introduces the group track query processing
performances of the methods with varying predicates. The
predicates are the occlusion threshold, the minimum group
size, and pivot ellipse size. Because the lifetime threshold
does not affect a query performance, the evaluation for the
lifetime threshold was omitted. When a predicate varied, the
other predicates were set to the default values in Table 2.

Figures 11-13 show the execution time of group tracking
queries with the different predicates. In all the graphs,
P-DET+P-TRK outperformed the other methods. The perfor-
mance gain obtained via (1) pruning of local groups and seed
objects in group detection step, and (2) reduction of unneces-
sary GTR maintenance and acceleration of set operations in
GTR maintenance step. From the comparison of N-DET+N-
TRK, P-DET+N-TRK, and N-DET+P-TRK, we can know that
a GTR maintenance step affected query execution time more
than a group detection step.

The query execution timesweremuch smaller than the total
running time of a video. For example, in MOT02GT dataset
with the total running time of 111 seconds, P-DET+P-TRK
processed a query with the default parameters in 0.7 seconds.
Even if the predicates varied, the longest query execution time
was 4.9 seconds which was about 22.3 times shorter than the
total video running time. These results support the efficiency
of our query processing approach for group tracking in video
monitoring systems.

Figure 11 shows execution times according to pivot ellipse
radiuses. We changed radiuses keeping a proportion between
short radius and long radius of the default ellipse. The long
radiuses of pivot ellipses were presented in the graphs. In the
entire graphs, the execution time increased exponentiallywith
the increments of pivot ellipse radius. It was because the area
of an ellipse increased exponentially as the radius increased,
the number of proximal objects from an object tended to
increase exponentially.

In Figure 12, the execution times increased when the
occlusion threshold increased. When the occlusion thresh-
old became larger, the GTRs for temporary groups were
likely to be maintained longer. It means that increments of
(1) Subset Updates and (2) the intersections for an expired
GTR. Because P-TRK reduced unnecessary GTR main-
tenance, performance gaps between N-DET+N-TRK and
N-DET+P-TRK became larger as the occlusion threshold
became larger. Figures 12(e)-12(f) show different trends
with the Figures 12(a)-12(d). In case of N-DET+P-TRK and
P-DET+P-TRK, execution time did not increase linearly.
It was because (1) MOT04GT contained fewer groups in a
frame and (2) temporary groups are fewer than the other
datasets because the distance between people was relatively
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FIGURE 11. Query execution time with various ellipse sizes.

FIGURE 12. Query execution time with various occlusion threshold.

large. Therefore, the number ofGTRs was smaller. As a result,
in the small occlusion threshold, the performance gain of
set-trie was smaller than the overhead of set-trie.

In Figure 13, as the minimum group size increased, the
performance gain of the proposed became smaller. Execu-
tion time of N-DET+P-TRK became slower than P-DET+N-
TRK as the minimum group size became larger. When the
minimum group size became larger, detected groups became
smaller, and the number of GTRs also became smaller. Since

the performance gains of P-DET and P-TRK came from
reducing the number of detected groups and GTRs, respec-
tively, the performance gains became smaller.

2) EFFECTS OF GRID GRANULARITY ON GROUP DETECTION
STEP
In this section, we analyzed the effect of grid granularity
on the group detection time. We measured and compared
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FIGURE 13. Query execution time with various minimum group size.

FIGURE 14. Group detection time with various grid granularity.

FIGURE 15. Group detection analysis. The results of the ablation study on
the group detection time and the number of comparisons in MG
candidate sets are presented.

group detection times of two group detection methods:
(1) N-DET and (2) P-DET. Figure 14 shows group detection

FIGURE 16. Group track maintenance analysis. The results of the ablation
study on the number of maintained group tracks and maintenance time
are presented.

times according to the different granularity. Grid granularity 1
means no partitions. As shown in Figure 14, grid granularity
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FIGURE 17. The sample frames for the visualized results of group tracking query and learning-based approach for the same dataset. A pair of
figures with the same circled number shows different results for the same situation.

that was too small or large was not good. It was due to the
tradeoff between the number of objects that are pruned and
the number of grids that should be checked.We set granularity
which shows the best performance in the naïve method as a
default.

3) ABLATION STUDIES FOR GROUP DETECTION STEP
To further analyze our group detection method, we con-
ducted an ablation study for each component of P-DET,
which consists of LG-MGD and the pruning strategy
that removes a seed object o after o-LMG detection in
Section V-B. The evaluation was conducted over MOT02GT
dataset. The compared methods were N-DET, LG-MGD
and LG-MGD with the pruning strategy (LG-MGD-P).
Figure 15(a) shows the maximal group detection time of each

method, and Figure 15(b) shows the number of comparisons
for a group at which checks of LMG and GMG candidate
sets. Each bar in Figure 15(a) consists of incremental object
combination time (bottom) andMG candidate set check time
(top). Times to check MG candidate sets for LG-MGD was
less than N-DET. It means that the computation of local
maximal group was effective to reduce the average num-
ber of comparisons for groups as shown in Figure 15(b).
LG-MGD-P significantly reduced the group detection time
compared to LG-MGD as shown in Figure 15(a). It was
because by removing a seed object, the number of proxi-
mal objects for the other seeds was reduced. Accordingly,
as shown in Figure 15(b), the average number of comparisons
was also reduced. Meanwhile, when a group was not filtered
in an LMG detection, the group should be compared with all
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FIGURE 18. The sample frames for the visualized results of a group tracking query over MOT02GT. The people in the same
group are connected by same-colored line segments.

the groups in theGMG candidate set. Therefore, the maximal
number of set operations was similar in all the methods.

4) ANALYSIS FOR A GROUP TRACK MAINTENANCE STEP
Figure 16(a) shows the minimum, average and maximum
number of GTRs in a GTR maintenance step for the methods
N-TRK and P-TRK. The number of GTRs was measured after
the expiry phase in each frame. Because the number of GTRs

tended to increase exponentially as frames are processed,
relatively few GTRs existed at the first frame of a video.
Therefore, The minimum numbers of GTRs were similar.
In the average and the maximum number of GTRs, P-TRK
shows about 36% and 53% fewer GTRs than N-TRK, respec-
tively. It was because N-TRK made a lot of unnecessary
GTRs. Meanwhile, P-TRK reduced the creation of unnec-
essary GTRs by exploiting the appearance information of a
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group track. Accordingly, in Figure 16(b), P-TRK without
a set-trie (P-TRK-NOTRIE) showed about 49% lower main-
tenance time than N-TRK. Our GTR maintenance already
achieved significant performance gain without a set-trie.
P-TRK reduced the maintenance time about seven times com-
pared to P-TRK-NOTRIE by accelerating set operations via a
set-trie in GTR maintenance.

5) COMPARISONS WITH LEARNING-BASED APPROACH
We conduct visual comparisons for group tracking results
between a learning-based approach and the proposedmethod.
For the learning-based approach, we used the work [12]
which shows the highest accuracy among the works [1],
[5], [6], [7], [8], [9], [10], [11], [12]. Figure 17(a) and
17(c) are captured images from a demo video [27] of the
work [12]. The demo video visualized group tracking results
on GVEII dataset [28]. GVEII dataset contains 2400 frames
of video and ground truths for both groups and individuals.
The average number of objects per frame is 49, which is
similar to MOT02 dataset. For the proposed method, the
predicates of group tracking query are set to get similar
results to those of the learning-based method. The images in
Figure 17(b) and 17(d) are visualized results of the group
tracking query on GVEII dataset. Figure 17(b) and 17(d)
depict the same frame as 17(a) and 17(c), respectively. Over-
all, the two methods find similar groups except for two situa-
tions (red dashed circle) that are labeled with the numbers 1⃝
and 2⃝. In situation 1⃝, a group of two people in column
formation passes through between two people which are not
in a group. The group tracking query considered the situation,
while the learning-based approach did not. In situation 2⃝,
four people in a group walk in a large formation. As opposed
to situation 1⃝, the group tracking query found the results
in several small groups, while the learning-based approach
found the group with four people. As shown in the two
situations, although the two methods showed similar group
tracking results, failure cases differed according to the situa-
tions in a video. Therefore, it is challenging to determine the
superiority of effectiveness between the two methods.

In the aspect of efficiency, the models of learning-based
approaches have much longer inference time than the total
running time of a video as we mentioned in Section II.
Besides the inference time, labeling for ground truths, feature
(e.g., motion patterns of groups, etc.) extraction, and training
time are also needed. On the other hand, query processing
time is much shorter than the total running time of a video as
shown in Section VIII-B1. Therefore, for video monitoring
systems, group tracking query is more practical than the
learning-based approaches because fast discovery of groups
is required.

6) VISUALIZATIONS OF GROUP TRACKING QUERY RESULT
In Figure 18, we visualized the results of a group track-
ing query with default parameters on MOT02GT dataset.
Because it was difficult to identify groups in the whole video

frame, the frames were cropped and enlarged. The frames are
captured in approximately five seconds intervals (125 frames
interval) and labeled with the integer at the left top corner of a
frame in the order of frame number. A person in Figure 18 is
depicted by a circle at the feet point, and the people in the
same group are connected by same-colored line segments.
In the figure, found groups are usually reasonable regardless
of (1) group locations at a frame and (2) object overlaps that
cause object occlusion and temporary groups.

IX. CONCLUSION
Recently, as video monitoring systems utilize object tracking
on crowded videos, a lot of crowd tracking data are pro-
duced. Over crowd tracking data, there is a necessity for
finding human groups rapidly. However, to the best of our
knowledge, there is no existing work that finds groups over
crowd tracking data. We proposed a novel type of query,
group tracking query, which retrieves the groups that satisfy
spatial proximity, temporal consistency, and the minimum
group size. By the proximity definition based on a variable
ellipse, a group tracking query considers perspective projec-
tion. Moreover, the groups which occlude temporarily can be
found because a group tracking query considers the occlusion
threshold. We also proposed efficient algorithms for a group
tracking query processing. The proposed algorithms signifi-
cantly reduced the computational cost for both group detec-
tion and group track maintenance step. Through the extensive
experimental evaluations, the efficiency and effectiveness of a
group tracking query were verified. A retrieval of groups over
crowd tracking data which have changing camera location
and angle can be the future work.
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