IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 29 January 2023, accepted 16 February 2023, date of publication 27 February 2023, date of current version 3 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3249356

==l APPLIED RESEARCH

Comparison of Real-Time and Batch Job
Recommendations

ROBERT KWIECINSKI“12, GRZEGORZ MELNICZAK 2, AND TOMASZ GORECKI"“1

!Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 61-614 Poznari, Poland
20LX Group, 61-872 Poznari, Poland

Corresponding author: Robert Kwieciriski (r.kwiecinskipl @ gmail.com)

ABSTRACT Collaborative filtering recommendation systems are traditionally trained in a batch manner
and are designed to produce personalized recommendations for a large number of users at the same time.
However, in many industrial use cases, it is reasonable to produce recommendations in real time, taking
account of very recent user interactions. In this work, we present the implementation of batch and real-time
recommendation systems using the example of the RP3Beta model, a simple scalable graph-based model
that outperforms multiple more advanced models. Our approach can be utilized by any recommendation
system if user-to-item recommendations can be obtained based on item-to-item recommendations. We show
that it covers multiple common recommendation models, especially collaborative filtering approaches where
user features are not available. We also provide the results of A/B tests comparing these two approaches in a
real-world scenario of a job recommendation task, conducted with almost 200,000 OLX users. We report at
least 10% more users applying for recommended job ads when using a real-time instead of a batch approach.
We believe that our results can help other organizations to take informed decisions about whether to make
the effort of moving from a batch to a real-time recommendation setting.

INDEX TERMS A/B tests, collaborative filtering, job recommendations, real-time recommendations,
RP3Beta.

I. INTRODUCTION

Recommendation systems are widely utilized by the largest
internet services, including Twitter [1], Netflix [2], and
Amazon [3]. They usually make use of information about
previous interactions between users and items not only when
training the models, but also when producing recommenda-
tions for users. It has been observed that the most recent
user interactions are usually the most important for producing
recommendations [4].

Collaborative filtering [5] is a very common recommenda-
tion technique, and provides recommendations to users based
solely on their interactions. Such systems are not able to
provide recommendations to new users until their interactions
have been processed. Hence, the inclusion of recent user
interactions in the recommendation process is even more
important for such models.

The associate editor coordinating the review of this manuscript and
approving it for publication was Claudio Zunino.

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Recommendation systems usually apply processes con-
sisting of two phases: training the model and generating
the recommendations [6]. We can distinguish three types
of approach with respect to their behaviour when the user
performs an action (e.g., visits or purchases some item):

1) the model IS NOT retrained and the user recommenda-
tions ARE NOT affected,

2) the model IS NOT retrained, but the user recommenda-
tions ARE affected,

3) the model IS retrained and the user recommendations
ARE affected.

The first case, which we refer to as batch recommenda-
tions [7], is the cheapest and the easiest to develop. This
solution is good when a large number of recommendations
are generated at the same time (e.g., for sending email
recommendations to all users). Such recommendations can
also be presented to users on demand, but the user experience
might be worse because the recommendations do not take

20553

https://orcid.org/0000-0003-4443-3281
https://orcid.org/0009-0000-8986-4144
https://orcid.org/0000-0002-9969-5257

IEEE Access

R. Kwieciniski et al.: Comparison of Real-Time and Batch Job Recommendations

account of the most recent user interactions (i.e., interactions
which happened after the last recalculation of the model).

In the second case, which we refer to as real-time
recommendations [8], the most recent user interactions
impact the recommendations for the user in question, but
do not impact the recommendations produced for other
users (because the model is not updated). For instance,
the model may consist of item embeddings learned once a
day, whereas the user representation can be calculated on
demand as an average of the representations of the items
with which the user interacted. Unlike in the first case, such
approaches address concept drifts of users and are able to
provide recommendations for new users immediately after
their first interaction. In the case of collaborative filtering,
these methods usually suffer from a cold-start problem for
items.

In the third case, the model constantly learns from a
continuous stream of interactions. Such approaches, known
as stream-based recommender systems [6], [9], require the
greatest engineering effort. Even in the case of collaborative
filtering, these methods are able to recommend an item after
some user has interacted with it [10].

OLX! is a classified platform, where users post their
advertisements regarding jobs, real estate, services, and
goods. It is a part of the OLX Group headquartered in
Amsterdam with above 10 thousand employees, which is
a part of Naspers’> owned by Prosus.> The OLX brand,
founded in 2006, is present in around fifteen countries and
serves hundreds of millions of users monthly. Advertisements
are usually available only for a few weeks, and users are
often anonymous (i.e., the only information we have about
them is their browsing history), which creates a challenging
environment for the problem of recommending relevant ads
to the users.

In this work, we compare the batch and real-time
recommendation approaches as deployed at OLX for job
recommendations. Our main motivation for implementing
real-time recommendations infrastructure was the need of
providing recommendations to the users just after their
first interaction with job ads and improving the quality of
the recommendations after every new interaction. We do
not consider stream-based models, because of their high
implementation costs relative to the improvement that
we expect. We believe that the abilities of stream-based
approaches to address the problems of concept drift and
cold-start for items [7] are less important in the case
of our job recommendations than in other domains (e.g.,
news recommendations [10]). Below we list our main
contributions.

« We outline the required infrastructure to provide real-

time recommendations by presenting the whole pipeline
from data acquisition to serving the recommendation to

1 https://www.olxgroup.com/brands/olx
2https://www.naspers.com/
3 https://www.prosus.com/

20554

the users. Such a solution was successfully deployed at
multiple markets of the OLX.

« We describe the process of calculating the recommen-
dations from the RP3Beta model within our real-time
recommendations infrastructure.

o We report the improvement of the real-time RP3Beta
approach over the batch RP3Beta approach by providing
the results of A/B tests conducted with OLX users.
To our knowledge, there is no research providing an
online comparison of batch and real-time recommenda-
tions.

o« We show that our solution can be generalized for
recommendation models that produce user-to-item rec-
ommendations by aggregating the item-to-item recom-
mendations of the items that the user has interacted with.

The rest of the paper is organized as follows. Section II
presents related work, including the mathematical formula-
tion of the RP3Beta model. Section III presents the details
of our implementation of the RP3Beta model in batch and
real-time settings. Section IV presents the results of A/B tests
conducted with users of OLX. Conclusions are presented in
section V.

Il. RELATED WORK

A. RECOMMENDATION SYSTEMS IN THE INDUSTRY
Recommendation methods for millions of customers and
millions of items are successfully utilized in the industry for
at least 25 years. In 1998, Amazon launched item-based col-
laborative filtering [3], [8]. Recommendation systems gained
attention in 2007 when Netflix’s organized the Netflix Price
competition and offered one million dollars for creating a
recommendation model outperforming the Netflix algorithm
by 10% in terms of RMSE [2]. In 2016, Netflix described
their recommendation systems and announced that 80% of
hours streamed at Netflix come from recommendations [11].

Within the last few years, we observe industrial applica-
tions of more advanced recommendation techniques. In 2018,
Pinterest described Pinsage [12], a graph convolutional neural
network model trained on a graph with 3 billion nodes
and 18 billion edges, which was deployed at Pinterest and
outperformed previous models. In 2022, Pinterest published
work describing ItemSage, a new recommendation method
based on Pinsage and transformer architecture, which deploy-
ment increased Gross Merchandise Value (GMV) by up to
7% [13]. Lacic et al. [14] published the results of A/B tests
conducted on the Austrian job platform Studo Jobs to evaluate
the performance of utilizing embeddings for real-time job
recommendations. In 2020, LinkedIn reported a significant
improvement in their recommendation system achieved by
utilizing deep transfer learning for creating domain-specific
job understanding models [15].

In our previous work [16] we reported the impact of send-
ing email and push notifications with job recommendations to
millions of OLX users actively looking for a job. We observed
significantly more users applying for jobs when sending them

VOLUME 11, 2023

R. Kwiecinski et al.: Comparison of Real-Time and Batch Job Recommendations

IEEE Access

recommendations from the ALS model, and even more when
we used the RP3Beta model.

B. BATCH AND REAL-TIME RECOMMENDATIONS

Viniski et al. [7] noted that recommender systems are
traditionally trained in a batch fashion and examined several
popular examples, such as SVD [17], BPRMF [18] and
NeuMF [19]. Sharma et al. [1] described the evolution
of recommendation methods at Twitter and the process
of supplementing batch with real-time processing. They
mentioned that around 2012 nearly all Twitter graph-based
recommendations were generated in batch at roughly daily
intervals. They observed that the system performed well
for users whose recommendations had been recently recom-
puted, which supported their intuition that day-old batch
recommendations did not seem to exploit the advantages of
Twitter.

Linden et al. [8] proposed an item-to-item collaborative
filtering approach for serving personalized real-time rec-
ommendations on a large scale, and deployed the solution
at Amazon. Their algorithm for each item calculates a
list of similar items in an offline phase. The personalized
user recommendations are provided by aggregating the lists
of items similar to the items with which a given user
interacted. Such an approach is widely applied [6], because
calculating item similarities is an essential part of many
popular recommendation algorithms [20], [21], [22].

Several studies have been carried out to compare batch
or real-time recommendations against stream-based recom-
mendations [7], [23]. To our knowledge, there is no research
comparing batch and real-time recommendations. In this
work, we fill that gap by providing the results of an A/B
test that we conducted. We hope that our results can help
other organizations to make informed decisions on whether
to make the effort of moving from a batch to a real-time
recommendation setting.

C. RP3Beta MODEL

In this section, we present the RP3Beta model proposed by
Paudel et al. [22]. Following Dacrema et al. [24] we treat
this model as a generalization of P3Alpha [25] and directly
calculate the scores instead of random walk approximations.
In our previous work [16] we showed that RP3Beta out-
performed other popular collaborative filtering approaches
(namely, ALS [26], LightFM [27], Prod2Vec [20], [28],
and SLIM [21]) on the OLX Jobs Interactions dataset. The
RP3Beta model is currently deployed at OLX.

Let us denote the set of users by U/ and the set of items
by Z. We represent our data as a bipartite graph in which the
parts are users and items, while edges represent interactions
between them. Let A/(x) be the set of neighbours of the node
X.

The model calculates a score r,,; representing the relevance
ofitemi € 7 foruser u € U, as the sum of the scores assigned

VOLUME 11, 2023

Items

FIGURE 1. Path of length 3 with edge scores. The path is highlighted as a
bold orange line. Dashed lines represent interactions between users and
items.

to the paths of length 3 connecting « and i, i.e.:

ri= . > pluiui,

i'eN(u) W' eN (i)

where p(u, ', i, i) is the score assigned to the given path. The
score of the path is calculated as the product of the scores of
the edges:

oo nH_(2) (3)
pQu, 0w, 0) =p Dyl yis

(1) 1 2 1 3 _
Wherelpm./ NG© pi/u/ N and Pu/l- =
NGO IN GIF . . -

The edge scores of a given path are illustrated in Fig. 1.

We can efficiently calculate these scores by representing
the model in the matrix form:

R = PYpOpd), 1)

where R = (r,,;) and P®) = (p,(cl;)). Note that PV, P4 are
|U| x |Z| matrices and P? is an |Z| x |I/| matrix.

The RP3Beta model recommends the items with the
highest score excluding the items with which the user has
interacted.

Ill. MODELS

In this section, we present batch and real-time versions of
the RP3Beta model used at OLX. We describe the real-time
infrastructure in detail. We also add a remark regarding the
utilization of the same concept for other recommendation
models.

A. BATCH RP3Beta MODEL

In the batch approach, we directly produce and store the
recommendations for each user based on (1). This is a
reasonable approach for sending emails to users when a huge

20555

IEEE Access

R. Kwieciniski et al.: Comparison of Real-Time and Batch Job Recommendations

number of users receive recommendations at the same time.
It can also be used if we need to produce recommendations at
the user’s request. To achieve this, we deployed an API which
returns a list of recommendations based on the user identifier.
However, these recommendations are generated during the
batch process (several times a day) and may not take account
of the most recent user interactions. The greatest advantage
of this approach is its simplicity and low cost compared with
real-time recommendations.

B. REAL-TIME RP3Beta MODEL

The scores defined in (1) can be calculated in the following

way:

o Calculate matrix A = PPPO), which is an |Z| x |Z|
sparse matrix. This is done in batch mode — several times
per day.

o Produce the recommendations for a given user by
multiplying the user representation (which is the row
from matrix P representing the given user) by the
pre-calculated matrix P@P)_ This is done on demand
when the recommendations for a given user need to be
displayed.

Since the matrix A is calculated in batch mode, we are
not able to take account of information about new items
which have had interactions since the matrix was calculated
for the last time. As a result, if all items with which a
user has interacted are very new, then we cannot provide
any recommendations to that user. On the other hand,
recommendations based on these items might not be accurate
anyway, because our collaborative filtering approach would
be based on a small number of users who had interacted with
them. Hence, we believe that calculating this part of equation
(1) in batch mode instead of real-time mode has a low impact
on the overall quality of the recommendation system.

The number of nonzero entries of the matrix A is twice
the number of distinct item pairs visited by the same user.
It might easily exceed billions in real-world applications.
Hence, to speed up the calculation of recommendations,
we decided to restrict each column of the matrix A to the N
largest values. By choosing N > |Z| we do not make any
modifications to the matrix A. In Figure 2 we can observe
how the precision@ 10 [29] depends on the choice of N in the
case of our dataset with around 107 items. We report precision
because we believe it is highly correlated with our business
metrics (similarly to [30]). Additionally, we observed a
similar behaviour of other offline metrics depending on N
(including recall, NDCG, MAP, MRR, LAUC, HR [29]).
Based on this, we decided to choose N = 60.

C. REAL-TIME RP3Beta ARCHITECTURE
The high-level architecture used to efficiently serve personal-
ized real-time user-to-item recommendations is presented in
Figure 3.

User interaction data is constantly being streamed into
and is stored in two distinct systems — a big-data platform
and a fast key-value store containing the recent user-item

20556

0.0350 4

0.0345 4

0.0340 4

0.0335 4

0.0330 4

precision@10

0.0325 A

0.0320 4

0.0315 A

10t 102 10° 10¢ 105
N

FIGURE 2. Precision@10 after restricting each column of matrix A to the N
largest values, for N < {10, 20, 30, 40, 50, 100, 200, 300, 500, 1000, 105}.

interactions. The big-data platform is used to query and
aggregate a high volume of data used as input for the batch
item-to-item prediction step, the output of which is again
stored in a fast item key-value lookup of N similar items along
with the similarity scores.

The interaction store — depending on implementation — can
reflect the most recent user behaviour in almost real time,
while the item-to-item recommendation store is updated only
after completion of the batch prediction step.

When requesting personalized recommendations for a user,
the aggregator component retrieves up to M most recent
interactions Z, = {ix : k < M} from the interaction store.
Then for each of the unique returned items a list of similar
items S(Z,) = {{(/.si) : 7 € SN()} :i € L} is fetched
from the item-to-item recommendation store, where s,y is the
similarity score between x and y, and Sy (x) is the set of the
N items most similar to item x (excluding x itself). Since
an item i’ can appear multiple times with different similarity
scores (for different i), the final result needs to be flattened
and aggregated, which is described by Algorithm 1. Note that
instead of sum we could use any aggregate function, e.g., max,
mean, median (and their weighted versions).

Algorithm 1 Calculations Performed by the aggregator
Component
R =dict()
for item € 7, do
for similar_item, similarity_score € Sy (item) do
append similarity_score to R[similar_item]
end for
end for
for similar_item, similarity_scores € R do
R[similar_item] = sum(similarity_scores)
end for

Using this setup allows the retrieval of personalized
user-to-item recommendations within seconds of a user
interaction, with the list being continuously updated as the
user reacts to the recommendations presented.

VOLUME 11, 2023

R. Kwiecinski et al.: Comparison of Real-Time and Batch Job Recommendations

IEEE Access

Tracking

N
—

Tracking

RP3Beta i2i

Stream

» Data

| Interactions

Batch Predict

(Big-Data
Platform)

N
—

Reco u2i
Aggregator

User

I

(Key-Value
Store)

Reco i2i
(Key-Value
Store)

FIGURE 3. Real-time recommendations architecture at OLX.

D. REMARK ON APPLICABILITY TO OTHER
RECOMMENDATION MODELS

Most recommendation models, not necessarily graph-based,
are able to provide item-to-item recommendations in a batch
mode (for all the items at the same time). Hence we can utilize
the architecture described in subsection III-C to provide real-
time recommendations based on the user’s latest interactions
with these items. For some models, such recommendations
may not be the same as the user-to-item recommendations
produced by the model in a usual way (defined within
the model). For instance, in matrix factorization methods
[31], the recommendations are calculated based on user
embeddings learned during the training procedure. Two
users with the same set of interactions might have different
embeddings, hence different recommendations produced in
the usual way. In our approach, such users would receive
exactly the same recommendations.

Recommendations produced by our approach are identical
(for large enough values of M and N) to recommendations
produced in a usual way for models where user-to-item
recommendations can be obtained by aggregating item-
to-item recommendations (e.g., SLIM [21]). Below we
briefly prove that this property is satisfied by models which
calculate the (user, item) score as the dot product of user
and item embeddings, if a user embedding is calculated
as the weighted average of the item embeddings with
which the user interacted (e.g., LightGCN [32]). Assume
that a user u interacted with items (iy, is, ..., i;) and this
user’s representation is calculated as > j_; wke;,, Where
wi, wa, ..., w, are weights and e; is the embedding of item i.
Then the score of item i for user u is calculated as:

t t t
i =D wiei,)-ei =D wiei -ei =D wisii,
k=1 k=1 k=1

VOLUME 11, 2023

where sy ; is the similarity score between i’ and i, and - is a
dot product. Hence, the user-to-item recommendations can be
calculated based on item-to-item similarities.

The accuracy of our approach relies heavily on the
quality of item-to-item similarities. The only user-specific
information taken into consideration during the prediction
is user interactions. As a result, our approach may not
perform well when user features are more important than user
interactions. In particular, our approach can not provide any
recommendations for users without interactions.

IV. ONLINE A/B TEST

Users of OLX receive 30 personalized job recommendations
on a dedicated page. The recommendations come from two
types of models: collaborative filtering and content-based.
The final list of recommendations is built based on these
two sources, using a blending algorithm. For simplicity,
we can assume that the importance of these two sources is
similar. We conducted an A/B test to compare batch and
real-time recommendations: in variant A the collaborative
filtering recommendation model was the batch RP3Beta
model, whereas in variant B it was the real-time RP3Beta
model. Each user was randomly assigned to one of these
variants (independently with equal probability) and could not
change the variant during the experiment. The experiment
lasted twelve days.

The recommendations of the batch RP3Beta model and
the batch step of the real-time RP3Beta model (i.e., the
calculation of matrix A) were calculated several times a
day, based on the last seven days of user interactions. The
experiment was conducted in multiple markets (countries)
in parallel and the models were trained for each market
separately. In the biggest market, our training datasets
consisted of around 35 million interactions performed by

20557

IEEE Access

R. Kwieciniski et al.: Comparison of Real-Time and Batch Job Recommendations

TABLE 1. Results of A/B test comparing batch and real-time RP3Beta
models. The difference was calculated as the uplift of the B group over
the A group for provided metrics.

Variant Users converted users % converted users
A (batch) 92,835 3,731 4.02%

B (real-time) 92,194 4,081 4.43%
Difference -0.69% 9.38% 10.14%

2 million users regarding 160 thousand job ads. We published
an analogous dataset from a different period on Kaggle.* We
conducted a more comprehensive analysis of this dataset in
our previous work [16].

The results of the experiment are presented in Table 1.
A converted user is a user who clicked on at least one rec-
ommended job ad and then applied for that job. We observe
a 10.14% higher percentage of converted users in variant
B. The p-value of the chi-squared test [33] equals 0.00001,
which confirms the statistical significance of these results.
Taking into consideration that only the collaborative filtering
recommendation system was changed, we were satisfied
with the results and decided to replace batch RP3Beta
recommendations with real-time RP3Beta recommendations
at OLX.

There are two further issues worthy of mention:

1) In the batch recommendation system we additionally
changed the order of RP3Beta recommendations based on
the matching between user profiles and recommended ads.
We have seen in the past that reranking increases the number
of converted users by around 2.5%. Hence, this reranked
version of the RP3Beta model was our baseline which we
wanted to improve using real-time recommendations (where
we did not make any reranking).

2) When conducting the experiment we made an error in
the implementation of real-time recommendations, namely,
we accidentally transposed matrix A. It was not possible
to rerun the experiment comparing batch and real-time
recommendations, because it was already proven that the
real-time model, even with the implementation mistake,
is superior to the batch approach. Hence, we conducted
a follow-up experiment comparing the wrong and fixed
implementation of the real-time model. The experiment
lasted 10 days. We observed 4.7% more converted users in
the fixed variant.

Hence, the advantage of real-time recommendations over
batch recommendations may be even greater than reported in
Table 1.

V. SUMMARY

In this work, we described the OLX implementation of
the RP3Beta model in two versions: batch and real-time.
We discussed the mathematical and architectural aspects of
these approaches. Then we provided the results of online A/B

4https://www.kaggle.com/datasets/olxdatascience/
olx-jobs-interactions

20558

tests conducted on OLX users. We reported that replacing
the batch RP3Beta model with the real-time RP3Beta model
increases the number of users replying to recommended job
ads by at least 10%.

Even though our experiments were conducted using the
example of the RP3Beta model, we can use any recom-
mendation system if the recommendations for a user can be
calculated based on items similar to the items with which that
user has interacted. Additionally, we believe that in domains
where users are more likely to change their preferences, the
impact of utilizing a real-time recommendation system may
be even greater.

REFERENCES

[1] A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. Lin, “GraphJet:
Real-time content recommendations at Twitter,” Proc. VLDB Endowment,
vol. 9, no. 13, pp. 1281-1292, Sep. 2016.

[2] J. Bennett and S. Lanning, “The Netflix Prize,” in Proc. KDD Cup
Workshop, New York, NY, USA, 2007, p. 35.

[3] B. Smith and G. Linden, “Two decades of recommender systems
at Amazon.com,” IEEE Internet Comput., vol. 21, no. 3, pp. 1218,
May 2017.

[4] R.Kwiecinski, T. Gérecki, and A. Filipowska, ‘“Learning edge importance
in bipartite graph-based recommendations,” in Proc. Ann. Comput. Sci. Inf.
Syst., Sep. 2022, pp. 227-233.

[5] R.Chen, Q. Hua, Y.-S. Chang, B. Wei, L. Zhang, and X. Kong, “A survey
of collaborative filtering-based recommender systems: From traditional
methods to hybrid methods based on social networks,” IEEE Access, vol. 6,
pp. 64301-64320, 2018.

[6] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel,
“StreamRec: A real-time recommender system,” in Proc. ACM SIGMOD
Int. Conf. Manage. data, New York, NY, USA, Jun. 2011, pp. 1243-1246.

[7] A. D. Viniski, J. P. Barddal, A. D. S. Britto Jr., F. Enembreck, and
H. V. A. D. Campos, “A case study of batch and incremental recommender
systems in supermarket data under concept drifts and cold start,” Expert
Syst. Appl., vol. 176, Aug. 2021, Art. no. 114890.

[8] G. Linden, B. Smith, and J. York, ‘“Amazon.com recommendations: Item-
to-item collaborative filtering,” IEEE Internet Comput., vol. 7, no. 1,
pp. 76-80, Jan./Feb. 2003.

[9] M. Al-Ghossein, T. Abdessalem, and A. Barré, “A survey on stream-based
recommender systems,” ACM Comput. Surv., vol. 54, no. 5, pp. 1-36,
May 2021.

[10] M. Jugovac, D. Jannach, and M. Karimi, “StreamingRec: A framework
for benchmarking stream-based news recommenders,” in Proc. 12th ACM
Conf. Recommender Syst., New York, NY, USA, Sep. 2018, pp. 269-273.

[11] C. A. Gomez-Uribe and N. Hunt, “The Netflix recommender system:
Algorithms, business value, and innovation,” ACM Trans. Manage. Inf.
Syst., vol. 6, no. 4, pp. 1-19, Jan. 2016

[12] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, New York, NY, USA, Jul. 2018, pp. 974-983.

[13] P. Baltescu, H. Chen, N. Pancha, A. Zhai, J. Leskovec, and C. Rosenberg,
“ItemSage: Learning product embeddings for shopping recommendations
at pinterest,” in Proc. 28th ACM SIGKDD Conf. Knowl. Discovery Data
Mining, New York, NY, USA, Aug. 2022, pp. 2703-2711.

[14] E. Lacic, M. Reiter-Haas, T. Duricic, V. Slawicek, and E. Lex, “Should
we embed? A study on the online performance of utilizing embeddings for
real-time job recommendations,” in Proc. 13th ACM Conf. Recommender
Syst., New York, NY, USA, Sep. 2019, pp. 496-500.

[15] S.Li, B. Shi, J. Yang, J. Yan, S. Wang, F. Chen, and Q. He, “Deep job
understanding at LinkedIn,” in Proc. 43rd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., New York, NY, USA, Jul. 2020, pp. 2145-2148.

[16] R. Kwiecirski, A. Filipowska, T. Gorecki, and V. Dubrov, “Job
recommendations: Benchmarking of collaborative filtering methods for
classifieds,” 2023, arXiv:2301.07946.

[17] A. Paterek, “Improving regularized singular value decomposition for
collaborative filtering,” in Proc. KDD Cup Workshop, 2007, pp. 39-42.

VOLUME 11, 2023

https://www.kaggle.com/datasets/olxdatascience/olx-jobs-interactions
https://www.kaggle.com/datasets/olxdatascience/olx-jobs-interactions

R. Kwiecinski et al.: Comparison of Real-Time and Batch Job Recommendations

IEEE Access

[18] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR:
Bayesian personalized ranking from implicit feedback,” in Proc. 25th
Conf. Uncertainty Artif. Intell., May 2012, pp. 452-461.

[19] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proc. 26th Int. Conf. World Wide Web, 2017,
pp. 1-15.

[20] O. Barkan and N. Koenigstein, “ITEM2VEC: Neural item embedding for
collaborative filtering,” in Proc. IEEE 26th Int. Workshop Mach. Learn.
Signal Process. (MLSP), Sep. 2016, pp. 1-6.

[21] X. Ning and G. Karypis, “SLIM: Sparse linear methods for top-N
recommender systems,” in Proc. IEEE 11th Int. Conf. Data Mining,
Dec. 2011, pp. 497-506.

[22] B. Paudel, F. Christoffel, C. Newell, and A. Bernstein, “Updatable, accu-
rate, diverse, and scalable recommendations for interactive applications,”
ACM Trans. Interact. Intell. Syst., vol. 7, no. 1, pp. 1-34, Dec. 2016.

[23] W. Wang, H. Yin, Z. Huang, Q. Wang, X. Du, and Q. V. H. Nguyen,
“Streaming ranking based recommender systems,” in Proc. 41st Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., New York, NY, USA, Jun. 2018,
pp. 525-534.

[24] M. F. Dacrema, P. Cremonesi, and D. Jannach, “Are we really making
much progress? A worrying analysis of recent neural recommendation
approaches,” in Proc. 13th ACM Conf. Recommender Syst., New York,
NY, USA, Sep. 2019, pp. 101-109.

[25] C. Cooper, S. H. Lee, T. Radzik, and Y. Siantos, ‘“‘Random walks in
recommender systems: Exact computation and simulations,” in Proc. 23rd
Int. Conf. World Wide Web, New York, NY, USA, Apr. 2014, pp. 811-816.

[26] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Proc. 8th IEEE Int. Conf. Data Mining, Dec. 2008,
pp. 263-272.

[27] M. Kula, “Metadata embeddings for user and item cold-start recommen-
dations,” 2015, arXiv:1507.08439.

[28] M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla,
V. Bhagwan, and D. Sharp, “E-commerce in your inbox: Product
recommendations at scale,” in Proc. 21st ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, New York, NY, USA, Aug. 2015, pp. 1809-1818.

[29] Y.-M. Tamm, R. Damdinov, and A. Vasilev, “Quality metrics in
recommender systems: Do we calculate metrics consistently?”” in Proc.
15th ACM Conf. Recommender Syst., New York, NY, USA, Sep. 2021,
pp. 708-713.

[30] A. Mogenet, T. A. N. Pham, M. Kazama, and J. Kong, ‘“Predicting
online performance of job recommender systems with offline evaluation,”
in Proc. 13th ACM Conf. Recommender Syst., New York, NY, USA,
Sep. 2019, pp. 477-480.

[31] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” IEEE Comput., vol. 42, no. 8, pp. 30-37,
Aug. 2009.

[32] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “LightGCN:
Simplifying and powering graph convolution network for recommenda-
tion,” in Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.,
New York, NY, USA, Jul. 2020, pp. 639-648.

[33] M. L. McHugh, “The Chi-square test of independence,” Biochemia
Medica, vol. 23, no. 2, pp. 143-149, 2013.

VOLUME 11, 2023

ROBERT KWIECINSKI received the M.Sc. degree
in mathematics from Adam Mickiewicz Univer-
sity, Poznari, Poland. He is currently pursuing the
industrial Ph.D. degree in computer science with
cooperation between Adam Mickiewicz Univer-
sity and OLX Group. Since 2018, he has been with
OLX Group, where he is currently a Senior Data
Scientist. His main research interest and the topic
of his Ph.D. dissertation is recommender systems,
which is developed and implemented for the OLX

classifieds platform in the jobs category, in multiple countries in which the
platform operates.

GRZEGORZ MELNICZAK received the M.A.
degree in operations research from the Poznan
University of Economics and Business, Poland,
in 2007, and the M.Sc. degree in applied
mathematics from Adam Mickiewicz University,
Poznan, Poland, in 2009. He is currently with
OLX Group as a Machine Learning Engineer
with a particular interest in recommendations and
distributed systems.

TOMASZ GORECKI received the M.Sc. and
Ph.D. degrees in mathematics from the Faculty of
Mathematics and Computer Science, Adam Mick-
iewicz University, Poznari, Poland, in 2001 and
2005, respectively, and the Habilitation degree
in computer science from the Systems Research
Institute, Polish Academy of Sciences, in 2015.
He is currently an Assistant Professor with Adam
Mickiewicz University. He is the author of over
90 scientific papers and three books. His main

research interests include methods of artificial intelligence, machine
learning, and time series analysis, and their applications.

20559

