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ABSTRACT This study presents a novel adaptation of the Hoeffding Adaptive Tree (HAT) classifier
with an instance selection algorithm that detects and identifies cyber and non-cyber contingencies in real
time to enhance the situational awareness of cyber-physical power systems (CPPS). Wide-area monitoring,
protection, and control (WAMPAC) systems allow system operators to operate CPPS more efficiently and
reliably. WAMPAC systems use intelligent devices such as phasor measurement units (PMUs) to monitor
the CPPS state. However, such devices produce continuous and unbounded data streams, posing challenges
for data handling and storage. Moreover, WAMPAC devices and the communication links connecting them
are vulnerable to cybersecurity risks. In this study, we consider several cyber and non-cyber contingen-
cies affecting the physics and monitoring infrastructure of CPPS. Our proposed classifier distinguishes
disturbances from cyberattacks using a novel instance selection algorithm with three algorithmic stages
to ease data management. A cost and complexity analysis of the algorithm is discussed. With reduced
computational effort, the classifier can handle high-velocity, high-volume, and evolving data streams from
the PMUs. Six case studies with extensive simulation results corroborate the merits of the proposed classifier,
which outperforms state-of-the-art classifiers. Moreover, the classifier demonstrated a high performance
using a dataset outside the contingency detection domain. Finally, the real-time applicability of the proposed
methodology is assessed, and its limitations are discussed.

INDEX TERMS Classification, cyber-attacks, disturbances, instance selection, streaming data.

I. INTRODUCTION
The deployment of intelligent monitoring devices has led to
significant transformations of electric power systems from
purely physical systems into cyber-physical power systems
(CPPS) [1]. The CPPS consists of a physical power system
jointly integrated with cyberinfrastructure for communica-
tion, control, protection, and monitoring. A CPPS allows the
bidirectional flow of electricity and information to enable
smart grid technologies and operate the electric power grid
more efficiently and reliably [2]. Despite the benefits of the
CPPS, their main shortcoming is that CPPS are vulnerable
to cybersecurity threats. Numerous incidents of successful
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cyberattacks on power grids have occurred worldwide. For
example, the slammer worm of the Davis-Besse nuclear plant
in Ohio in 2003 [3], the Stuxnet worm that attacked the
monitoring system of a nuclear power plant in Iran in 2009 &
2010 [4], the cyberattack on an electric power facility in
Ukraine in 2015 [5], or the cyberattacks at western US power
grid facilities for about ten hours in 2019 [6]. Cyberattacks
can severely impact a country’s economy by causing eco-
nomic losses due to the interruptions in the electricity sup-
ply [7]. Therefore, it is necessary to develop classification
systems that can timely and accurately distinguish between
non-cyber and cyber contingencies.

The CPPS trend towards automated systems using supervi-
sory, control, and data acquisition systems (SCADA) or wide
area monitoring protection and control (WAMPAC) systems
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to provide near real-time capabilities across the grid [2].
Fig. 1 shows a generic diagram of the power system monitor-
ing architecture. The SCADA system provides steady-state
observability to system operators and can be applied to sys-
tems with slow dynamics [8]. In contrast, WAMPAC systems
provide transient observability to operators suitable for the
power grid’s actual conditions with fast dynamics, owing to
the high penetration of inverter-based resources [9]. In this
study, we consider a CPPS monitored using a WAMPAC
system. A WAMPAC systems include several connected
devices that are potentially subject to cyberattacks. In addi-
tion, these devices produce incessant data streams at high
speed, posing significant challenges for data storage, han-
dling, and management. Hence, a classification system that
detects CPPS behaviors that deviate from normal operation
must handle continuous and unbounded streams of data while
using limited memory and without affecting its classification
performance.

It is reasonable to consider the CPPS as a real-time non-
stationary environment in which the feature or target space
evolves in time, and many factors, such as disturbances and
cyberattacks, may affect the steady-state operating point of
the CPPS. According to the stream learning lexicon, such
factors are called concept drifts [10]. A concept is the target
information a model tries to predict using a set of features,
whereas a drift is the change in the concept over time [11].
In evolving environments, the trained model is frequently
outdated owing to existing concept drifts. Thus, the model
must be retrained continuously to keep track of the current
concept that underlies the data distribution. With continuous
unbounded data streams, the retraining procedure must be
executed in a single pass and as soon as a new instance arrives.
In addition, it is indispensable to design an effective instance
selection policy that selects the most relevant instances from
the original stream to ease data handling. Streaming learn-
ing algorithms address the previously mentioned problems
and can handle real-time applications for CPPS. Such appli-
cations may be too large for traditional machine-learning
techniques. In this paper, we propose a streaming learning
classification system with an instance selection policy for
contingency detection in CPPS. Our proposed approach can
retrain, forget, and detect concept drifts in evolving data
streams from the PMUs.

The existing solutions for the contingency detection task
are model-based, machine learning, neural networks (NN),
and streaming learning approaches. The list of available solu-
tions presented in Table 1 is by no means exhaustive, but
it indicates that many research projects have taken place.
Event detection in power systems is challenging becausemost
events are infrequent, the system’s measurements are noisy,
and the system’s operating point changes in real time. Tra-
ditionally, model-based methods detect events by observing
the deviation between the measurements of the real system
and the model of the system. A significant deviation indicates
that an event has occurred [13], [14]. In [12], the authors
design a decentralized moving target defense framework to

FIGURE 1. A generic diagram of infrastructure for power systems
monitoring. The wide area monitoring systems (WAMS) architecture relies
on phasor measurement units (PMUs) and phasor data concentrators
(PDCs) to generate and acquire real-time data, respectively. The
supervisory control and data acquisition (SCADA) systems obtain data
from remote terminal units (RTUs), which are collected and sent to the
control center by master terminal units (MTUs).

detect false data injection (FDI) attacks that randomly select
a set of signal replicas to transmit information and the replicas
that reach their intended destination. Nonetheless, the replica
selection depends on the topology of the network.

The small-signal model of the system can be used to
monitor the parametric sensitivity of the eigenvalues of the
system against load-altering attacks, as shown in [15]. How-
ever, large-scale attacks may result in significant changes in
the power grid state, demanding an analysis under general-
ized nonlinear grid models rather than the linearized small-
signal model. In [16], the authors develop a framework that
leveraged the system model and a cumulative sum detec-
tor to identify stealthy FDI attacks in an AC smart grid.
A fractional-order state transition matrix was combined with
iterative weighted least squares (IWLS) to describe the sys-
tem dynamics. Nonetheless, the size of the transition matrix
affects the speed at which a solution can be obtained using the
IWLS technique. Despite the merits of these prior arts, these
works face essential challenges, such as requiring a mathe-
matical description of the system and its components, scaling
to larger power networks, and being specific to certain events.
In contrast, our work adopts a model-agnostic approach that
can adapt to time-variant scenarios and discriminate events of
multiple types.

Unlike model-based methods, machine learning and NN
methods can operate without any information regarding the
physics, and mathematical models governing the power sys-
tem [17], [18], [22], [23], [24]. In [19], the authors design
an anomaly detection method using multivariate Gaussian
models from micro-phasor measurement units (µPMUs) to
detect malicious attacks. Nevertheless, the efficacy of such
a method is limited to only two types of attacks, transient
and steady. Another approach presented in [20] developed
a framework that combines wavelet denoising, maximum
likelihood estimation, Kalman filtering, and clustering to
accurately detect data anomalies. Although Gholami et al.
designed a promising method, it did not show a favorable
trade-off between computational time and accuracy. A col-
laborative machine learning-based framework for detecting
attacks was proposed in [21]. This method can efficiently
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TABLE 1. Related literature for contingency detection in power systems.

extract patterns from attack vectors. However, this method is
limited to FDI attacks and does not incorporate a mechanism
to adapt the model to evolving scenarios. Our proposed clas-
sifier includes an instance selection algorithm that retrains
the model at low computational cost when multiple types of
contingencies affect the CPPS.

In [25], the authors proposed an attack detection approach
using a long short-term network trained using electric wave-
form data from current and voltage sensors in small micro-
grids. However, the network is trained offline, demanding
vast computational effort, and the approach is limited to data-
integrity attacks. Habibi et al. [24] combined time-series anal-
ysis with nonlinear autoregressive neural networks to study
the effect of FDI attacks that attempt to affect accurate voltage
regulation and current sharing by affecting the voltage and
current sensors in DCmicrogrids. Nonetheless, this approach
needs to train neural networks for each distributed energy
resource in the microgrid, which imposes a high computa-
tional burden. Several attack-detection applications require
neural networks to be trained centrally by moving data into
a cloud server, compromising data privacy, and imposing a
communication overhead. The authors in [26] overcame these
concerns by leveraging federated and semi-supervised learn-
ing to design a trustworthy framework for detecting anoma-
lies in power systems. Nevertheless, the method does not
address model retraining in nonstationary scenarios. Machine
learning and neural networkmethods have shown outstanding
performance and flexibility in detecting events in power sys-
tems. However, their main shortcomings are the assumption
of a static environment, inability to retrain the models in
real-time, and high computational burden for model learning,
especially for NN methods. The approach proposed in this
work can detect changes in the underlying data distribution
and retrain the model accordingly. The retraining process
improves the accuracy of the model without adding a signif-
icant processing burden.

Motivated by the discussions above, researchers have
turned to stream learning to tackle the event detection task for
power systems. In [27], Dahal et al. used a Hoeffding adaptive
tree (HAT) to classify the normal operation and electrical
faults of a power system operating with load fluctuations.
Dahal demonstrated the applicability and ability of HAT to
classify power system events. However, the experiments in
Dahal’s study were not designed to handle multiple events.
The authors in [28] take a step further and modified the HAT
classifier to incorporate two change detectors, the drift detec-
tion method (DDM) and adaptive windowing (ADWIN),
to classify binary, ternary, and multiple events, including
disturbances and cyberattacks. The work of Adhikari et al.
relies on a discretization of the dataset according to domain
knowledge which may not be affordable in a real-time sce-
nario. Moreover, the results report a noticeable performance
for binary and ternary events, but the performance for the
multiple events scenario was moderate. In this study, our
proposed classifier exhibits high accuracy and computational
cost when dealing with binary, ternary, or multiple events.

A method based on selecting the most promising features
using gradient boosting trees to enhance the performance of
several machine learning classifiers was presented in [32].
This study shows that feature engineering is a crucial con-
sideration in event detection; however, the classifiers are
trained to assume a stationary environment and may not cap-
ture the real-time changes occurring in the system. Intriago
et al. [30] leveraged semi-supervised learning and online
dictionary learning to build a new dataset based on a set
of hidden representations to enhance the performance of
the HAT classifier for the identification of disturbances and
cyberattacks in power systems. This work shows that the
performance of the HAT classifier is slightly better than that
of previous studies, which is not compensated by the com-
putational burden required to build the new dataset. A frame-
work that dynamically detects and classifies cyberattacks was
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presented in [31]. The framework consists of three modules
for detection, classification, and signal retrieval. Although the
method has been proven to detect and classify events under
harsh learning conditions, it only detects false data-injection
attacks. Moreover, this method depends on vast amounts of
historical data, which may not represent the current system
state.

A. CONTRIBUTION
To overcome the aforementioned challenges, our proposed
approach studies the adaptation of the HAT classifier with
a novel instance selection algorithm to deal with real-time
event detection task in power systems. Our approach is
model-agnostic and relies on streaming learning to handle
high-velocity and volume data streams with reduced compu-
tational effort. HAT uses an incremental decision tree classi-
fier that learns from evolving data streams and handles data
with concept drift. The instance selection algorithm facilitates
data management by selecting the most relevant instances for
the learning task, further reducing the computational burden
and memory consumption. The instance selection algorithm
is combined with the HAT classifier to deal with evolving
PMU data streams by constantly retraining the classifier as
soon as system changes are detected. The main contributions
of this study are as follows:

• We propose an effective instance selection algorithm
for contingency classification in power systems. Our
focus is to select the instances most similar to the target
instance by using a spatiotemporal distance function that
adapts to the range of the PMU measurements. The
proposed selection algorithm can generally determine
the optimal subset of data instances in a nonstationary
streaming environment.

• We develop a novel modification of the Hoeffding
Adaptive Tree (HAT) classifier by combining it with
the instance selection algorithm. The proposed classi-
fier operates under stream learning requirements while
maintaining low memory consumption and running
time.

• We investigate scenarios impacting the system physics
and its monitoring infrastructure, such as similar events
with different loading schemes, the sudden disruption of
a PMU, and similar measurements. Extensive simulation
results corroborate the merits of the proposed classifier,
which is used to test 37 power system events grouped
into binary, ternary, and multiclass datasets.

• The proposed classifier was assessed using a price fore-
casting dataset to measure the performance of the classi-
fier outside the event detection domain. The simulations
demonstrate that our classifier outperforms its competi-
tors while maintaining high accuracy and low time and
memory consumption.

The remainder of this paper is organized as follows.
Section II presents the concepts and background of stream
learning. Section III presents the details of the instance

selection algorithm and the proposed classifier. Section IV
describes the experimental setup. Section V presents the case
studies, simulations, and experiments of this study, followed
by conclusions in section VII.

II. STREAM LEARNING
A. CLASSIFICATION FOR DATA STREAMS
Classification for data streams inherits a large number of
problems from traditional machine learning. There are also
new challenges, such as one-pass learning, limited processing
time and memory, and changes in data distribution. In this
study, we focus on data stream classification. Let {(xt , yt )}∞t=1
denote a data stream containing a set of labeled instances.
At time t , xt ∈ Rm denotes the vector of m features while
yt is the corresponding class label. Let X represent the entire
feature space and Y the class space. A classification algo-
rithm learns a mapping f : X 7→ Y such that it can be
used to predict the class label for a new instance. Traditional
classification can load all the data into memory. By contrast,
stream classification is a one-pass strategy, meaning that the
processed instances are automatically discarded or stored
temporarily.

A learning model should meet the following criteria to
comply with data stream learning [33]:

• Learn an instance at a time and inspect it at most once.
• The model must use a limited amount of memory.
• The working time is limited.
• The model must be able to predict at any time.

B. CONCEPT DRIFT
In the stream learning lexicon, concepts are defined as the
target information that a model aims to predict using a set of
features [34]. Data streams are inherently infinite, temporal,
and dynamic. The data distribution may evolve, whereas the
mapping between instances and targets can be time-varying.
This situation results in the concept drift phenomena [10].

As a particular case of concept drift, feature drift occurs
when a subset of features becomes irrelevant to a learning
task [34]. In this study, the features are the PMU measure-
ments, such as voltages, currents, and impedances. Feature
drift in the context of power systems includes the following:
(i) the removal of an existing PMU from the monitoring sys-
tem, (ii) less informative voltage magnitude measurements
owing to bad data injection, and (iii) changes in the PMU
measurements due to cyber-attack events.

C. PREQUENTIAL EVALUATION
We follow the rules of Prequential evaluation [35] to be
compliant with the stream learning framework. Essentially,
prequential evaluation comprises two major stages: testing
and training. In the test stage, the base learner predicts the
class of the next available instance from the stream. After the
test stage, the model metrics are updated. The base learner
processes the actual instance during the training stage to
update its structure and statistics. In our study, the training
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FIGURE 2. Streaming learning framework with instance selection.

stage is governed by our proposed streaming instance selec-
tion method, which is explained in detail in the next section.
Pseudocode 1 shows the streaming learning process under
the rules of prequential evaluation. Fig. 2 depicts the stream
learning framework with instance selection.

III. METHODOLOGY
In this section, we first present the concept of spatiotemporal
similarity. Next, we discuss the stream learning setup and
details of our proposed streaming instance selection. Finally,
we briefly describe the base learners.

A. LINEAR SPATIO-TEMPORAL SIMILARITY
Our proposed instance selection technique for data streams
is based on the similarity among instances. The similarity
captures the comparability of a pair of instances, and is
measured using a distance function. The concept of similarity
is inversely related to the concept of distance [36]. In other
words, the smaller the distance between the instances, the
more similar they are. Usually, the term distance is associated
with distance in space. However, distance can not only be
defined in space but also in time. Moreover, distance can be
defined as a function of time and space, as suggested in [37]
and shown in Fig. 3.
Remark 1: Potentially accurate results can be obtained

using a spatiotemporal distance for contingency detection
in power systems. For example, an instance with a low time
distance but a high spatial distance may represent an abrupt
change in the concept, such as transitioning from normal
operation to a double line fault. An instance with a low spatial
distance and high time distance may indicate the evolution
of a concept such as a single line fault under two different
loading conditions.

Let xt ∈ Rm be the target instance whose class is to
be predicted, xi ∈ Rm an already observed instance, T (·)
a distance function in time, and S(·) a distance function in
space. More formally, the spatiotemporal distance between
xt and xi is defined as the following linear relationship:

D(xt , xi) = T (xt , xi) + S(xt , xi) (1)

Pseudocode 1Main Loop for Streaming Learning
Require: M = {(xt , yt )}∞t=1, base learner L
1: for t = 1, 2, 3, . . . do
2: ▷ Scale the feature vector xt incrementally
3: ▷ Test L with (xt , yt)
4: ▷ Update the model metrics
5: ▷ Train L with SIS using Algorithm 2
6: end for

To simplify the notation, we refer to the distance from xi
to the target instance xt as Dt−i. In Figure 3, we illustrate
the concept of linearly combining spatial and time distances.
There are multiple candidate functions for S(·), such as,
the Euclidean distance, Manhattan distance, cosine similar-
ity distance, and any other existing function that measures
the spatial distance. In this study, we choose the Euclidean
distance:

S(xt , xi) = ∥xt − xi∥2 (2)

Assuming uniformly spaced time intervals and considering
the N most recent observed instances, we choose the distance
in time, defined as a linear function of the time indices:

T (xt , xi) =
|t−i|
N

(3)

Other more complex time distances can be chosen; for exam-
ple, the exponential function T (xt , xi) = e|t−i|. This choice
gives more importance to recent instances; however, we leave
this and other complex spatial and time distance functions for
future work.

A weight can be assigned to the Euclidean distance func-
tion using a fixed or cross-validation strategy [37]. This work
assign a time-variant weight αt to the Euclidean distance
function to reduce the impact of an inappropriate range of
feature values. To do so, we use a scaling function s : Rm

7→

Rm that transforms the feature domain of all instances in such
a way that the values of the features are on a similar scale.
Specifically, we scale the instances such that the values of
the features have zero mean and unit variance. At each time
step, the running mean and variance are maintained. Scaling
is different from offline scaling because the exact means and
variances are unknown beforehand [38]. Thus, the Euclidean
distance becomes:

S(xt , xi) = ∥s(xt ) − s(xi)∥2 = αt ∥xt − xi∥2 (4)

Remark 2: Power systems measurements make the spa-
tiotemporal distance vulnerable to improper feature scaling.
For example, data packets from PMUs come from different
units. Therefore, measurements exhibit different orders of
magnitude.

B. THE INSTANCE SELECTION ALGORITHM
This section describes the proposed stream instance selection
(SIS) algorithm. Let xt be the target instance, L be the base
learner, andR = {(xt−i, yt−i)}Ni=1 the set containing the most
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FIGURE 3. Linear combination of time and spatial distances. Each circle
corresponds to a historical instance. The green circles are the target
instance, while the yellow ones are similar to the targets because they
have the least spatiotemporal distance determined by the red similarity
boundary.

Pseudocode 2 SIS
Require: base learner L, set of most recent instances R =

{(xt−i, yt−i)}Ni=1
1: ▷ Reorder instances from setR using Algorithm 3
2: ▷ Reset the base learner L
3: ▷ Search the optimal size for sliding window, and train

the base learner L using Algorithm 4
4: Return L

recent observed instances. Let g : U 7→ V denote the one-to-
one natural-valued function, where U = {1, 2, . . . ,N }, and
V = {t−1, t−2, . . . , t−N }. Pseudocode 1 presents the steps
of the main loop of stream learning, where the SIS algorithm
is used to enhance the performance of the base learner. The
algorithm has three algorithmic stages explained as follows:

(1) Reorder: The set of observed instances is sorted
in ascending order according to their distance to the
target instance xt . The sorting procedure assigns a new
set of indices {g(1), g(2), . . . , g(N )} to the observed
instances, so the base learner is trained first with the
most similar instances. Pseudocode 3 presents the steps
of this stage.
(2) Reset: The base learner is reset to forget what was
learned in the previous time step. This reset allows the
model to adapt to concept drifts. The effectiveness of
bypassing concept drifts depends on N .
(3) Search: In this stage, SIS uses a sliding win-
dowW containing previous instances to train the base
learner. The size of the window W is chosen dynam-
ically, which is upper bounded by N . SIS evaluates
the trained base learner with a trial set containing the
k most recent instances. The trial set is indexed by
time {t − 1, t − 2, . . . , t − N }, and not by the sorted
indices {g(1), g(2), . . . , g(N )}. The training windowW
is found using a warm restart to alleviate the processing
of all the most recent instances in R. SIS performs

Pseudocode 3 Reorder
Require: Target instance xt , set of most recent instances

R = {(xt−i, yt−i)}Ni=1
1: for i = 1, . . . ,N do
2: ▷ Compute the distance Dt−i according to (1)
3: end for
4: ▷ Sort the distances in ascending order Dg(1) < Dg(2) <

· · · < Dg(N )
5: ▷ Build the natural-valued function g : U 7→ V , where
U = {1, 2, . . . ,N }, and V = {t − 1, t − 2, . . . , t − N }

6: Return g

TABLE 2. Time and memory cost and complexity of the SIS algorithm per
stage.

a local search around the previous best window size
to find the new best size. Let b be the previous best
window size and r a natural number that defines the
search size. SIS searches the next best window’s size
in the interval [l, u] ⊆ [1,N ], where l = b − r
and u = b + r . Finally, SIS stops the search when
the learner error on the trial set is less than a thresh-
old ϵ. Pseudocode 4 presents the steps involved in this
stage.

At each time step, the SIS assigns a new index to
the instances in R by solving the following optimization
problem:

min
g:U 7→V

N∑
i=2

|Dg(i) − Dg(i−1)|

s.t. U = {1, 2, . . . ,N }

V = {t − 1, t − 2, . . . , t − N } (5)

Then, SIS finds the optimal windowW by solving:

min
W⊂R

|W|

s.t. l ≤ |W| ≤ u

1
k

k∑
i=1

LW
(
L(xt−i), yt−i

)
≤ ϵ

LW =

{
1; L(xk ) = yk
0; L(xk ) ̸= yk

xg(j) ∈ W, ∀j ∈ {1, . . . , |W|} (6)
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Pseudocode 4 Search
Require: |R| = N , base learner L, natural-valued function

g, number of testing instances k , previous best window
size b, natural number r , error threshold ϵ

1: ▷ Set the upper and lower limits u = b+ r , l = b− r
2: for i = 1 : u do
3: if i > u then
4: ▷ break
5: end if
6: ▷ Train the base learner L with (xg(i), yg(i))
7: if i < l then
8: ▷ continue
9: end if

10: for j = 1 : k do
11: ▷ Test base learner L with (xj, yj)
12: ▷ Update metric learnerError
13: end for
14: if learnerError < ϵ then
15: ▷ b = i and break
16: end if
17: end for
18: Return L, b

Algorithms 3 and 4 describe the procedures of SIS for solving
problems (5) and (6), respectively. Fig. 4 shows the flowchart
of the complete process.

The computational complexity per stage of the SIS algo-
rithm is presented in Table 2. The complexity is expressed
using the big-O notation and corresponds to the worst case.
The cost expresses the time iterations and memory size based
on the parameters of the SIS algorithm, such as N , l, r ,
and k . The complexity operator considers the higher-order
terms of the cost only, and without scaling. The cost and
complexity of each stage are added to obtain the total cost and
complexity of the SIS algorithm. The algorithm uses memory
O(N ) and time O(N log(N ) + l + 2rk), both of which are
concentrated in stages (1) and (3). The second stage, Reset,
is a one-line statement that reinitializes the parameters of the
base learner. Considering stage (1), the distance computation
(lines 1-3 of Pseudocode 3) requires time and memory costs
of N and N +1, respectively. The sorting statement (line 4 of
Pseudocode 3) sorts the set R and is executed using the Tim
sort algorithm with a time cost of N logN and a memory
cost of N . The natural-valued function g is a mapping with
a memory size N , which is built using N iterations. The third
stage trains the base learner using the first l instances (lines
6-9) of the reordered setR. The base learner is then validated
k times with the following 2r ordered instances of the setR;
thus, the time cost of the third stage is l+2rk . The third stage
requires having in memory the setR and the function g, each
with size N . It is desirable to set r ≪ N/2 and k ≪ N to
reduce the complexity of the third stage.

C. THE HOEFFDING ADAPTIVE TREE
We propose the Hoeffding Adaptive Tree (HAT) as the base
learner for the SIS algorithm. HAT is based on the Hoeffding

Tree (HT), which establishes the Hoeffding bound to quantify
the number of observations needed to compute some run-
ning statistics within a prescribed precision. Specifically, n
independent observations of a random variable of range R
are considered. The Hoeffding bound asserts that with a high
probability (1−δ), the estimated mean deviates from the true
mean for no more than

ϵ = R

√
ln(1/δ)
2n

. (7)

The HAT comprises three main components: a win-
dow to remember recent examples, the adaptive window-
ing (ADWIN) method as a distribution-change detector, and
ADWIN as an estimator for some input data statistics. Once
a change is detected, an alternate tree is created and grows
with the instances appearing immediately after the change.
If the alternate tree is more accurate than the current tree, the
alternate tree replaces the current tree.

ADWIN serves as an estimator and change detector that
maintains a variable length window W of recent data such
that the window has the maximal length statistically consis-
tent with the null hypothesis that the average value inside
the window has not changed. When two ‘‘big enough’’ sub-
windows of W have ‘‘distinct enough’’ averages, it can be
said that there is a high probability that a change in the
data distribution has occurred and the older items in W
should be dropped. The ‘‘big and distinct enough’’ can be
quantitatively defined by the Hoeffding bound [39]. In [28],
the authors introduced the HAT+DDM classifier referred to
as HAT+ADWIN+DDM in [28]. The DDM is a concept
drift detector based on statistical process control to detect
changes in data streams. DDM considers two levels of the
base learner’s error rate: i) the drift level when the error rate
is very different from the past, and ii) the warning level when
the error rate did not reach the drift level. Once the error rate
reaches the drift level, a new context is established. The base
learner is then trained with the instances between the warning
and drift levels exclusively; see details in [11].

IV. EXPERIMENTAL SETUP
We use Massive Online Analysis (MOA) [40] and River [41]
to conduct experiments. The MOA is an open-source
Java framework for stream machine learning. River is
an open-source python package dedicated to developing
online/streaming machine learning algorithms. We run the
experiments using a MacBook Pro 2019, 2.8 GHz Intel Core
i7 processor, 16 GB 2133 MHz LPDDR3 RAM, and 1 TB
hard disk drive. Based on initial tests, we set the SIS hyper-
parameter ϵ = 0.1.

A. TESTBED ARCHITECTURE
The testbed architecture shown in Fig. 5 comprises three
main elements: a physical power system, communication
infrastructure, and monitoring and control components. The
physical power system is simulated using the Real Time
Digital Simulator (RTDS), which can emulate the behavior of
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FIGURE 4. Flowchart of the complete process.

FIGURE 5. Cyber-physical power system testbed architecture. The circuit
breakers and relays are shown as BR and RL, respectively.

power lines, buses, electrical machines, and load variations.
The 3-bus power system with two generators, as shown in
Fig. 5, is modified from the IEEE 9-bus test case with three
generators. The reduced system is sufficiently small to com-
prehend its behavior in detail and apprehends the gist of the
larger power system. The communication infrastructure com-
prises a physical network, industry-standard communication
protocols, and control signals between control centers and
substations. Networking monitoring devices, such as SNORT
and Syslog, track malicious network activity and log events
or messages to the control panel. The monitoring and control
components include hardware such as PMUs, phasor data
concentrators (PDCs), relays, data-processing engines, and
industry-standard software. Each relay controls a breaker and
sends information to the control panel through a communica-
tion network. Please refer to [42] for more details regarding
the testbed architecture.

B. DATASET
We test the three learners with the multiclass industrial con-
trol system (ICS) cyber-attack dataset, which includes mea-
surements related to 37 events in an electric transmission
system [43]. The publicly available dataset consists of 15 sets
with 5000 instances and 128 features each. The datasets
have three versions: binary, ternary, and multiclass dataset.
Each of the four PMUs measure 29 features (voltages, cur-
rents, frequency, and impedances) adding up to a total of
116 features. In addition, 12 additional features correspond
to information from SNORT, Syslog, and the control panel,
totaling 128 features. The 37 simulated events are listed and
distributed as follows:

• Normal operation (1 event). The system operated
under stable conditions with smooth load changes.

• Line maintenance (2 events). The power lines are open
via the protection relays.

• Short-circuit fault (6 events). A power line shortage
can occur at different locations across lines.

• Attack of remote tripping command injection
(6 events). An attacker opens a breaker by sending a
command to the relay.
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• Attack of relay setting change (16 events).An attacker
disables the secure relay configuration, which forces the
relay to not trip against real faults and valid commands.

• Attack of data Injection (6 events). The attacker mim-
ics a valid fault by changing the values of measurements
such as voltages, currents, and impedances.

C. PERFORMANCE METRICS
The performance metrics used in this study are listed below:

1) Accuracy (%): The ratio of the number of correctly
predicted instances to the total number of observed
instances,

Accuracy =
Number of correct predictions
Number of observed instances

. (8)

2) Kappa (%): This statistic takes into account the prob-
ability of predictions agreement by chance [44],

Kappa =
ρo − ρran

1 − ρran
, (9)

where ρo is the accuracy of the base learner under
study, and ρran is the accuracy of a random base learner.
If Kappa is positive, the base learner is better than a
random prediction.

3) Time (s): Processing time taken by the base learner.
4) Size (KB): Size of the base learner in Kilobytes.
5) Cost (RAM-hour): Amount of RAM (KB) deployed

for one hour.

D. LEARNERS
We use the Hoeffding Tree (HT) [45] and variants of the
Hoeffding Adaptive Tree (HAT) [46] as the base learn-
ers for the experiments. After an initial trial on the MOA
classifiers for streaming machine learning, we select the
HAT+DDM and HT+DDM learners because they show bet-
ter performance using a portion of the multiclass dataset.
We set the base learners with the hyperparameters suggested
in the related literature. More detailed tuning of the base
learner’s hyperparameters is left for future work. HAT+SIS
and HT+SIS exhibit the same performance for the multiclass
dataset. Finally, we choose HAT+SIS because it performs
better for a price forecasting dataset, as shown in one of our
experiments.

V. NUMERICAL RESULTS
In this section, we assess the performance of the three learners
in six case studies using the ICS cyber attack datasets. Case
studies are simulated by imitating real fault disturbances and
cyber-attacks. We explore scenarios that affect the system’s
physics and monitoring architecture, including loading vari-
ation, PMU disappearance, and measurement overlapping.
Additionally, we explore the performance of our proposed
classifier using a price forecasting dataset.

A. CASE STUDY I: MULTIPLE EVENTS
This case study evaluates the performance of the three
learners with 37 events from the multiclass dataset. The

FIGURE 6. Performance comparison of the three learners in the case
study I using the first set from the multi-class dataset. The evaluation
considers the 37 events from the multi-class dataset in sequence. The
comparison is shown for the following metrics: (a) Accuracy, (b) Time,
(c) Size, and (d) Model cost.

hyperparameter tuning of the SIS method using grid search
is presented in Table 3. A performance comparison is pre-
sented in Fig. 6. It can be seen that HAT+SIS is the best
performer among all learners, whereas HAT+DDM is the
worst performer. As shown in Fig. 6(a), HAT+SIS achieves
an accuracy of more than 99% in the first 250 instances,
whereas the accuracy of HAT+DDM and HT+DDM is less
than 99% during the same interval. Around instance 4000,
HAT+DDM and HT+DDM obtain an abrupt decrease in
accuracy, while HAT+SIS remains changed. The learners
HAT+DDM and HT+DDM exhibit the same performance
during the first 4,000 instances. Then, HT+DDM shows
a slightly higher recovery rate accuracy than HAT+DDM.
Fig. 6(b) presents the time comparison of the learners.
We observe that HAT+SIS maintains a linear running time as
the stream progresses. The model sizes of the three learners
are shown in Fig. 6(c). It can be seen that the three learners
demand moderate memory. HAT+DDM and HT+DDM use
the same model sizes, while HAT+SIS exhibits reduced peak
memory demands. Fig. 6(d) shows the combined effect of the
time and model size.

To evaluate the performance of the three learners in static
and evolving data, we use a window performance evaluator
for classification with a window size of 20, as shown in
Fig. 7. The three learners present the same accuracy during
static data, represented by horizontal lines, reaching 100%
accuracy. Evolving data manifests as an abrupt or grad-
ual decrease in accuracy, which is displayed as downward
peaks. HAT+SIS exhibits minor peaks during evolving data,
especially around instance 4000, where HAT+DDM and
HT+DDM exhibit significant accuracy degradation.

The performances of the three learners among the fifteen
sets from the multiclass dataset are shown in Table 4. Con-
sidering the accuracy and Kappa statistic, HAT+SIS is the
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FIGURE 7. Performance evaluation of the base learners using the
accuracy metric in dealing with stationary data and concept drift in case
study I.

best performer among the fifteen sets, whereas HAT+DDM
is the worst performer. Furthermore, HAT+SIS accounts for
the smallest running time, model size, and cost. Table 5
presents themean and standard deviation of themetrics across
the fifteen sets. The results indicate that the performance of
HAT+SIS remains invariant among the sets while exhibiting
the most accurate and precise performance.

B. CASE STUDY II: TERNARY EVENTS
In this case study, we use the three-class dataset to evaluate
the performance of the proposed approach. The three-class
dataset consists of ternary events, that is, events labeled as
natural, normal, and attack events. The attack events consist
of twenty eight scenarios, the natural events consist of eight
scenarios, and the normal events consist of one scenario.
This section is important because the experiments assess
the efficacy of the proposed classifier to distinguish nor-
mal operation from cyber and non-cyber contingencies in
a cyber-physical power system. The hyperparameters of the
SIS algorithm are the same as those in section V-A to alleviate
the burden of hyperparameter tuning. Notice that the target
space of the multiclass dataset is quite diverse and rich;
hence, the best hyperparameters from section V-A benefit the
HAT+SIS learner in this section.

Fig. 8 presents the performance of the three learners
across the entire first set of the three-class dataset. Although
HAT+SIS has a higher accuracy performance, the three
learners show a similar overall accuracy. HAT+SIS and
HT+DDM exhibit a linear time complexity across the entire

FIGURE 8. Performance comparison of the three learners in the case
study II using the first set from the three-class dataset. The comparison is
shown for the following metrics: (a) Accuracy, (b) Time, (c) Size, and
(d) Model cost.

FIGURE 9. Performance comparison of the three learners in the case
study III using the first set from the two-class dataset. The comparison is
shown for the following metrics: (a) Accuracy, (b) Time, (c) Size, and
(d) Model cost.

simulation, whereas the time complexity of HAT+DDM
departs from being linear around instance 4000. Notably,
HAT+SIS maintains a stable model size of less than 250 KB.
HAT+SIS shows a linear model cost during the simulation,
whereas HT+DDM has the lowest cost. Table 6 presents the
metrics of the three learners for the 15 sets of the three-class
dataset. We observe that the accuracy and Kappa metrics are
not significantly different between HAT+SIS and the other
two learners. Table 7 presents the four statistics computed
from the performance metrics of the fifteen sets.

C. CASE STUDY III: BINARY EVENTS
We conduct the experiments in this case study using the
two-class dataset corresponding to only two events, normal
operation, and attack events. Binary classification is essential
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TABLE 3. 15-Fold average hyperparameter tuning of the HAT+SIS learner using the multiclass dataset in case study I.

TABLE 4. Performance of the base learners for the 15 sets of the multiclass dataset in case study I.

TABLE 5. The mean µ, standard deviation σ , minimum and maximum
values of the performance metrics tested on the 15 sets of the multiclass
dataset in case study I.

because it allows us to test whether our proposed classifier
can detect deviations from normal cyber-physical system
behavior. We set the hyperparameters of the SIS algorithm as
r = 10 and k = 1, as described in section V-B. Fig. 9 presents
the performance of the three learners across the entire first set
of the two-class dataset. HAT+DDM and HT+DDM show
similar accuracy across the experiment, whereas HAT+SIS
has slightly higher accuracy. HAT+SIS and HAT+DDM
exhibit a linear time complexity during the entire simulation.
HT+DDM has the smallest time complexity, but it shows a
moderate increase at the end of the experiment. HAT+SIS
maintains a stable model size of approximately 250 KB over-
all, whereas HT+DDM has step increases in its model size.

The three learners exhibit model cost behavior similar to their
processing time behavior. Table 8 presents the performance
of the three learners for the 15 sets of the two-class dataset.
In this table, we observe that HAT+SIS is the best performer
in terms of the accuracy, Kappa, and model size metrics.
Table 9 shows the four statistics calculated using the results of
the 15 sets of the two-class dataset. We notice that HAT+SIS
has a minor standard deviation for all metrics, except the
processing time.

D. CASE STUDY IV: LOADING VARIATIONS
We test the three learners in this case study to classify a
fault event under different loading conditions. We simulate
a data stream that has three stages in this order: (i) fault from
10 − 19% on line 2; (ii) the fault is cleared, returning the
system to normal operation; and (iii) fault from 10 − 19%
on line 2. Stages (i) and (iii) are considered to have distinct
loads in the system. The confusion matrices are shown in
Fig. 10. HAT+SIS accounts for the largest number of correct
predictions, whereas HT+DDM accounts for the smallest.
Although HAT+SIS correctly classifies the instances from
the normal operation event, it shows the largest misclassifi-
cation rate for the fault event. HAT+DDM and HT+DDM
exhibit excellent performances for classifying the fault event.
However, these performers do not exhibit attractive perfor-
mance for normal event classification.

E. CASE STUDY V: PMU DISAPPEARANCE
Consider a monitoring system consisting of four PMUs
whose measurements are modeled as features. After some
time, one of the PMUs gets disconnected from the system.
Such a situation can be modeled as a feature disappearance
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TABLE 6. Performance of the three learners for the 15 sets of the three-class dataset in the case study II.

TABLE 7. The mean µ, standard deviation σ , minimum and maximum
values of the performance metrics tested on the 15 sets of the three-class
dataset in the case study II.

FIGURE 10. Confusion matrices of the three learners in case study IV.
(a) HAT+SIS, (b) HAT+DDM, (c) HT+DDM.

drift, which may occur owing to a communication bottleneck,
malfunctioning, or physical attack on the device. We simulate
this scenario using a data stream consisting of 1450 instances
with line maintenance, remote tripping commands, and fault
events on both lines and different locations within the lines.
Fig. 11 shows the results for the three learners in case study
V with PMU’s disappearance at instance 500. According to
the results, HAT+SIS exhibits the best performance.

F. CASE STUDY VI: MEASUREMENTS OVERLAPPING
Some cyber-attacks may exhibit similar class conditional
measurements distribution P(X |Y ) as fault disturbances.

In other words, cyber-attacks and faults may fall into the same
region of the measurements (features) space. This situation
makes it difficult for learners to discriminate between similar
events. In this scenario, we study one fault disturbance and
two cyber-attacks: (i) fault from 80 − 90% on line 1, and
(ii) a data injection attack that mimics a fault from 80− 90%
on line 1 with a remote tripping command; and (iii) a fault
from 80−90% on line 1with relay #2 disabled. First, we force
the learner to process a data stream from disturbance (i),
followed by an abrupt concept change in the data distribution
corresponding to cyber-attacks (ii) or (iii). Then, we make the
learner learn oppositely, a cyber-attack (ii) or (iii), followed
by the fault disturbancen in (i). Fig. 12 shows the accuracy of
the three learners under the case study VI of measurements
overlapping. HAT+SIS is less vulnerable to abrupt changes
in the data distribution. In Figs. 12(a) and 12(c), the three
learners exhibit similar accuracies when they first process
instances from the fault distribution. However, their accuracy
performance differs if they start processing instances from
the cyber-attack distribution, as seen in Figs. 12(b) and 12(d).
The results indicate that HAT+SIS performs best in this case
study because it can correctly classify instances from data
injection and remote tripping attacks.

G. PRICE FORECASTING DATASET
This section uses a dataset outside the cyber-attack and dis-
turbance domain to further assess the merits of our proposed
approach. We carry out the following experiments with the
price forecasting Elec2 dataset based on the electricity price
market in the Australian state of New South Wales [47].
The Elec2 dataset contains 45312 instances drawn between
May 7th, 1996, and December 5th, 1998, with a sampling
resolution of one instance for each half-hour. The market
prices are set by matching the electricity demand with the
cheapest combination of energy generation from all power
stations. Electricity market data is subject to concept drifts
because the market is affected by different factors such as
weather, time of the day, season, and other factors, that is,
the energy prices are not stationary. The dataset has eight
features including electricity demand and price schedules.
The class labels are set as UP or DOWN depending on
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TABLE 8. Performance of the base learners for the 15 sets of the two-class dataset in the case study III.

FIGURE 11. Accuracy of the three learners in case study V. The vertical black bar indicates the instance at which one of the PMUs disappears in the
data stream. The light orange shaded area corresponds to the portion of the data stream where the PMU is inactive, whereas the uncolored area
corresponds to the data stream where the PMU is active.

TABLE 9. The mean µ, standard deviation σ , minimum and maximum
values of the performance metrics tested on the 15 sets of the two-class
dataset in the case study III.

whether the current electricity price is higher or lower than the
average price over the previous 48 instances (or the previous
24 hours).

The hyperparameters of SIS, r and k , are tuned using a
grid search, as shown in Table 10. The best performance
is obtained by setting r = 10 and k = 2. A finer grid
search is left for future studies. Fig. 13 shows the performance
of the three learners across the entire dataset. HAT+SIS
is the best performer overall, whereas HT+DDM has the
worst performance. HAT+DDM and HT+DDM exhibit a
nonlinear increasing time complexity of approximately half

of the dataset, whereas HAT+SIS shows a linear time com-
plexity. HAT+SIS has the smallest model size during the
entire simulation, whereas the model size of HT+DDM
increases linearly. HT+DDM shows nonlinear behavior for
the model cost, similar to its time complexity. HAT+SIS
and HAT+DDM exhibit linearly increasing model cost.
From Table 11, we observe that HAT+SIS outperforms
HAT+DDM by 6% and HT+DDM by 12% in terms of
accuracy. HAT+SIS requires at least half the processing time
and model size of the other two learners. The model cost of
HAT+SIS is similar to that of HAT+DDMbut less than twice
the cost of HT+DDM.

VI. DISCUSSION
The case studies from section V show that HAT+SIS adapts
to online monitoring environments and is robust against
abrupt concept drifts. Both aspects suggest that HAT+SIS
is suitable for real-time power systems events and intrusion
detection classification systems. In addition to the notable
performance in terms of accuracy and Kappa, one meri-
torious upshot of HAT+SIS is that its running time and
model cost are considerably lower than those of HAT+DDM
and HT+DDM, as reported in Tables 4 and 5. On the one
hand, HAT+DDM and HT+DDM are very sensitive to con-
cept drifts. Under certain conditions, their performance can
be worsen than that of a random classifier, as shown in
Fig. 7. However, HAT+SIS remains almost unaltered by
such a concept drift, which avoids misleading insights about
the current state of the system. Similarly, HAT+SIS shows
a stable rate of correct predictions for classifying events
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TABLE 10. Hyperparameter tuning of the HAT+SIS learner using the price forecasting Elec2 dataset.

FIGURE 12. Accuracy of the three learners in case study VI. The vertical
black bar indicates the instance at which the abrupt change in the data
stream occurs. The white-shaded area corresponds to the portion of the
stream under a fault disturbance distribution, whereas the light
orange-shaded area corresponds to a cyber-attack distribution.
(a) and (b) for fault disturbance and remote tripping command events;
(c) and (d) for fault disturbance and relay #2 disabled. The performance
of HAT+DDM and HT+DDM is the same in this scenario.

with different loading conditions or the sudden disappear-
ance of a PMU, as shown in Figs. 10 and 11, respectively.
HAT+SIS rapidly adapts its tree-based structure to discrimi-
nate similar events. Fig. 12 shows the high accuracy recovery
rate.

In case studies V-B and V-C, HAT+SIS exhibits a slightly
higher accuracy and Kappa metric for binary and ternary
events than HAT+DDM and HT+DDM. However, the three
classifiers have similar accuracy and Kappa performance
across the entire simulation. The major advantage of the
HAT+SIS classifier in these case studies is that HAT+SIS
maintains a flat model size and a linear running time and
model cost. Based on these results, we observe that the major
advantage of HAT+SIS over its competitors occurs when the
target space is multiclass, as seen in case study V-A. Regard-
ing the price forecasting dataset, HAT+SIS outperforms the
other two classifiers in all the metrics. The HAT+SIS classi-
fier maintains the lowest model cost, model size, and running
time while exhibiting the highest accuracy and Kappa metrics
across the 45312 instances.

The 37 events allow us to judge the efficacy of any classi-
fier, and a classifier that exhibits a remarkable performance
using such events can be judged as a noteworthy classifier.

FIGURE 13. Performance comparison of the three learners using the price
forecasting Elec2 dataset. The comparison is shown for the following
metrics: (a) Accuracy, (b) Time, (c) Size, and (d) Model cost.

TABLE 11. Performance of the base learners using the price forecasting
Elec2 dataset.

Although the numerical results show that our proposed classi-
fier exhibits a higher accuracy than other existing classifiers,
as shown in Table 12, we know that the set of events is not
exhaustive. We acknowledge that other events can be con-
sidered to strengthen our proposed approach. For instance,
we can include denial of service attacks such as data flooding,
mutation of MODBUS protocol, or aurora attacks that refers
to opening and closing a breaker near a generator in a rapid
sequence.
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A. HAT+SIS LIMITATIONS
Despite the merits of our proposed approach, as shown in
Section V, the limitations of the HAT+SIS classifier need
to be discussed. The proposed instance selection algorithm
consists of three algorithmic stages. The first stage relies
on reordering the instances based on their spatiotemporal
distance to the target. Although instance reordering is an
essential component of the first stage, it may degrade the orig-
inal temporal distribution of the data stream, as shown in [48].
The temporal distribution of the data is crucial because it
embeds the actual unknown concept of the data. Reordering
the data may make it acquire a different concept over time;
such a situation represents a different learning problem than
the original one. In addition, SIS performs a window size
search with a warm restart and stops the search only if the
accuracy on a trial set is below a specified threshold. Such
a strategy restricts the search around the previous best win-
dow size, leading to suboptimal window sizes. The search
strategy imposes a trade-off between reducing the searching
space and decreasing the complexity of the method to avoid
time and memory restrictions. Finally, the selection algo-
rithm introduces four additional hyperparameters that must
be tuned according to the CPPS application. Consequently,
the researcher either tunes the hyperparameters using an
existing preprocessed dataset or tunes the hyperparameters
on the fly.

B. PMU PLACEMENT STRATEGY
In this work, we use a testbed architecture of three buses with
PMUs placed on all buses. If the test bed is a more extensive
network, we may need to consider a specific PMU placement
strategy for the proposed approach. Such a strategy will place
PMUs in areas defined by clusters of buses that share the same
dynamic behavior reducing the overall number of PMUs [49].
The dataset considered in this work contains events from
dynamic transients such as three-phase short circuits, line
outages, load variations, and breaker tripping. For instance,
placing a PMU in a region where a subset of the buses of
the system exhibits similar behavior under a short circuit and
line outages is sound. A drawback of this strategy is that it
may be challenging for the classifier to identify where an
event occurs among the buses of the same cluster. Moreover,
a tradeoff between the number of clusters and the cost of PMU
deployment must be considered.

C. APPLICABILITY OF THE HAT+SIS LEARNER
The learner must exhibit a fast time response for the event and
intrusion detection task. As mentioned in section IV-B, ICS
datasets are built using high-speed networking and PMUdata.
PMUs have a very high data rate because they transmit tens or
hundreds of synchrophasors per second through the network-
ing architecture. Such a situation forces the learner to make
predictions within a concise amount of time. In addition, the
available working memory is not abundant, particularly for
PMUs or phasor data concentrators (PDC). From Table 5,

TABLE 12. Accuracies of HAT+SIS and other adaptive classifiers on the
Attack dataset reported in the literature.

we can see that HAT+SIS processes approximately 5,000
instances from the ICS dataset in about 43 seconds. In other
words, the learner processes about 112 instances per second.
We observe that the learner’s model size is almost 196 KB.
Existing PMUs or PDCs on the market can handle such
memory demands. Hence, HAT+SIS is a suitable classifier
for PMU data-based contingency detection.

D. COMPARISON WITH EXISTING WORKS
In Table 12, we compare the classification accuracy of
the HAT+SIS learner and other algorithms based on the
ICS dataset. Noticeably, we can observe that the HAT+SIS
method outperforms existing algorithms for classifying dis-
turbances and cyber-attacks. The reported results for the
HAT+SIS, HAT+DDM and HT+DDM learners are based
on the average accuracy among the fifteen sets from the
multiclass dataset presented in Table 5.

VII. CONCLUSION
This paper proposes a novel combination of a stream learning
classifier, the Hoeffding adaptive tree, with an instance selec-
tion algorithm for the real-time classification of cyber and
non-cyber CPPS contingencies. HAT is a decision tree clas-
sifier that incorporates mechanisms to learn with continuous
data streams and retrain its model as soon as a concept drift is
detected. The selection algorithm improves HAT capabilities
and comprises three algorithmic stages: reordering, resetting,
and searching. The first stage uses a spatiotemporal distance
function tomeasure the similarity of a set of observationswith
the target instance. The distance function uses an adaptive
feature weight for the PMU measurements with different
scales. The second stage reinitializes the parameters of HAT
to allow the adaptation of the tree to the current concept
underlying the data distribution. The third stage greedily
searches the optimal size of a sliding window by identifying
the instances most similar to the target instance. We simulate
six case studies using the ICS datasets that consider various
real scenarios with different cyber and non-cyber contin-
gencies. The contingencies alter the physics of the system
or its monitoring architecture. Extensive numerical results
demonstrate that the novel combination of HAT with the
SIS algorithm outperforms existing classifiers in the litera-
ture, especially for multiclass classification. In addition, the
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proposed classifier, HAT+SIS, also outperforms its competi-
tors when evaluated using a price forecasting dataset. Such
results indicate the robustness of HAT+SIS outside the event
detection domain. This study demonstrates that the proposed
classifier applies to real-time scenarios in CPPS, is sensitive
to cyber and non-cyber contingencies, and shows superior
performance over its competitors.
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