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ABSTRACT Convolutional neural networks (CNNs) are widely used in the field of image classification.
At the same time, users face the risk of privacy leakage because adversaries can reverse private information
from the training parameters of CNNs. AddingGaussian noise to the training parameters is an effectivemeans
to prevent adversaries from stealing private, but this tends to reduce the utility of the models. Therefore, how
to find a balance between privacy and utility has become a hot research topic. In this paper, to improve
the image classification ability of CNN models under differential privacy protection, we propose an image
classification algorithm based on layered gradient clipping under differential privacy, ICGC-DP for short.
Firstly, the gradient tensor is layered according to the neural network model. Secondly, for each layered
gradient tensor, the median of L2 norms is used as the clipping threshold. Moreover, to prevent the sensitivity
from converging to zero, we add a bound on the sensitivity to ensure that all gradients can be protected
by differential privacy. To further improve the classification utility of ICGC-DP, we design an adaptive
weighted fusion module for it. The module assigns weights to prediction tensors according to the variance
between them. We conduct comprehensive experiments on the Mnist, FashionMnist and CIFAR10 datasets,
respectively. The experimental results show that, when the privacy budget ε = 2.0, which indicates that
the algorithm adds a large noise, ICGC-DP achieves 97.36%, 88.72% and 72.63% classification accuracy
for the Minist, FasionMnist and CIFAR10 datasets, respectively; when the privacy budget ε = 8.0, which
means the algorithm adds less noise, the classification accuracy of ICGC-DP for Minist, FasionMnist and
CIFAR10 datasets reaches 97.81%, 89.49% and 74.41%, respectively.

INDEX TERMS Privacy preservation, deep learning, differential privacy, gradient clipping.

I. INTRODUCTION
In recent years, convolutional neural networks have been
actively developed as fast and effective image classification
methods and are widely used in image recognition-related
industries, especially in the medical field, such as classifi-
cation and analysis of patients with lung nodules [1], and
optimization of network structure to improve the recognition
accuracy of small-scale motion in medical motion images [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

Because adversaries can reverse training data from the
training parameters, privacy protection has become an
increasingly important topic that cannot be ignored [3].When
the privacy of CNNmodels is stolen, adversaries often obtain
the overall parameters privacy by focusing on the different
information of specific individuals. When stealing model
privacy, adversaries not only attack the datasets for the model,
but also use membership inference attacks or model inversion
attacks [4].Membership inference attacks [5] construct attack
models by obtaining the training parameters of target models,
and use the labels and prediction results of target models to
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determine whether a sample belongs to the training dataset of
the target model. Model inversion attacks [6] are usually used
to attack shallow CNNs, where adversaries use the outputs
and labels of target models to reconstruct samples of training
datasets for the target models.

To address the above attacks, Dwork and Aaron [7]
proposed differential privacy (DP) to protect data privacy
by adding random noise to the data. Using the differential
privacy protection method of deep learning, Abadi et al. [8]
proposed the DP-SGD algorithm by adding Gaussian noise
to the gradient to achieve differential privacy. Although
differential privacy can effectively protect CNN models, the
classification performance of the models decreases along
with the perturbation of training parameters. Therefore,
it is important to find a trade-off between the classification
performance of models and privacy protection. In some
previous works, the impact of noise on model performance
was reduced by adaptively adding noise [9], [10], [11],
[12], [13]. However, reducing the perturbation of training
parameters with random noise by adjusting the sensitivity
in stochastic gradient descent iterations has been a research
direction in recent years.

Xu et al. [14] proposed an adaptive and fast convergent
learning algorithm, which improves the convergence speed
by adaptive learning rate, significantly reduces the privacy
cost, and minimizes the negative impact of noise on model
by introducing adaptive noise. Hu et al. [15] proposed a
differential privacy deep learning model based on clustering
technique, which obtains the L2 norms of each gradient
layer of the model, and uses the standard deviation function
to quantify the L2 norm set to obtain a tighter sensitivity,
thus reducing the impact of noise on the classification
performance of the model. There are also some methods
that use changing sensitivity to reduce the impact of
noise on model classification performance are proposed in
algorithms [16], [17], [18].

However, there are still some issues to be solved in the
above works [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18]. First, the clipping value C is determined manually.
Therefore, it is difficult to obtain a more precise clipping
value. Second, as the number of training steps increases, the
gradient norm decreases gradually. Therefore, the clipping
strategy with a fixed clipping value C leads to distortion
of the gradient information, which eventually affects the
classification performance of the model.

The main contributions of this paper can be summarized as
follows.

1) First, we layer the gradient tensor of each sample
according to the structure of the network model with
differential privacy protection, and find the L2 norm of
each gradient tensor. Then, we obtain the median of L2
norms to determine the clipping value CM , so that a
suitable C can be determined according to the change
of gradient norms. The clipping value CM is usually
used as the sensitivity of Gaussian noise. To preventCM

from being zero, we set a bound β for the sensitivity to
ensure the privacy of all training parameters. Also, the
influence of noise on parameters can be reduced due to
the gradual decrease of CM .

2) It is not feasible to improve the classification ability of
the model under differential privacy through increasing
model layers, because increasing the number of
layers of the model also increases the number of
training parameters and then the noise injected on
the training parameters will also increase. Therefore,
to further improve the classification performance of
the model, an adaptive weighted fusion module (AWF)
is designed. AWF consists of two identical CNNs.
For each sample, AWF obtains two prediction tensors
and then calculates the variance of the predicted
probabilities of the two tensors. According to the
variance, different weights are assigned to the two
prediction tensors.

3) We have conducted comprehensive experiments and
the results illustrate that ICGC-DP has superior clas-
sification performance on the Mnist, FashionMnist and
CIFAR10 datasets.

The rest of this paper is organized as follows. In Section II,
we present some backgrounds of knowledge and related
works about differential privacy and deep learning.
In Section III, we describe our proposed algorithm in detail.
In Section IV, we experimentally analyze and demonstrate
the better performance of our proposed algorithm over other
algorithms mentioned in this paper. Finally, we conclude this
paper in Section V.

II. BACKGROUND AND RELATED WORK
A. ATTACK METHODS FOR TRAINING PARAMETERS
In the previous contents of literature, indirect attacks to obtain
model privacy by attacking the training parameters of models
were mentioned. The main attacks are membership inference
attack and model inversion attack.
Member inference attacks use training parameters to

construct an attack model and determine whether a par-
ticular sample belongs to the dataset of the target model.
Chen et al. [19] studied the fragility of machine learn-
ing to membership inference attacks and evaluated the
effectiveness of using differential privacy as a defense
mechanism. Shi and Yalin [20] developed an active defense
against membership inference attacks. This defense can
successfully reduce the accuracy of membership inference
attacks and prevent information leakage from wireless signal
classifiers.
The model inversion attacks reverse target samples

by using labels and the outputs of the target models.
Usynin et al. [21] proposed a newmodel inversion framework
that builds on gradient-based model inversion attacks,
allowing the adversary to obtain enhanced reconstructions
while remaining stealth. Titcombe et al. [22] demonstrated
that model inversion attacks can still be successful when the
adversary has limited knowledge of the data distribution, and
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proposed a simple additive noise method to defend against
model inversion attacks.

B. DIFFERENTIAL PRIVACY
Differential privacy is often used to protect the privacy of
important data. Dwork and Aaron [7] satisfies the privacy
requirement by adding an appropriate size of noise to the
query results to ensure that modifying an individual record
in the dataset will not significantly impact on the query
results.
Definition 1: (Sensitivity [23]). Given a query function

f : D → Rd , where D is the given dataset and Rd is
a d -dimensional real vector representing the query result
of the query function f on dataset D, there exists a pair
of adjacent datasets D and D′. The sensitivity is defined as
1f = max ||f (D) − f (D′)||2, where ||f (D) − f (D′)||2 is the
Euclidean distance between f (D) and f (D′).
Definition 2: (Gaussian Mechanism). Add Gaussian noise

to the query function f : D → Rd to obtain a random
algorithm A. A is defined as A(D) 1

= f (D) + N (0, 1f 2 · σ 2)
where N (0, 1f 2 · σ 2) is the normal (Gaussian) distribution,
0 is the mean and 1f · σ is the standard deviation. The
randomized algorithm A satisfies (ε, δ) - differential privacy,
if Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O] + δ holds, where ε is
the privacy budget, O is the output set, δ is an additive term,
and δ is preferably smaller than 1/|D|, |D| is the number of
samples.

C. DEEP LEARNING UNDER DIFFERENTIAL
PRIVACY PROTECTION
Combining differential privacy with deep learning is a
popular means of protecting deep learning models and their
training parameters.

Abadi et al. [8] proposed the DP-SGD algorithm in order
to prevent the privacy of a model from being leaked. In the
training process of CNN, to prevent individual gradient from
leaking privacy to the overall training parameters, a gradient
threshold C is set, and for each sample of a batch, the model
calculates the L2 norm ∥g∥2 of its gradient g. If ∥g∥2 is greater
thanC , the gradient vector g is replaced by g

/
max

(
1, ∥g∥2

C

)
.

Then, all gradients of samples in the batch are aggregated and
then Gaussian noise is added.

Yu et al. [16] proposed the Improved-DP-SGD algorithm,
using noisy gradient as momentum during the training pro-
cess to facilitate training. The gradient magnitude converges
to zero when the algorithm converges. Based on this fact,
the noise injected on the gradient is reduced by reducing the
gradient norm during training.

Liu et al. [17] proposed theDPL-GGC algorithm, a strategy
for clipping the gradient tensor of each sample by dividing
it into a given group, introducing a smoothing sensitive
mechanism with differential privacy protection. In this way,
it imposes a limit on the joined Gaussian noise.

The above proposed methods are some related algorithms
that combine differential privacy with deep learning.

FIGURE 1. L2 norms of the gradient tensor for each layer.

III. OUR ALGORITHM
In this section, the details of our algorithm will be explained.
We choose the Gaussian noise for differential privacy
protection of CNN.

A. LAYERED GRADIENT CLIPPING
Some previous algorithms that protect model privacy by
adding Gaussian noise to the gradient usually set a fixed
C to clip the gradient, the clipping bound strategy is set in
lemma 1.
Lemma 1 (Clipping Bound [8]): To satisfy differential

privacy, we set a clipping threshold C, constraining the
effect of each g (xi) on the whole. We clip the gradient
of each sample with L2 norm. If ∥g(xi)∥2 ≤ C, g (xi) is
retained, otherwise, the gradient vector g (xi) is replaced
by g (xi) /max

(
1, ∥g(xi)∥2

C

)
. The clipping process can be

denoted by the following formula.

ḡt (xi) = gt (xi)/max
(
1,

∥gt (xi)∥2
C

)
. (1)

However, [16] shows the norms of gradients tend to
decrease as the number of training steps t increases, and as
shown in Figure 1, the L2 norm of each gradient layer is
different.

Therefore, it is not reasonable to choose a fixed C value
for global gradient clipping. Because, first, the fixed C
value cannot adaptively clip gradually decreasing gradients.
Second, the fixedC value does not provide a suitable clipping
according to the different gradient norm of each layer.

As shown by the above reasons, global gradient clipping
with fixed clipping value leads to distortion of gradient
information. Moreover, a model with differential privacy
protection accumulate loss in the backpropagation process,
leading to a decrease in the classification performance of the
model.

So, it is important to set a suitable clipping value to perform
layered clipping of gradients in the process of training step
accumulation.

To solve the above problem, we propose a layered gradient
clipping method. As shown in Figure 2, we divide the
global gradient tensor gi of sample xi into a total of k
layers according to the model structure and denote them
as {g1i , · · · , gki }.
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Algorithm 1 Get CM (Get the Clipping threshold)
Input: The gradient tensor gt (xi) of sample xi;
Output: CMi;
Layer gradient tensor;

1: Divide gt (xi) into k layers;
gt (xi) =

[
g1t (xi), · · · , gkt (xi)

]
;

2: For each gjt (xi) ∈ gt (xi), obtain the L2 norm
∥∥∥gjt (xi)∥∥∥

2
;

3: Sort gjt (xi) in ascending order of
∥∥∥gjt (xi)∥∥∥

2
, j ∈

{1, · · · , k}, obtain the set S of L2 norms;
S = {

∥∥g1i ∥∥2, · · · ,
∥∥gki ∥∥2};

Calculate clipping threshold;

4: CMi =
1
2

(∥∥∥∥g k
2
i

∥∥∥∥
2
+

∥∥∥∥g k
2+1
i

∥∥∥∥
2

)
;

5: return CMi.

After that, L2 norm is obtained for each of these gradient
tensors. Then, sorting these gradients according to their L2
norm to obtain the L2 norm set S = {

∥∥g1i ∥∥2, · · · ,
∥∥gki ∥∥2},

where
∥∥gki ∥∥2 ≥

∥∥∥gk−1
i

∥∥∥
2

≥ · · · ≥
∥∥g1i ∥∥2.

To prevent excessive gradients in each layer from leaking
parameter privacy, the median of the L2 norm set of gradients
in each layer is set as the clipping threshold CMi.

CMi =
1
2

(∥∥∥∥g k
2
i

∥∥∥∥
2
+

∥∥∥∥g k
2+1
i

∥∥∥∥
2

)
. (2)

Since each layer of the network model corresponds to a
weight gradient and a bias gradient, k is even. Next, each layer
of the gradient tensor gki will be clipped by CMi:

ḡkt (xi) = gkt (xi)/max

(
1,

∥∥gkt (xi)∥∥2
CMi

)
. (3)

The above process of getting the clipping threshold CMi is
shown in Algorithm 1.

B. ADDING NOISE
In order to prevent leakage of model training parameters,
Gaussian noise is added to the parameters. DP-SGD [8] is
a classical deep learning noise addition algorithm. It uses a
clipping threshold C as fixed sensitivity to add noise on the
aggregated gradient tensor.

ḡt_noise =
1
L

∑
i

(ḡt (xi) + N (0,σ 2C2I )). (4)

where L is the size of the sample batch, σ is the noise
multiplier, I is the unit matrix and N is the average noise of
the injected aggregation gradient.

However, the consumption of privacy budget ε increases
as the training step t increases, resulting in more and more
noises injected into the training parameters. This eventually
leads to a decrease in the classification ability of the model.

As the number of training steps increases, the gradient
norm shows a decreasing trend, and the CMi will gradually
decrease. So, in order to reduce the impact of noise on the

classification performance of the model, we can use this
property of CMi to replace C as the sensitivity of the noise.
Also, to prevent sensitivity from converging to zero,

resulting in no noise added on the gradient parameter, we set
a tiny hyperparameter β and let.

Ci = CMi + β. (5)

The noise addition of Ci is shown in Equation (6), where N
is the average noise injected on the aggregation gradient after
changing the sensitivity.

ḡt_noise =
1
L

∑
i

(ḡt (xi) + N̄ (0, σ 2C
2
i I )). (6)

C. ADAPTIVE WEIGHTED FUSION MODULE
Since adding more network layers to the model adds more
gradient parameters, resulting in more noise injected into the
model. Thus, it is not an effective approach to improve the
classification performance of the model under differential
privacy by increasing the number of model layers.

To further improve the classification performance of the
model with differential privacy protection, we design an
adaptive weighted fusion module, shortly named AWF, the
overall flow of the AWF module is shown in Figure 3.
The AWFmodule performs an adaptive weighted fusion of

the prediction tensor yi obtained form two identical models
with differential privacy protection.

It assigns weights w to the prediction tensors according
to the magnitude of their variance V , Equations (7) and
(8) represent the calculation of the predicted probabilities
variance in the prediction tensor.

p =
1
n

n∑
b=1

pb. (7)

V =
1
n

n∑
b=1

(pb − p)2. (8)

where n is the number of prediction categories. Because the
prediction tensor with more accurate prediction results has
more dispersion of the prediction probabilities pb in its matrix
structure. And the prediction tensor with poorer predictions
has a less discrete prediction probabilities pb in the matrix
structure. Due to themagnitude of the variance is proportional
to the dispersion, the variance of the prediction tensor can
reflect the accuracy of its prediction results.

Next, the prediction tensor is assigned a weight w, which
is calculated according to the variance ratio of the prediction
tensor, see Equation (9). Where, V1 and V2 represent the
variances of the prediction tensors y1i and y2i , respectively.
Then, the weighted prediction tensors w1y1i and w2y2i are
fused to obtain the fusion tensor Y , see Equation (10).

w1 =
V1

V1 + V2
,w2 =

V2
V1 + V2

. (9)

Y = w1y1i + w2y2i (10)
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FIGURE 2. Gradient tensor layered clipping flow diagram.

FIGURE 3. AWF module flow diagram.

At this point, a more accurate prediction result can
be obtained for the model with differential privacy
protection.

The overall flow of the above is shown in Algorithm 2.

IV. EXPERIMENT
In this section, we conducted several experiments on
different datasets as well as privacy budgets to evaluate
the performance and privacy of ICGC-DP. We compare
DP-SGD [8], DPL-GGC [17], Improved-DP-SGD [16] and
ICGC-DP, respectively, under the same number of training
steps. In the following, we first describe the experimental
settings, including the experimental datasets, models, and
implementation details. Then, we compare the classification
performance of ICGC-DP with the other algorithms men-
tioned in this paper.

A. EXPERIMENTAL SETTINGS
We perform experimental evaluation on three public datasets
respectively.

a) Datasets. The Mnist dataset [24] contains 60,000
training samples and 10,000 test samples with a total
of 10 categories. The FashionMnist dataset [25] also
contains 60,000 training samples and 10,000 test
samples, with 10 categories. The CIFAR10 dataset [26]
consists of 32 × 32 colour images with 10 categories.
It contains 50,000 training samples and 10,000 test
samples, respectively.

b) Models. In our experiments, we set up two models,
Model1 and Model2, respectively.
Model1 is used to train and test the Mnist and
FashionMnist datasets, and it has 2 convolutional layers
with 10 and 20 neurons, each with a dimension of 5×5,
and 4 fully connected layers, fllowing by 1 softmax
layer.
Model2 is used to train and test the CIFAR10 dataset,
and its model structure has 2 convolutional layers with
64 and 64 neurons, each with a dimension of 5 × 5,
2 fully connected layers and 1 softmax layer.

c) Parameter settings. In the next experiments, we set
the parameters for Model1, Model2 and the privacy
environment, respectively. For Model1, we set the
sampling rate q to 0.01, the learning rate α to 0.005, δ to
10−5, and β to 1

/
T 2. For Model2, we set the sampling

rate q to 0.01, the learning rate α to 0.01, δ to 10−5, and
β to 1

/
T 2.

All our experiments are run in the pytorch environment.

B. PRIVACY COST
To evaluate the trade-off between privacy cost and accuracy
of DP-SGD, DPL-GGC, Improved-DP-SGD and ICGC-DP
algorithms, we compare the accuracy of the algorithms
by consuming a certain privacy budget ε. To ensure the
fairness of the experiments, the model structures of different
algorithms are the identical on the same dataset.
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Algorithm 2 ICGC-DP Algorithm
Input: Training dataset X = {x1, x2, . . . xU }, where U
represents the number of training samples, loss function
f (θ, xi), Parameters: Noise multiplier σ , batch size L,
learning rate α, hyperparameter β, sampling rate q,
privacy parameters:(ε, δ);
Output: training parameters with differential privacy
protection θt ;

1: for t ∈ [T ] do
2: Randomly select L samples with sampling proba-

bility L/U , all samples constitute the sub-dataset
Lt ;
Adaptive weighted fusion Module;

3: For each xi ∈ Lt , obtain the prediction tensor y1i
and y2i ;

4: p =
1
n

n∑
b=1

pb;

5: V =
1
n

n∑
b=1

(pb − p)2;

6: w1 =
V1

V1+V2
,w2 =

V2
V1+V2

;
7: Y = w1y1i + w2y2i ;

Compute gradient;
8: For each xi ∈ Lt , gt (xi) = ∇θt f (θt , xi);

Clip gradient;
9: CMi = Get CM (gt (xi));

10: ḡkt (xi) = gkt (xi)/max
(
1,

∥∥gkt (xi)∥∥2
CMi

)
;

Add noise;
11: Ci = CMi + β;
12: ḡt_noise =

1
L

∑
i
(ḡt (xi) + N̄ (0, σ 2C̄2

i I ));

Gradient descent;
13: θ̄t+1 = θ̄t − αḡt_noise;
14: end for
15: return θt .

TABLE 1. Privacy cost comparisons on Mnist, δ = 10−5.

As shown in Table 1, on the Mnist dataset, ICGC-DP and
Improved-DP-SGD only consume a privacy budget of 0.51,
and their accuracy reaches 97.05% and 96.71%, respectively.
DPL-GGC consumes a privacy budget of 1.72, and the
accuracy ofDPL-GGC reaches 94.67%.DP-SGD consumes a
privacy budget of 1.92, and the accuracy of DP-SGD reaches
93.46%.

As shown in Table 2 and Table 3, on the CIFAR10
and FashionMnist datasets, ICGC-DP consumes privacy
budgets of 3.29 and 1.40, its accuracy reaches 73.13% and
89.11%, respectively. DP-SGD consumes privacy budgets

TABLE 2. Privacy cost comparisons on CIFAR10, δ = 10−5.

TABLE 3. Privacy cost comparisons on FashionMnist, δ = 10−5.

of 6.85 and 3.97, its accuracy reaches 60.97% and
82.46%, respectively. DPL-GGC consumes privacy budgets
of 4.68 and 2.57, its accuracy reaches 68.46% and 85.65%,
respectively. Improved-DP-SGD accuracy reaches 70.85%
and 88.09%, and it consumes privacy budgets of 3.38, 1.79
respectively.

It can be seen from Tables 1, 2 and 3 that ICGC-DP
improves the accuracy of the model and reduces the overall
privacy consumption. This is because our method adds less
noise in the same steps.

C. ACCURACY COMPARISON
In this subsection, we compare the accuracy of different algo-
rithms on the Mnist, CIFAR10 and FashionMnist datasets
under different privacy budgets ε.

Figure 4 shows the comparison results of DP-SGD,
DPL-GGC, Improved-DP-SGD and ICGC-DP on the Mnist
dataset.

Figure 4(a) shows that ICGC-DP has better classification
performance than DP-SGD, DPL-GGC, and Improved-DP-
SGD for the same model. When the privacy budget ε =

2.0, which indicates that a large Gaussian noise is injected
on the training parameters, ICGC-DP achieves test accuracy
of 97.36%, while DP-SGD, DPL-GGC and Improved-
DP-SGD obtain 93.53%, 94.72% and 96.77% accuracy,
respectively.

When the privacy budget ε = 8.0, as shown in Figure 4(b),
ICGC-DP exceeds the test accuracy by 3.92%, 2.68%,
and 0.90% on average compared to DP-SGD, DPL-GGC,
and Improved-DP-SGD. When the privacy budget is set
large, which is equal to injecting less noise on the training
parameters, the test accuracy gaps among the algorithms
decreases.

Figure 5 shows the test accuracy of each algorithm on
the CIFAR10 dataset. Figure 5(a) shows that ICGC-DP
outperforms DP-SGD, DPL-GGC and Improved-DP-SGD.
When the privacy budget ε = 2.0, the test accuracy of ICGC-
DP is 72.63%, which exceeds the test accuracy by 15.50%,
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FIGURE 4. Accuracy comparisons on Mnist.

FIGURE 5. Accuracy comparisons on CIFAR10.

FIGURE 6. Accuracy comparisons on FashionMnist.

6.51%, and 3.67% compared to the DP-SGD, DPL-GGC and
Improved-DP-SGD.

In Figure 5(b), when the privacy budget ε = 8.0,
the test accuracy of ICGC-DP, DP-SGD, DPL-GGC and
Improved-DP-SGD is 74.41%, 61.15%, 70.82% and 71.27%,
respectively.

Figure 6(a) shows the comparison of the test accuracy
among the algorithms for privacy budget ε = 2.0 on the Fash-
ionMnist dataset. We conclude that ICGC-DP outperforms
the other algorithms, compared to DP-SGD, DPL-GGC and
Improved-DP-SGD, the final test accuracy of ICGC-DP
increases by 6.60%, 3.16% and 0.98%, respectively.

Moreover, as shown in Figure 6(b), it is clear that ICGC-DP
achieves 89.49% test accuracy on the FashionMnist dataset
if privacy budget ε = 8.0, while the accuracy of DP-SGD,

DPL-GGC and Improved-DP-SGD algorithm is 85.89%,
86.43% and 88.12%, respectively.

Figures 4, 5 and 6 show that the larger the allocated privacy
budget, the less noise affects the model, and also demonstrate
that ICGC-DP outperforms other algorithms mentioned in
this paper on different datasets.

D. COMPUTATIONAL EFFICIENCY COMPARISON
Furthermore, we evaluate the average time consumption of
DP-SGD, DPL-GGC, Improved-DP-SGD and ICGC-DP on
the Mnist, FashionMnist and CIFAR10 datasets, respectively.

DP-SGP is a classical algorithm, and the accuracy of the
other algorithms mentioned in the paper is still growing when
it converges at the same number of steps. Therefore, we take
the accuracy of DP-SGD when it reaches convergence as
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TABLE 4. Comparison of the average time consumption (minutes).

a reference object and use the time required for other
algorithms to reach the similar accuracy as it as a measure
of computational efficiency.

For example, On the Mnist dataset, DP-SGD converges
with accuracy of 93.43% and its average time consumption
is 9.93 minutes. DPL-GGC achieves accuracy of 93.49%
and its average time consumption is 9.73 minutes. Improved-
DP-SGD achieves accuracy of 93.53% and its average
time consumption is 7.06 minutes. ICGC-DP achieves
accuracy of 93.66% and its average time consumption is
8.47 minutes.

The comparison of the time consumption on the different
datasets is shown in Table 4. ICGC-DP has a longer time
consumption than other algorithms on FashionMnist and
CIFAR10 datasets. This is because the AWF module in the
ICGC-DP needs to calculate the number of parameters of
both models, which brings a large amount of computation
for each iteration of the ICGC-DP. In fact, the AWF module
can run in parallel. This way, the time consumption of ICGC-
DP can be theoretically reduced by about half compared to
that on Table 4. As shown in Figure 4, on the Mnist dataset,
ICGC-DP requires fewer steps to achieve similar accuracy
as when DP-SGD converges, thus its time consumption
is less.

V. CONCLUSION
In this paper, our proposed algorithm improves the problems
that previous works failed to address. First, we layer the
gradient tensor and obtain L2 norm for the gradients to
determine the clipping value CM . In addition, in order
to prevent the gradient norm from gradually converging
to zero as the number of training steps increases, resulting
in zero sensitivity, we set a sensitivity bound β. Then,
we design an adaptive weighted fusion module, which
is based on the variance of predicted probabilities to
assign the weights of fusion. With this module, we further
improve the classification ability of the model. Finally,
we experimentally demonstrate that our proposed algorithm
have better classification performance than previous state-of-
the-art related algorithms mentioned in this paper. However,
our algorithm has a much higher time cost due to the need to
compute more training parameters, which is a shortcoming
that needs to be addressed in our future work.
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