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ABSTRACT Video coding standards use a prediction structure to arrange video frames and exploit
temporal correlations. In this aspect, it is crucial to resolve complicated temporal dependencies among
frames to improve coding efficiency because the coding of a preceding frame affects the rate-distortion
(R-D) performance of the subsequent frames. Previous algorithms have attempted to address the problem
using handcrafted features or analytical models even though natural videos display various temporal
characteristics. In this paper, we propose a reinforcement learning (RL)-based decision algorithm to build
the optimal hierarchical prediction structure under a random-access configuration (RA-HPS) in Versatile
Video Coding (VVC). Our goal is to maximize coding efficiency by selecting a series of optimal group
of pictures (GOP) structures for coding. Accordingly, we formulate an adaptive GOP selection algorithm
with a binary tree to represent a policy. We generate an optimal binary tree to minimize the sum of the R-D
costs among all plausible binary trees. A new RL policy representation is defined, and the optimal policy is
obtained by a sequential update. The tree grows with a hierarchical state-action and a reward sequence in
each node. For efficient learning, the proposed technique uses a deep Q-network architecture to capture
the temporal correlation between frames, which helps learn the policy of the tree-based RL framework
effectively. Experimental results demonstrate that the proposed technique achieves a significant Bjontegaard-
Delta (BD)-rate reduction compared with state-of-the-art GOP size-selection algorithms.

INDEX TERMS Reinforcement learning, hierarchical B prediction, adaptive GOP, rate-distortion optimiza-
tion, deep Q-network, VVC.

I. INTRODUCTION

Video content is increasingly delivered over the Internet and
stored in data centers. The growth rate of video consumptions
is higher than ever before, while wireless spectrum becomes
scarce and costly. With the explosive growth of video traffic,
high-efficiency video coding technology is crucial to provide
a more engaging experience for users. Recently, the ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG) have developed the
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Versatile Video Coding (VVC) standard [1], aiming at 50%
bit-rate reduction compared with previous standards [2]. It is
expected for the VVC to support emerging data-intensive
video services, such as 4K ultra high definition (UHD),
360-degree video, and virtual reality (VR).

Video coding efficiency can be significantly improved by
exploiting temporal correlation among adjacent video frames.
There have been several studies using deep learning to
reduce temporal redundancy and improve coding efficiency,
by producing more accurate motion vectors and reference
blocks [3], [4], [5], [6]. In [3] and [4], a virtual reference
frame was generated from previously coded frames using
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convolutional neural network (CNN). The generated signals
were used to accurately predict the current sample by express-
ing irregular motions [5], [6]. In [7], a prediction block was
generated by affine transformation and adaptive spatially-
varying filters. The CNNs have been trained to approximate
the reference block to the original block.

Although the deep learning-based inter coding methods
improved coding performance, they have overlooked tempo-
ral dependency between the current frame and the reference
frame. A coding order of a preceding frame can significantly
affect coding performance of subsequent frames, and, accord-
ingly the coding dependency needs to be carefully addressed.
Current video coding standards use a prediction structure to
encode video frames in an order and improve rate-distortion
(R-D) performance through exploiting the temporal correla-
tion. Hierarchical prediction structure under a random-access
configuration (RA-HPS) was actively applied to High Effi-
ciency Video Coding (HEVC), in which quantization param-
eters (QPs) were adjusted with a temporal layer (TL) of a
frame in the prediction [8], [9]. It was further used for the
VVC standard to meet various requirements.

The prediction structure is built with sequential and inde-
pendent groups of intra-frames (I-frames) and inter-frames
(P- or B-frames). In the group, intra- or inter-coded frames
belonging to the lowest TL (TL-0) are called key frames.
The key frames are coded with the highest fidelity. Non-key
frames are coded using reference frames from lower layers.
Key frames tend to be regularly positioned, and each length
of a prediction structure is same. However, different positions
of the key frames produce improved coding performance
because a temporal segment of a video often exhibits diver-
sified characteristics. Furthermore, a coding order of frames
and a selection of reference frames are subsequently changed
based upon the decision, which affects coding performance
of subsequent frames.

Previous studies have identified the intriguing problem
and attempted to present optimized prediction structures.
The prediction structure is developed to resolve the temporal
dependencies and improve coding efficiency [10], [11], [12],
[13], [14]. In [15], an adaptive key-frame selection based
on spatial and temporal features was presented. In [12], the
coding order of B-frames was optimized recursively. The
optimization of the reference picture selection was solved
using the Viterbi algorithm [16]. Temporally dependent R-D
optimizations (TD-RDO) was proposed to improve coding
performance by measuring the distortion propagated from
the previously coded frames [11], [17]. Several studies have
developed a coding scheme to divide the prediction struc-
tures, by using scene change detection [18], [19]. The more
accurate the temporal changes of a frame, the easier it is
to decide the size of a prediction structure, which enhances
R-D performance.

In this paper, we focus on developing a reinforcement
learning (RL)-based decision algorithm to recursively divide
video intervals into several groups and locate key and non-key
frames in an RA-HPS in VVC [1]. The previous studies
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have attempted to solve the problem with analytical models
and handcrafted features [12], [18], [19] or apply action
proposals to perform temporal localization and segmentation
using CNNs [20]. However, it was difficult to manage com-
plicated temporal dependencies in high-dimensional videos
displaying various temporal characteristics. In fact, the cod-
ing order and the display order of video frames differ in an
RA-HPS, which causes more complicated temporal depen-
dency among frames, whereas the other prediction structures,
such as low-delay (LD), yield relatively simple dependencies
to sequentially encode frames [11], [21]. Thus, the coding of
a preceding frame significantly affects the R-D performance
of the subsequent frames [11], [17].

The contributions of our proposed method are summarized
as follows:

e To the best of authors’ knowledge, this is the first study
to use the RL to build an R-D optimized prediction
structure in VVC, extended from our previous work [22].
In the proposed method, we make a partition of a video
interval as a sequence of a state-action for an agent
to conduct an RL. The optimal solution is obtained
by maximizing a reward function of the RL policy
representation.

e We formulate an optimization of a prediction structure
for coding, by a sequential growing of a tree and a hier-
archical state-action and reward sequence. We develop a
new learning scheme and a deep Q-network architecture
based on the problem formulation.

e We verify the results of the proposed method com-
pared with state-of-the-art studies. Experimental results
demonstrate that the proposed method can adapt to a
dynamic video sequence and achieve optimal coding
performance.

The rest of the paper is organized as follows. In Sec. II and
Sec. I1I, we review the related works and the RL. We explain
the proposed technique in Sec. IV. Experimental results and
analysis are presented in Sec. V. The conclusion is remarked
in Sec. VL.

Il. RELATED WORKS
A. TEMPORAL PREDICTION STRUCTURE
Temporal prediction structure has been actively studied in
several video compression applications such as R-D opti-
mization [16], [23], perceptual optimizations [18], [24], rate
control [25], [26], and video streaming Internet-of-Things
(IoT) [27]. It is used to maximize coding efficiency and
provide scalable features in video coding [28].

In video coding standards, a video frame is involved to
a group-of-picture (GOP) as a unit of a prediction structure
to determine a reference frame for a current frame. A GOP
structure is built using the current key frame and the frames
between two consecutive key frames. The key frames tend to
be coded with the highest fidelity among the grouped frames.
Non-key frames of the same TLs in a GOP are usually coded
with the same coding schemes, while using an incremented
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offset to the QP of the key frames. The coding order is chosen
in a way that the reference frames of the lower TLs are coded
before.

RA-HPS uses a hierarchical B prediction structure. Fig. 1
displays an RA-HPS with four temporal hierarchy layers,
in which all frames are hierarchically grouped in TLs.
In an RA-HPS, the coding order and the display order of
video frames differ due to the hierarchical B-prediction.
InFig. 1(a), a B-prediction is applied to B4 in the second layer
(TL-1) by referencing Iy and Pg in TL-0. B; in the next layer is
subsequently coded using Iy and By4. The frames of the lower
TLs are more critical because their reconstruction qualities
should affect the coding of the other frames. Several works
have indicated that a fixed coding mechanisms in an HPS
cannot offer optimal coding performance due to the different
degrees of motion dynamics in video sequences [29], [30].

GOP 8 <

< GOP 8 >: EGOP“EE EGOP45:

(b)

FIGURE 1. RA-HPS using (a) a fixed-size GOP and (b) an adaptive-size
GOP. The red frames refer to key frames in TL-0. The higher frame in the
figure, the higher the TL.

B. PREVIOUS STUDIES FOR ADAPTIVE PREDICTION
STRUCTURE
The interval between two consecutive key frames (or the size
of a GOP) is not necessarily uniform for coding efficiency.
For instance, in one hand, a large group size is more beneficial
to encode static video scenes because there are slight motion
changes between two key frames. In the other hand, a small
group size is chosen for dynamic motions. The GOP sizes
can be changed based upon the temporal characteristics of
a video sequence. In Fig. 1(b), the second partition consists
of two GOPs with a size of 4, which is more favorable to
scene changes occurring within the partition. The fixed GOP
structure cannot manage the various temporal properties,
appropriately.

Several studies have improved R-D performance by select-
ing an adequate GOP size and avoiding computational com-
plexity in an encoder [18], [19], [31], [31], [32], [33], [34],
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[35], [36]. In [32], when temporal changes between frames
are detected, a video sequence is segmented and encoded.
The video sequence is partitioned using entropy changes
and pixel differences at which each I-frame is inserted to
build the adaptive GOP. The GOP size has been determined
based on the changes in the motion activity [33], [36].
In [36], Ding et al. presented a method using motion vec-
tors and residues to find abrupt temporal changes and deter-
mine the size. In [33], Sakamoto et al. analyzed spatial and
motion complexity of video frames and selected an opti-
mal GOP size to improve coding performance. It has been
applied to UHD video coding using HEVC. In [19] and [31],
Poobalasingam et al. proposed to use various GOP sizes by
measuring the temporal steadiness of video contents. In [19],
they used encoding parameters as texture features not to
rely on the previous estimation of motion vectors in a video
sequence. In [31], a homogeneous texture descriptor was
selected to determine the size.

A fixed GOP size can result in inaccurate selection of
reference key frames and flickering artifacts in the decoded
video. Vijayanagar and Kim [34] developed two-phase block
classification scheme and a prioritized block classification
scheme to improve the efficiency. Coarse-to-fine refinements
were conducted to determine the final GOP size [35]. The
approach started with a coarse GOP size and then modified
it by iterative checking the size based on a frame-level intra
mode decision method. Chen et al. [18] developed a percep-
tual hash algorithm-based adaptive GOP selection method.
This approach used a hashing algorithm to measure the differ-
ence in every two successive frames and determined the GOP
size between 1~3. Ascenso et al. [37] presented a method
to decide the size based on hierarchical clustering based
on block statistics. These features were used for detecting
changes in both global and local motion. The decision task
of an adaptive GOP size was formulated as a classification
problem. Huong et al. [38] created several spatial and tempo-
ral features generated from pixel values and motion vectors,
respectively. A decision tree algorithm was used for training
samples and classification to decide a GOP size.

Ill. REINFORCEMENT LEARNING

An RL system uses two key concepts that are an agent and
an environment to find optimal sequential decisions. It is
defined as a tuple of (s, a, r, t), where s is a state, a is an
action, r is a reward, and ¢ is a transition to the next state s’.
The agent learns a policy to take an action from s to s’
to maximize a reward from its environment even though it
may not have analytical knowledge about the environment.
At each time t, the policy 7 (s;) outputs an action a; in the
current state s; to maximize the total reward while receiv-
ing an immediate reward of r;4+1. Accordingly, an episode,
which is the full interaction process between an agent and
an environment, produces a state-action and reward sequence
{s0, ao, r1, 51, a1, r2, ..., st} ending at the terminal state s7.
r can be replaced with a cost to minimize the total cost
equivalently.
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The agent learns how to act in an environment to achieve to
maximize the sum of rewards. This is achieved by predicting
how many values the state or the action provides. For this
purpose, under a given policy 7, we define a state-action
value function (also known as Q-function) Q (s, a) [39] as

T-1
Qx (s, @) = Ex [Z YErkls = s.a = a} NG

k=0

where y € [0, 1] is a discount factor used to penalize the
future rewards. Eq. (1) can be expressed as the Bellman
equation [40] that decompose the value function into the
immediate reward and the future values.

Ox(s,a) = Eqx [ri11 + YEar O(St41, @)|s; = 5,0, = al,
2

which is computed with the recursive update process.

There exists an optimal policy 7* such that Qy+(s,a) =
max, O (s, a) for all plausible pairs of states and actions in
the action-replay process [40]. Thus, the optimal action a; is
taken by,

ay = argmax Qr=(s;. ). 3)

A. RL IN VIDEO CODING

Several pioneering studies have applied RL algorithms to
video coding applications. RL was used to formulate HEVC
intra-frame rate control [41], in which each QP value of cod-
ing tree units (CTUs) in a frame is sequentially determined
to minimize the distortion of a frame within rate constraints.
They considered the texture complexity of CTUs and the bit
balance as a state, the QP value as an action, and the distortion
of the CTU as a reward. They adopted a three-layered fully
connected (FC) neural network for Q-learning. In [42], the
study was extended to inter-frame rate control. They define
an RL agent to allocate bits to each frame to maximize
cumulative RL rewards and eventually prevent fluctuations of
bit-rates over time. In [43], more comprehensive state vectors
including block properties with pixel values and gradients
and coding properties with bit balance are defined both at
the frame-level and CTU-level. Action has been taken to
determine the QP values relative to the frame level.

Some efforts were made to use the RL system to opti-
mize the R-D performance and speed up the mode deci-
sions of HEVC encoders. In [44], Helle et al. presented an
RL framework to automatically learn complexity-scalable
encoder strategies from a video sequence. It incorporates a
continuous trade-off between the RD-cost and the compu-
tational complexity. In [45], Chung et al. utilized the RL to
facilitate the coding unit (CU) split decision in HEVC. They
used the sample values of a CU as the state and the split
decision as an action. The reduction in R-D cost relative to
maintaining the current CU was counted for the reward. For
the Q-learning, CNNs with three convolutional layers and two
FC layers are used for different CU sizes. In [46], a CU size
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decision based on RL was developed to decrease HEVC intra-
coding complexity. They conducted early termination of the
quad-tree splitting process, by considering the encoder as an
agent, sequentially making coding decisions.

IV. PROPOSED METHOD

In this paper, we present an efficient coding technique using
temporal segmentation of video frames and key-frame alloca-
tion with a deep RL method. The goal is to maximize coding
efficiency by building optimal RA-HPS structures. Because
the RA-HPS uses a hierarchical B-prediction structure, a divi-
sion of a prediction structure is recursively conducted. The
RL is chosen to organize the recursive structure and select
important video frames to affect coding performance of sub-
sequent frames. We use a GOP as a basic prediction stricture,
and coding gains of the frames within a GOP are used for
rewards in the RL system.

We assume that the period of I-frames is already deter-
mined as L, and there can be several GOPs divided in the
period. The prediction structure is independently optimized
in every period. Furthermore, we assume the size of the GOP
is2l,1=2,3,.. log, L. The smallest size of the GOP is 8 in
our setting, and the size can expand to L. Our objective is
to determine the dyadic hierarchical divisions of the given
video frames F = {f, ..., fL—1} into several different sizes
of GOPs of RA-HPS.

A. PROBLEM FORMULATION WITH A BINARY TREE

We use a binary tree T to divide F into several GOPs and
automatically determine their sizes as depicted in Fig. 2. Each
node n = (k,l) € T represents a coding state to encode
| — 1 frames between f; and fy4+; when f; and f.4; have been
already coded as the key frames of the current GOP.

Starting from the root node n’ = (0,L), a tree may
bifurcate from 7’ in the i—th layer to the left node n;"H and the
right node n/!. A node becomes a leaf node as the final state
when a GOP is determined with its key frames. It is noted
that, once the position of the key frame and the size of the
GOP are specified, the prediction structure of the in-between
frames are all determined using the hierarchical B-prediction.
An intermediate node is split into two child nodes that may
represent two subdivided GOPs or continue the bifurcation.
Therefore, a tree T generates a unique prediction structure
of 7. An edge e € T represents an action to be described
later.

Let J(t; T) define the R-D cost as

J(t;T) =D+ AR, “®

where R and D stand for the bit-rates and the distortion when
fr is encoded. A is the Lagrangian multiplier. It is differently
specified with QPs and frame types in the R-D optimization
of VVC reference software.

We attempt to generate an optimal tree 7* by minimizing
the sum of the R-D costs

T" = arg minZ](r; T), Q)

TeT T
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FIGURE 2. A binary tree T to divide a video sequence into several GOPs.

where T presents all plausible binary trees representing dif-
ferent GOP structures.

The computations of the R-D costs depend on the recon-
struction states of frames in different prediction structures.
However, there are a large number of possible binary trees,
approximating the Catalan number [47]. It is computationally
expensive to obtain the solution in Eq. (§) by exhaustively
searching for all binary trees in 7. In our method, we attempt
to adopt an RL system to solve the problem more efficiently.

B. POLICY REPRESENTATION

We formulate an RL problem to calculate the minimum costs
in Eq. (5). We recall that a node n = (k, [) is a state to encode
the frames {fy+1, - . ., fk+1—1} when f; and fx4; are given.

In an intermediate node, an encoder has a choice about
whether to split the current GOP. We define such an action
ap € {b, b} at the current node n (or a state). b is taken to
create the child nodes. In other words, it divides the GOP
into two sub-GOPs and sets the middle frame as a key frame
for coding. The child nodes can be further split in the next
depth. In contrast, b is taken to set the node as a leaf node,
which determines to encode the frames as in the current GOP.
Fig.2 displays an example of the tree in which nodes take the
actions.

A policy m now consists of a sequential binary decision at
each node in a tree. To apply RL to a high-dimensional envi-
ronment, the state space was mapped into a low-dimensional
feature space in the previous studies [43], [44], [45], [46].
In these studies, the states are represented by feature vectors
consisting of encoding parameters. This includes the dimen-
sion of features and knowledge on block-level or frame-level
encoding parameters.

However, it is challenging to apply the same Markov deci-
sion process (MDP) framework to our problem because the
state representation has a larger dimensionality. In such cases,
the RL cannot offer an adequate near-optimal policy and
require numerous training samples. For instance, considering
two subdivided GOPs, the key frame of the first sub-GOP
in the sibling nodes would affect the coding of the second
sub-GOP. Therefore, we use an approximated policy iteration
with hierarchical binary-state space decomposition motivated
by [48]. This decomposition implies that, by decomposing
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the original tree into multiple sub-trees with smaller state
spaces, it is possible to derive superior local policies, and a
near-optimal global policy can be achieved

Let a Q-function Q(k,[; a) denote the expected costs
to encode the frames from fi41 to fy4;—1 when following
7 in the current node n. Then, by using the hierarchical
binary-state space decomposition, the optimal Q-function to
achieve Eq. (5) is obtained by

. l 1 l
maln{Qn(k, E§G)+Qn(k+5, §§a)+fa(k+5)}7 (6)
where we applied the Bellman equation with y = 1

in Eq. (2) while replacing max operation due to the cost
function J instead of a reward function.

Jak + é) computes the R-D cost to encode the middle
frame in the GOP. In the codec, the Lagrangian multiplier A in
J, depends on the temporal layer of the frame and QP values
as in Eq. (4), given as

QP—12
A=ax W x 2957 %)
where « is determined as the number of B-frames used for
referencing, and Wy is defined as [1]

0.442,
Wy = P—12
“7 10.3536 x Clip(2, 4, %),

where the Clip(v;, vy, v) function limits the value v between
v; and v,. Therefore, the cost function relies on the current
action. J, calculates differently depending on whether the
middle frame is determined as a key frame by a = b.

The node chooses an optimal action a* to take, by conduct-
ing the optimization as

TL =0

Otherwise,

a* = argmin Q,«(k, I; a), 9
a

where we obtain the solution through deep Q-learning [49]
described in the following subsection.

We obtain the near-optimal global policy by combining the
local policies in each sub-tree [48]. Therefore, an optimal
prediction structure is given by aggregating each leaf node
of the derived tree 7,F. The interaction process is illustrated
in Fig. 3. In Fig. 2, assuming that F includes 32 frames, the
last GOP includes 16 frames from fi¢ to f31 because n, is
determined as a leaf node to choose b. The first GOP includes
eight frames from fj to f7 because it has depth of one higher,
whereas the other frames are not determined yet. The optimal
set of actions .A* is obtained by tracking back from the leaf
nodes to the root node in 7.

C. LEARNING ON POLICY

We adopt a deep Q-network (DQN) [49] to learn the proposed
policy and obtain the approximated solution of Eq. (9). The
original DQN uses two deep neural networks: a main network
and a target network. The main network and target network
estimate the current Q-values and the subsequent values in
the next state and action, respectively.
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FIGURE 3. RL setting in the proposed technique. A node and an edge
refer to a state and an action, respectively. A new state is given by
creating the child nodes or determining itself as a leaf node while an
agent takes a cost J.

In Q-learning, an agent starts with an initial Q-value and
iteratively enhances the estimation by taking an action while
observing the cost and the next state. It updates the estimation
of the Q-network with weights 0 by minimizing the error 8,
given as

. [ /
§ = Ony (k, [; @) — min{Qry (k1. 7 )+ Qny (ky, X da)

+Ja(k + %)}, (10)

where Oy, and O, are the Q-values from the main and target
networks, respectively. The target and main networks have
the same architectures and parameter sets, while the target
network operates at one-step ahead of the main network.
In the next action, & goes to §’. k, and k; are the starting frames
in the subdivided intervals, respectively.

We recall the cost function J, depends on several fac-
tors such as QPs and TLs. Although most of the previous
RL-based video coding studies [41], [42], [43], [44], [45],
[46] have used normalized R-D costs in the Q-function,
we found that those approaches might not be effective in our
framework because they incur unstable learning. Therefore,
we define a new constant cost function J,,. For this purpose,
we have encoded training video sequences using different
GOP structures and examined their R-D costs to determine
which action should lead to the optimal solution. Let A*
denote the trajectory of the ground-truth action (or bifurca-
tion) in a video. Then, ]a is define as,

3 *
7 = vV — ¢, 1fa€.4. (11

v, otherwise,
where the function outputs a smaller cost when the current
action is a part of the optimal set. v and ¢ are both set to 1
in our experiments, respectively. When the current node is
the root node, the v value is set to 3 to prevent the early
termination of a tree. We set v and ¢ aiming to get the fair
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cost function regardless of any possible GOP selection and
adjust them heuristically.

We iteratively optimize the Q-network by minimizing
the sum of the squared error, i.e., ZB 82, where B is a
sample batch. The parameter set 6 of the policy network
is updated during the learning using a stochastic gradient
descent method.

Algorithm 1 displays the policy update during the learn-
ing. For every node n; at iteration 7, the Q-function selects
a; minimizing Eq. (9) and observe J;. The bifurcation of
the tree stops when the nodes are determined as leaf nodes
from Eq. (9). It also stops when the tree reaches the maximum
depth which is set to 2 in our experiments. When the tree
finishes its bifurcation, a new tree is initialized and the current
episode continues.

Algorithm 1 Proposed DQN
0: Initialize D, Q, and 6
0: for episode =1, ..., M do
0: Initialize a tree T
0: Setw=20
0: fori=1,..., until episode terminates do
0 Select a; = arg minaQngi using Eq. 9
0 Execute a; and observe ji
0 Store transition (n;, a;, J;. njy1)in D
0 Sample batch of transitions (n;, a;, J;, nj41)
0: Update 6 with the loss 82
0: ifa ¢ A* then
O.
0
0
0
0
0
0:

w<—w+1
end if
if w is equal to wy,,, then
Terminate episode
end if
end for
end for =0

For the termination condition of an episode, we define
the accumulated costs of a case when a ¢ A* per episode
as w. The costs would increase by v during iteration, and
each episode is terminated when wy,,, has been reached.
We set wy,q, to 3. In this manner, even though the tree selects
a suboptimal action to lead to a higher cost, the episode
does not stop immediately but continues until reaching w4y .
If the episode continues to run, it results in higher-performing
scenarios with smaller accumulated costs.

In our implementation, we adopt a replay memory [50] to
facilitate the learning. The replay memory D stores an expe-
rience of the agent as a tuple of a transition (n;, a;, j,-, nit1)
and randomly samples it over episodes. Our method records
the last N transition samples in the replay memory and
selects a random batch with a uniform distribution from
the memory to update a parameter. The uniform sampling
provides equal importance to all transition samples in the
replay memory to prevent the learning from getting trapped in
local minima. It is alleged in [50] that learning directly from
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consecutive samples is inefficient because of the high corre-
lations between the samples. The sampling process mitigates
this inefficiency problem by decorrelating between video
frames and stabilizing the DQN training procedure.

D. MODEL ARCHITECTURE

We build a two-stream network consisting of a leaf-stream
(LS) network and a bifurcation-stream (BS) network as
shown in Fig. 4. We create the streams to consider various
coding states within a current GOP to encode frames using
different sub-GOP sizes and key frames. To specify, the two
key frames and the middle frame in the current GOP are
concatenated for processing by the LS network. It extracts
some features about an action in which the current node is
set to a leaf node. On the other hand, for the BS network,
there are two sub-branches of convolution layers to extract
the features of the two subdivided GOPs. The input frames
are determined with the current node to which the model
operates. For example, in a node ny = (0,32), the LS
network takes three concatenated input frames of fj, fi¢, and
f32 as shown in Fig. 4. The BS network takes fy, f3, and
fie for the first branch and fi¢, f>4, and f3» for the second
branch. The features are merged into FC layers to produce an
action. The video frames are only the inputs to represent the
current state and to compute Q-values and produce an output
action.
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FIGURE 4. The proposed two-stream-network architecture.

We explain more details about the implementation. We use
only the luminance (Y) channel of video frames because the
Y-channel contains most of the visual information for coding.
Let H and W be the height and width of a video frame.
Therefore, each stream takes an input of which dimension is
H x W x 3 after the concatenation. All the streams share
the same network architecture that share the same set of
weights. The stream consists of eight layers, including five
convolutional layers followed by a nonlinear function and two
FC layers. The first two convolutional layers have 16 filters
of size 3 x 3, and the other three convolutional layers have
32 filters of size 3 x 3. The filtering is conducted with a
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stride of 2 pixels and padding with 2 pixels. Two max-pooling
layers are carried out over a 2 x 2 window with stride 2 and a
4 x 4 window with stride 2 after the first and third convolu-
tional layers, respectively. The output is flattened and passed
to an FC layer of 256 hidden units. At the end of BS, the
two outputs are added and divided in half. Finally, the outputs
from LS and BS are concatenated at the end of the streams,
and the two FC layers are applied. The output corresponds to
the Q-value for each valid action, b and b.

V. EXPERIMENTAL RESULT

A. EXPERIMENTAL SETTINGS

1) TEST CONFIGURATION

We implement the proposed technique based on the recent
VVC reference software, i.e., VIM version 16.0 [53]. The
tested methods are also implemented with the same software.
We conduct the experiments under configuration with the
common test conditions (CTC) [54]. The encoder uses an
RA configuration with the set of QPs = {22, 27, 32, 37}. The
QP differences with difference TLs are set as in the CTC.
For the CTC sequences, various resolutions of test video
sequences categorized as Class A~Class D are used for per-
formance comparisons. In addition to the CTC test sequences,
we use a YouTube test [55] set to examine the performance
with various properties of videos. For the YouTube test set,
we use 40 test sequences and categorize them into static
videos and dynamic videos with respect to the number of
scene changes. The static videos have no scene changes. The
dynamic videos are divided into two subgroups as shown
in Table 1. In both test dataset, 64 frames are used for the
experiments.

We set a size of a GOP to 16 through a test video sequence
for an anchor. The configuration is referred to as ““Fixed
GOP 16”. In the experiments, we include various GOP sizes
for comparisons, considering different characteristics of test
video sequences. “Fixed GOP 8,” “Fixed GOP 32, and
“Fixed GOP 64 represent that the sizes of GOP in VIM
software are set to 8, 32, and 64, respectively. The GOP
size of less than 8 is not considered, because the size is
rarely selected in our empirical results. The experiments are
performed with a 3.60 GHz Intel CPU, 8.0 GB RAM, and
NVIDIA TITAN X GPU.

2) TRAINING SET

The training videos are collected from YouTube and resized
to 416 x 240. The training videos are not used in the testing.
We attempted to have the training videos display different
degrees of motions. For example, the video frames in several
training video sequences have been randomly stitched to dis-
play more temporal dynamics and scene changes, as shown
in Figure 5. During training, we determine the ground-truth
GOP sets as the GOPs to provide the highest R-D perfor-
mance and use them for the supervision in Eq.(11). The
YouTube dataset includes approximately 9,000 videos for
training and 300 videos for validation.
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TABLE 1. BD-rate (in the unit of %) reduction in Y component of the proposed technique compared with [18] and [38] in YouTube test videos. The anchor
is a fixed GOP 16 for comparisons. A fixed GOP of 8 and fixed GOP of 32 are tested by changing the size of the GOP in the VTM 16.0 software.
Chen et al. [18], Huong et al. [38], Garcia del Molino et al. [51], Li et al. [52], and Lee et al. [22] are the state-of-the-art adaptive GOP algorithm.

Category fc‘éfle change | S - F ““;deOP —a [18] 38] [51] [52] [22] Ours
1 16.8% —5.5% 22.9% 0.0% 22.9% 3.9% —5.5% —4.1% —4.1%
2 17.2% —5.4% 22.0% 0.0% 22% 3.8% 15.8% 3.8% —4.6%
3 17.9% —-9.0% —6.7% 17.9% 0.0% —12.0% -9.0% 0.0% —6.7%
4 —-0.7% 0.6% 1.1% 0.0% 0.0% —-0.5% 1.1% —-0.5% —-0.7%
5 0.1% 0.2% 2.9% 0.0% 0.0% 0.0% 2.9% 0.0% —1.4%
6 —-7.5% 7.0% 42.5% —-7.5% 0.0% —7.0% —7.7% 0.0% —6.8%
7 14.1% —6.8% —4.4% —4.4% —0.4% —13.9% —13.9% —4.4% —4.4%
8 5.9% 0.2% 32% 0.0% —-2.5% 0.0% 5.2% 0.2% 0.2%
9 12.5% —8.5% 12.4% 0.0% 12.5% 3.5% 11.4% 12.4% —8.5%
10 18.1% —8.8% —7.8% —8.8% 18.1% —8.5% —8.8% —7.8% —-7.8%
Static video 0 11 15.2% —5.5% 1.4% —-5.5% 10.8% 7.6% 1.4% 1.4% —5.5%
12 8.7% -1.1% 6.2% 0.0% 8.7% 2.8% 6.2% 0.0% —-1.1%
13 10.6% —2.6% 18.4% —2.6% 0.0% 6.2% 0.0% —2.6% —2.6%
14 13.4% —4.2% —0.7% —4.2% 4.6% 5.7% —-0.7% —-0.7% —-0.7%
15 16.3% —3.4% 4.6% 0.0% 5.3% 5.9% 4.6% —3.4% —3.4%
16 7.3% —1.0% 11.8% —1.0% 5.1% 2.3% 11.8% 2.3% —-1.0%
17 9.6% —0.6% 13.1% 0.0% 9.6% 5.1% 13.1% 0.0% —0.6%
18 16.7% —5.6% 2.1% —5.6% 16.7% —5.6% 2.1% —5.6% —5.6%
19 11.5% —1.8% 7.1% —1.8% 11.5% —1.8% 7.1% —1.8% —1.8%
20 10.6% —3.2% 9.2% 0.0% 10.6% 2.7% 9.2% 0.0% —1.8%
Average BD-rate 10.7% —3.2% 9.5% —1.2% 7.8% 0.3% 2.3% —0.5% —3.4%
21 13.6% —7.0% —8.1% —8.1% —8.1% —14.2% 1.9% —8.1% —8.1%
22 14.6% —7.0% 13.1% 13.1% 13.1% 1.2% 3.7% —-7.0% —-7.0%
23 9.8% —4.4% —5.7% —4.4% 8.8% —-17.5% —4.4% —5.7% —5.7%
24 9.5% —-1.9% 21.9% —-1.9% 7.1% —7.1% 0.9% —7.1% —7.1%
1 25 15.4% —6.7% —8.8% 15.4% 9.4% —-12.5% 0.9% —-12.5% —8.8%
26 15.7% —-7.3% —8.2% 15.7% —-8.2% —16.3% 4.1% 0.0% —8.2%
27 16.9% —4.6% 25.2% 0.0% 11.3% 5.0% 10.3% 25.2% —4.6%
28 2.5% 4.0% 29.6% 0.0% 0.4% —5.6% 4.7% 4.0% -10.7%
29 28.9% —-12.3% | —13.3% 0.0% —-13.3% —-7.7% 5.3% —7.7% —13.3%
30 13.2% —6.3% -5.6% 13.2% 0.0% —15.5% —6.3% —6.3% —5.6%
Dynamic video Av. 14.0% —5.4% 4.0% 4.3% 2.0% —9.0% 2.1% —2.5% —7.9%
31 5.9% —10.4% 0.9% 0% 5.9% 2.1% 2.4% 2.1% —9.6%
32 11.0% —2.9% 1.9% 0.0% 1.9% —4.5% —-2.5% —4.5% -3.1%
33 8.5% 1.1% 26.7% 8.5% 26.7% —4.0% 8.2% —4.0% 1.1%
34 8.8% —0.4% 23.6% 23.6% 6.0% 2.4% 2.3% 2.4% —4.0%
> 35 —-3.9% 5.6% 47.9% -3.9% -3.9% —5.6% 7.6% —-3.9% —-3.9%
= 36 5.4% 3.4% 47.0% 0.0% 3.2% -3.2% 2.6% -3.2% -3.2%
37 —0.3% 3.8% 29.7% 3.8% —-0.3% —6.9% 9.2% —-0.3% —7.9%
38 1.0% 5.0% 41.1% 5.0% 41.1% —-3.6% 1.0% —-3.6% —3.6%
39 —5.2% 5.9% 59.0% 0.0% 0.4% —-9.8% 6.9% 0.0% —-9.8%
40 —2.6% 10.3% 36.3% 0.0% 9.4% 1.4% 5.3% 1.4% 1.4%
Av. 2.9% 2.1% 31.4% 8.4% 9.0% —2.5% 4.3% —1.4% —4.2%
Average BD-rate 8.4% —1.6% 17.7% 6.3% 5.5% —5.8% 3.2% —1.9% —6.1%
Total average BD-rate 9.6% —2.4% 13.6% 2.6% 6.7% —2.7% 2.8% —1.2% —4.8%
Encoding time - - - 100% 100% 103% 100% 101% 101%

3) IMPLEMENTATION DETAILS
We implement the proposed network using Tensorflow and

“fixed GOP 87, “fixed GOP 32,” “fixed GOP 64", Huong
et al. [38], Chen et al. [18], Garcia del Molino et al. [51],

train the network with the Adam optimizer [56] to update
the network parameters for 1,000 episodes. We conduct an e-
greedy policy with € = 0.01 as in [50]. In our implementation,
we have imposed the Q-function to consider the sum of the
costs of the descendant nodes up to a depth of 2 to reduce
complexity.

B. CODING PERFORMANCE AND ANALYSIS

We evaluate the coding performance of the proposed tech-
nique in comparison to several state-of-the-art adaptive
GOP algorithms. We justify the efficiency of the pro-
posed technique by comparing the coding performance of
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Li et al. [52], and Lee and Kang [22]. We further explain the
details of the tested methods. Huong et al. utilized a binary
tree to solve a classification problem when structuring a GOP.
Chen et al.took a discriminative approach by thresholding a
relation value between frames. Garcia et al. proposed event
segmentation paradigm that used LSTM-basd generative net-
work to predict their visual context. In the comparison, the
segmentation results have been used to determine the clos-
est GOP size. Li et al. utilized a hidden Markov model to
frame-level characteristics such as the correlation coefficient
within neighboring frames and noise level. Lee et al. [22]
uses a fixed tree structure to optimize the prediction structure

20247



IEEE Access

J-K. Lee et al.: Reinforcement Learning for R-D Optimized Hierarchical Prediction Structure

TABLE 2. The BD-rate (in the unit of %) reduction of the proposed technique compared with [18] and [38] in the CTC test videos. The anchor is a fixed
GOP 16 for comparisons. A fixed GOP of 8 and fixed GOP of 32 are tested by changing the size of the GOP in the VTM 16.0 software. Chen et al. [18],
Huong et al. [38], Garcia del Molino et al. [51], and Li et al. [52] are the state-of-the-art adaptive GOP algorithm.

Category Test Sequence 3 [ leg; GOI[) o [18] [38] [51] [52] Ours
Al Campfire 1.2% 0.0% -3.7% 0.0% 1.2% 0.5% -3.7% -3.7%
FoodMarket4 2.2% 0.0% 1.7% 0.0% 0.0% 0.6% 1.7% 0.0%
Tango2 2.7% 0.9% 5.1% 0.9% 2.5% 0.8% 0.0% —0.9%
A2 CatRobot1 5.2% 0.0% 3.0% 0.0% 5.1% 2.6% 3.0% 0.0%
DaylightRoad2 10.5% | —1.2% 2.8% 2.8% 10.5% 9.4% 2.8% —-1.2%
ParkRunning3 4.7% 0.0% 3.2% 3.2% 4.7% 1.7% 3.2% 0.0%
B BasketballDrive 5.7% 0.9% 6.9% 0.9% 0.0% 2.5% 5.7% 0.2%
BQTerrace 7.9% —1.9% —12.1% —-12.1% 6.5% 3.3% —12.1% —12.1%
Cactus 8.7% —1.6% 0.6% —-1.6% 2.8% 3.9% 0.6% —2.4%
MarketPlace 9.7% —0.3% 2.7% —0.3% 0.0% 2.9% 2.7% —1.8%
RitualDance 4.9% —0.5% 5.5% —-0.5% 4.9% 1.5% 4.9% 1.5%
C BasketballDrill 10.9% | —4.2% —5.4% 0.0% 7.9% 8.0% —4.8% —4.8%
BQMall 7.7% —1.9% 4.8% —-1.9% 1.6% 5.1% 4.8% —3.4%
PartyScene 9.9% | —2.0% 3.0% 3.0% 6.7% | —2.9% | —2.9% —2.9%
RaceHorses 6.0% 0.8% 4.5% 0.0% 6.0% 4.3% —-0.1% —-0.1%
D BasketballPass 2.0% —0.2% 4.7% —-0.2% 2.0% 1.5% 4.7% —1.4%
BlowingBubbles 6.7% 0.0% 13.4% 0.0% 1.7% 4.3% 0.0% —-2.5%
BQSquare 15.8% | —2.7% 7.1% 0.0% 10.6% 6.0% —2.8% —2.8%
RaceHorses 4.4% 0.3% 8.0% 0.3% 1.4% —1.0% 0.3% —-1.0%
Total average BD-rate 6.7% —0.7% 2.9% —0.3% 4.0% 2.9% 0.4% —2.1%

(b)

FIGURE 5. Examples of YouTube training videos with dynamic scene
changes and different degrees of motions.

using a RL-based decision algorithm. The Bjontegaard-Delta
rate (BD-rate) reductions are used for calculating the coding
performance. In comparison, a negative BD-rate implies cod-
ing performance superior to the anchor (i.e., fixed GOP 16).
We also report the encoding time, because the proposed tech-
nique conducts encoder-optimization. It is measured under
the CPU setting.

Table 1 displays the improved R-D performance of the pro-
posed technique for the luma component in YouTube videos.
The proposed technique provides significantly improved
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coding gains of more than 4.8% in BD-rate reductions
on average. In Table 1, the fixed GOP 32 provided only
slightly improved coding gain of approximately 2.4%. The
fixed GOP 8 and the fixed GOP 64 even displays a cod-
ing loss about 9.6% and 13.6%, respectively. Furthermore,
the proposed technique provides coding performance of
approximately 7.4% and 11.5% higher than Chen et al. and
Huong et al., respectively. The encoding time is only slightly
increased by approximately 1.0 % compared with the anchor.
The complexity of the RL decision is substantially lower than
the video encoding.

The coding efficiency of the proposed technique varies by
different types of the test video sequences. We observe that
GOP size larger than 32 provides comparable performance
to the proposed technique in static videos without scene
change because our RL model predicts a GOP size larger
than 32 for almost all of the videos in the statics video cat-
egories. The proposed technique exhibits —3.4% coding per-
formance outperforming any fixed sized GOP. Chen et al. and
Lee et al. [22] provide the improved coding gains of 1.2% and
0.5% respectively, whereas Huong et al., Garcia et al., and
Li et al. provide degraded coding performance of approxi-
mately 7.8%, 0.3% and 2.3%, respectively.

In dynamic sequences, the proposed technique provides
the highest coding performance among the compared meth-
ods. In the first group with one scene change, the pro-
posed technique exhibits a significantly improved coding
gain of approximately 7.9% on average whereas the fixed
GOP 8 and 32 display coding losses about 14.0% and
4.0%, respectively. In the second group with more than
one scene change, the proposed technique provides a cod-
ing gain of approximately 5.0% on average. Garcia et al.
could provide a comparable coding gain of approximately
9.0% in the first group and 2.5% in the second group.
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Lee et al. [22] also presents a minor coding gain of
approximately 2.5% in the first group and 1.4% in the sec-
ond group. However, other comparison methods, [18], [38],
and [52], degrade the coding performance about 6.3%, 5.5%
and 3.2% in dynamic video categories. Especially, both [18]
and [38] incur substantial coding loss e.g. in the 34-th video
of the second group. The proposed technique adapts to the
video and prevents such coding loss.

The superior coding performance of the proposed tech-
nique is also displayed in Table 2. The proposed technique
provides reliable coding gains in different resolutions of test
videos in CTC. The average coding performance is 2.1%.
In comparisons, Chen et al. yield coding gains of 0.3%.
However, the coding performance is degraded in fixed GOP 8
and Huong et al.. There was a significant coding loss in
the “DaylightRoad2” sequence. Since the CTC sequences
contain only few scene transitions, the fixed GOP 32 also
provides comparable coding gains of approximately 0.7%.

We present several video clips for which the proposed
technique conducts accurate prediction of the adaptive GOP.
Fig. 6 illustrates results in which the proposed technique
predicts the same trajectory of the ground-truth, thus leading
to the highest coding performance. Fig. 6 (a) presents the
result of a static video referred to as “Sequence 157 in
Table 1. “Sequence 15 has no scene change, but contains
rather huge motion change since it is a video of playing
tennis. Our technique predicts a GOP size of 32, provid-
ing a coding gain about 3.4%. However, Li et al. predict
three sub-divided GOPs with sizes of 16,16 and 32.
In Fig. 6 (b) and (c), our technique predicts the smaller
sizes of GOPs because the videos contain more than one
scene change. Fig. 6 (b) corresponds to “Sequence 28" in
Table 1 in which the proposed technique achieves high coding
performance. In comparisons, [51] provides degraded coding
performance about 4.7% as a result of the wrong prediction to
GOPs 16,16, and 32. Fig. 6 (c) shows “Sequence 37", which
contains two scene changes at the moments of f3¢ and fg1.
It is shown that the proposed technique predicts the GOP to
the five sub-divided GOPs with sizes of 32 and 8 and yields
3.2% coding gain over the anchor.

Fig. 7 displays the results in which the prediction is mis-
matched with the ground-truth. In Fig. 7 (a), sample videos
of “Sequence 14" do not contain a scene transition, and the
proposed technique selects the size of GOP as 64 for a coding.
However, the best performance is achieved when using two
32-sized GOPs, and the proposed technique underperformed
about 3.5% compared to Chen et al.. It seems that the cod-
ing performance of smaller GOP sizes is higher because
Fig. 7 (a) contains irregular motion of the foreground object.
Fig. 7 (b) displays a similar case in which our technique incurs
some coding loss in fog ~ fea. We argue that the coding
loss would occur because the proposed technique considers
frame-level temporal dynamics such as scene changes to
determine the size of the GOP rather than object-level factors
such as textures and local motions. This loss may be alleviated
by a block-level adaptive GOP decision at the expense of
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computational complexity and coding delays, which will be
investigated in the future research.

The complexity of the tested methods is presented in
Table 1, which presents only slight increase of encoding
measurement time. While the proposed network may bring
a slight increase in encoding time, the process of selecting
GOP is conducted only once (depth=0) to a maximum of
7 times (depth=3), making the increase negligible compared
to encoding the entire 64 frames.

C. DISCUSSION

In this subsection, we show several variants of the proposed
technique to discuss the performance and conduct ablation
studies. The test videos are from YouTube dataset, in which
the proposed technique provides 4.1 % BD-rate reductions
in Table 1.

1) NETWORK ARCHITECTURE

We present the coding performance when using different
network structures of the DQN in Fig. 4. Specifically,
Table 3 presents the performance with the different number of
streams as compared to the anchor. We recall that we used the
two-stream network using three concatenated frames. In this
comparison, we use an one-stream network architecture while
keeping the same number of layers and filters as described
in IV-D. We clearly see that the coding efficiency of the
two-stream network is higher than the one-stream network.

TABLE 3. The BD-rate (in the unit of %) reduction of the proposed
algorithm with different network structure in YouTube test videos.

. S Anchor : Fixed GOP 16
Network structure # of frames Y BDrate (%)
3 —1.0%
One-stream 3 _19%
Two-stream 3 —2.9%
8 (proposed) —4.8%

TABLE 4. The BD-rate (in the unit of %) reduction of the proposed
algorithm in YouTube test videos as compared with various deep
learning methods.

Anchor : Fixed GOP 16
Method Y BD-rate (%)
GOP Classification VGG-16 [57] 3.3%
Temporal segmentation PySceneDetect [ 58] —0.5%
CES [51] —2.7%
v=0 3.9%
RL v=0.5 -1.7%
v =0.99 —4.8%

In Table 3, we also test a scenario when the networks
use the different number of inputs. The proposed network
uses three input frames representing two key frames and the
middle frame at each node, which follows a coding order
in the current GOP. In the comparisons, we attempted to
use eight frames to enable a network to see more frames
in the GOP even though it might cause some frame delays
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Ours GOP 32

153] GOP 16
Ours GOP 8

FIGURE 6. Sample videos for which the proposed technique conducts accurate prediction. The proposed technique predicts the same results as the
ground-truth. The video in (a) is a static video with large motion. The videos in (b) and (c) are dynamic videos. The videos (a)~(c) correspond to the

sequence numbers 15, 28, and 37 in Table 1, respectively.

FIGURE 7. Sample videos for which the proposed technique conducts inaccurate prediction. GT indicates the best performing GOP structure. The videos
in (a) and (b) correspond to the sequence numbers 14 and 40 in Table 1, respectively.

for coding. It is shown that the number of the inputs would
not impact coding performance much. The BD-rate reduction
is 1.2% when the one-stream network uses eight input frames,
which is slightly higher than using three input frames. The
highest performance is achieved with the two-stream network
using three inputs.

2) DECISION SCHEMES
We conduct several experiments to compare various decision
schemes. The results are presented in Table 4.

First, we evaluate the performance of classification-based
decision scheme that could be an alternative to the proposed
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RL-based decision scheme. The classification method uti-
lizes an one-hot encoding of labels using VGG-16 archi-
tecture [57]. A classifier is trained with the supervision of
the ground-truth, and the decision is made to output the
probabilities. In our experimental setting, because we set the
period of an I-frame to 32 frames, there are five possible
adaptive GOP structures. Each GOP structure corresponds to
a possible tree. Accordingly, we train a classifier to solve the
multi-class classification problem with five labels. As shown
in Table 4, the classification method exhibits degraded coding
performance of approximately 3.3% whereas the proposed
technique provides a superior coding gain of approximately
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FIGURE 8. The plots show average cost per episode and BD-rate(%) of validation videos during training with (a) y=0.99, (b) y=0.5 and (c) y=0.

4.8%. We observe that the RL-based scheme attempts to
approximate the optimal solution at each node to minimize
the expected costs even though it does not obtain the optimal
tree structure in every scenario. However, the classification
method lacks such an optimization scheme, so it often incurs
significant coding loss when the prediction fails.

Second, the proposed technique is compared with a pre-
processing scheme using content-aware scene detection [58]
and contextual event segmentation (CES) [51]. The proposed
technique is applied during encoding, in which it uses only
the reference frames and the current frames. In compari-
son, the preprocessing is applied to determine the sizes of
GOPs beforehand, and the frames are encoded with the deci-
sion. For this test, we first obtain several key frames from
the scene detector and then generate groups of temporally
homogeneous frames to create GOP structures. As shown
in Table 4, the coding performance of [58] is approximately
0.5% and [51] is 2.7%. The preprocessing tends to yield an
accurate temporal segmentation but has no considerations in
R-D optimization.

We adjust the y values in Eq. (2) and present the results in
Table 4. The coding gain is improved with a higher gamma
value. It achieves BD-rate reduction of approximately 4.8%
for y =0.99 and 1.7% for y = 0.5. For y = 0, the degraded
performance is shown about 3.9% since each node makes a
greedy decision by taking only the present cost into consid-
eration. Furthermore, a smaller y value is vulnerable to the
overfitting problem because it considers only the immediate
cost. Fig. 8 displays the average cost per episode and the
coding performance during validation. The blue line and
red line exhibit the average cost per episode and the BD-
rate savings, respectively. As shown in Fig. 8, the costs
decrease as the episodes repeat. The BD-rates also decrease
to a certain training point. However, the curves increase in
Fig. 8 (b) and (c) because of excessive training episodes
whereas those in Fig. 8 (a) are reliable.

VI. CONCLUSION

In this paper, we proposed an RL-based GOP decision algo-
rithm with a tree-based framework to improve coding effi-
ciency. The proposed technique utilized a binary tree to
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divide a given video into several GOPs and automatically
determined their sizes. For this, we defined a new policy
representation and obtained near-optimal global policy by
combining the local policies in each sub-tree. The proposed
method employed a deep Q-network with a modified archi-
tecture to capture temporal correlation between frames and
iteratively trained the Q-network using effective learning
schemes. Owing to the tree-based RL framework, the pro-
posed technique could efficiently manage complicated tem-
poral dependencies in high-dimensional videos. The pro-
posed technique demonstrated significantly improved coding
efficiency compared with the state-of-the-art GOP selection
algorithms. It was shown in experimental results that the pro-
posed technique exhibited —4.8% and —2.1% coding gains
in YouTube test videos and CTC test videos compared with
fixed GOP 16. In the future work, we will study how this
RL-based framework can be applied to block-level optimiza-
tion for various video coding applications.
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