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ABSTRACT Since the sensing period of a signal generally depends on the used sensor, it may be different
from another, even in a single control system if it involves multiple sensors. This paper investigates a
design problem of state observers for linear time-invariant discrete-time plants under a multi-rate sensing
environment. The sensing periods of the sensors in the plant are assumed as mutually rational ratios.
First, we characterize a state observer for a plant with multi-rate sensing as a periodically time-varying
state observer. Then, we discuss the l2 performance analysis of a state estimation error with the given
periodically time-varying state observer. A linear matrix inequality (LMI) condition is provided for the
analysis. By extending the LMI condition for analysis, we also provide that for multi-rate observer synthesis.
Finally, we numerically illustrate the effectiveness of the proposed multi-rate state observer. Even if all the
sensors have the same period, the sensing timing is not unique. Therefore, we numerically analyze whether
the performance changes when the observation timing between multiple sensors is different.

INDEX TERMS Multi-rate observation, state observer, linear matrix inequality, l2-induced norm, periodi-
cally time-varying system, multiple sensors.

I. INTRODUCTION
Practical control systems are usually constructed with mul-
tiple components, such as sensors and actuators. Then, even
in a single control system, its components generally have dif-
ferent specs and may operate with different sampling periods.
For example, in the track-following system in hard disk drives
or optical disk drives, the sampling rate of the position error
sensing is limited, and hence, the observation period of the
tracking error is longer than the control period of the head
arm. Systems involving visual sensors, AD converters and
communication channels would also be examples in which
the sensing period may be significantly longer than the con-
trol period. For this kind of systems, multi-rate control has
been conventionally studied. In [1], multi-rate sampled-data
stabilization for systems with time delay was studied for the
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case when the sampling rate of control is made faster than that
of observation. A different multi-rate control scheme is pro-
posed in [2], where multi-rate sampled-data measurements
are used to preserve the stability achieved by a slow sampled-
data controller. Methods of perfect tracking control on a
multi-rate feedforward system are investigated for motors
and electric vehicles in [3], [4], and [5]. Multi-rate control
methods for systems with asynchronous measurements have
also been studied (see, e.g., [6] and [7]).

Although the above earlier studies all focus on the differ-
ence between the period of observation (i.e., sensing) and that
of control, a similar difference for multiple sensors is also
important to deal with. In recent years, autonomous robots
and automatic driving have been actively studied, and preci-
sion of the simultaneous localization and mapping (SLAM)
[8], [9] is essential for their realization. SLAM has been
performed using a variety of sensors, such as camera sensors,
3D-LiDAR sensors, and inertial measurement units (IMU),
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but the feasible sensing period is different in each sensor type.
It is required to realize appropriate ‘‘sensor fusion’’ for high
localization and mapping performances. If we view a plant
equipped with this kind of sensors as a single-rate system
and consider controlling it, the corresponding control per-
formance becomes deteriorated because the virtual common
period taken for all the components in the system has to be
excessively long.

Standard classes of observers have long been widely stud-
ied in control fields [10], [11], [12], [13]. The observer-based
multi-rate control system can be realized in the following two
steps. In the first step, the state is estimated for each underly-
ing discrete-time, including such a timing when some of the
sensors do not observe the corresponding signals. In the sec-
ond step, the control inputs of the plant are calculated using
the estimated state by the multi-rate observer in the first step.
Since the state at each underlying discrete-time is estimated
by the multi-rate observer, a single-rate state feedback con-
troller can be applied in the second step. This paper focuses
on the synthesis ofmulti-rate state observers corresponding to
the aforementioned first step.We develop a periodically time-
varying state observer design method based on l2-induced
norm evaluations for systems with multiple observation peri-
ods with mutually rational ratios and with somewhat asyn-
chronous timings. Observer problems with multi-rate sensing
have been addressed in various studies [14], [15], [16].
In [14], the multi-rate design of a sliding-mode observer
is considered where the observer processing rate is higher
than the control update rate. In [15], a continuous-time state
feedback controller is designed using a discretized high-gain
observer for nonlinear systems. In [16], as a method of per-
forming control with a smaller sampling period, a dual-rate
observer for a system with a slow observation period of the
sensor has been proposed to estimate the state with the same
period as the control period. In this method, the observation
rate of the output is N times slower than that of the input,
and the observer is treated in the framework of a period-
ically time-varying system by applying the lifting method
[17], [18]. An observer-based controller design problem is
dealt with in [19] for a class of networked control systems
with multi-rate sampling. In [20], a moving horizon estima-
tion method of state has been studied for the case when the
sampling rates of the sensors are not uniform. Other various
studies about multi-rate observers are investigated in many
aspects (nonlinear systems [21], continuous systems [22],
asynchronous measurement [23]). It is significant to carry
out research from the viewpoint of realizing a control sys-
tem with a short sampling period for control. As related
works about multi-rate systems, there exist various pub-
lished research works about analysis and synthesis methods
of periodically time-varying systems (see, e.g., [24], [25],
and [26]). In [27], an analysis method of periodically time-
varying sampled-data controllers based on Lp performance
is considered for continuous-time systems. The L2-induced

norm of periodic linear switched systems under fast switching
is provided in [28].

The different point to the previous studies about multi-
rate state observers is that this paper guarantees performance
about state estimation errors in the sense of the l2-induced
norm. The proposed observer structure is a simple periodi-
cally time-varying observer and has a simple structure that is
easy to implement on a low-spec computer. To describe such
an observer, we introduce a set of periodically time-varying
observer gains. The design method of these gains is derived
based on a periodically time-varying energy supply function.

This paper is organized as follows: First, we propose a
multi-rate state observer structure for the givenmultiple-input
multiple-output systems with different observation periods
and timings described as periodically time-varying systems.
Second, we introduce periodically-time-varying matrices for
viewing the multi-rate system as a time-varying system.
Furthermore, the influence of process noise and observa-
tion noise on the state estimation value is evaluated by the
l2-induced norm about a state estimation error. To this end,
we consider the error system for the proposed periodically
time-varying state observer and the plant. By using a time-
varying energy supply function, the analysis method of the
l2-induced norm from the observation noise and the pro-
cess noise to the estimation error is represented as an LMI
problem. Furthermore, we also provide an LMI condition for
multi-rate observer synthesis by extending the LMI condition
for analysis. Finally, we evaluate the performance achieved
by the proposed observer using numerical examples.

This paper could be regarded as providing advanced
arguments of those developed in an article written in
Japanese [29]. The article [29] handles time-varying state
observer with cycling method [18], which makes it possible
to view the given time-varying system virtually as a linear
time-invariant system. The state observer is then designed
within the framework of the linear time-invariant system and
is evaluated by the l2 induced norm from the disturbance to
the state estimation error. The size of the associated LMIs
obtained in this direction, however, depends on the period of
the multi-rate observer and tends to be quite large. On the
other hand, this paper presents a periodically time-varying
energy supply function to directly handle the l2 optimization
problem for the time-varying state observer. This contributes
to suppressing the LMI size to be very large. In addition, the
evaluation signal in the l2 induced norm analysis/synthesis
is not limited to state estimation errors in this paper. Various
types of numerical simulations are shown. In particular, this
paper explicitly notes on the fact that the mutual sensing
timing of multiple sensors is not unique even if their sensing
periods are fixed, and the effect of the observation timing of
multiple sensors is illustrated by numerical simulations in this
paper.
Notation: The set of real numbers is denoted by R, and the

set of positive integers is denoted by N . The l2-induced norm
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of the discrete-time system G with input u and output y is
defined by

∥G∥l2/l2 = sup
u∈l2

∥y∥2
∥u∥2

, (1)

where ∥ · ∥2 represents the l2 norm of the signal.

II. PROBLEM FORMULATION
A. PLANT AND OBSERVED OUTPUTS WITH DIFFERENT
SAMPLING PERIODS
Let us consider the (underlying single-rate) discrete-time
linear time-invariant multi-input multi-output (MIMO) plant
P denoted by

x(k + 1) = Ax(k) + Buu(k) + Bdd(k), (2)

yr (k) = Cx(k), (3)

where the nonnegative integer k denotes time, x(k) ∈ Rn is
the state vector, u(k) ∈ Rmu is the input vector, d(k) ∈ Rmd is
the process noise, and yr (k) ∈ Rq is the vector of the outputs
to which sensors are assumed to be attached. It follows that
A ∈ Rn×n, Bu ∈ Rn×mu ,Bd ∈ Rn×md , C ∈ Rq×n.
The pair (C,A) is always assumed to be observable in this
paper.

On the other hand, this paper assumes such limitations
on the sensor devices that the i-th entry of yr (k) is period-
ically measured with the sensing period Ni ∈ N for each
i = 1, . . . , q. Thus, the sensing of the underlying single-rate
system is with multiple rates.

To describe the multiple rate sensing in more detail and to
describe the observation timing more explicitly, we introduce
the periodically time-varying matrices Sk (k = 0, 1, . . .)
given by

Sk = diag[s1(k), . . . , sq(k)], (4)

with the period N , where N is the least common multiple
of Ni (i = 1, . . . , q). Here, the elements si(k), i = 1, . . . , q
are defined to take either 1 or 0 as follows: si(k) = 1 if
the i-th component of yr (k) is observed at time k , while
si(k) = 0 otherwise. The period of Sk as a whole is N ,
but that of si(k) is Ni for each i. As an example, consider
Fig. 1 for the case where the plant P is a two-output system
(D := diag[D11,D12] and w(k) := [w1(k),w2(k)]T will be
explained later). Then assume that the observation periods of
the two observed outputs are N1 = 3 and N2 = 6. Their
least common multiple is N = 6, which becomes the system
period. If both of the two components of yr (k) are assumed
to be measured at the initial time k = 0 (as indicated in
Fig. 1 with θ1 = θ2 = 0), then si(k), i = 1, 2 are given as
follows:

s1(k) =

{
1, k = 0, 3
0, k = 1, 2, 4, 5

(5)

s2(k) =

{
1, k = 0
0, k = 1, 2, 3, 4, 5

(6)

FIGURE 1. Plant and measured outputs with different sensing periods.

This implies that

S0 =

[
1 0
0 1

]
, S1 =

[
0 0
0 0

]
, S2 =

[
0 0
0 0

]
, (7)

S3 =

[
1 0
0 0

]
, S4 =

[
0 0
0 0

]
, S5 =

[
0 0
0 0

]
(8)

It also may be the case that we have no instant at which
the two components of yr (k) are measured in a synchronous
fashion. Indeed, the case with θ1 = 0, θ2 = 1 in Fig. 1 is such
an example. Even in that case, however, we can describe the
whole system by using the following si(k).

s1(k) =

{
1, k = 0, 3
0, k = 1, 2, 4, 5

(9)

s2(k) =

{
1, k = 1
0, k = 0, 2, 3, 4, 5

(10)

This implies that

S0 =

[
1 0
0 0

]
, S1 =

[
0 0
0 1

]
, S2 =

[
0 0
0 0

]
, (11)

S3 =

[
1 0
0 0

]
, S4 =

[
0 0
0 0

]
, S5 =

[
0 0
0 0

]
(12)

More generally, once themutual timing of the actions of the
multiple sensors is determined, we can describe the observed
output of the system (2) at time k by

y(k) = Ckx(k) + Dkw(k), (13)

where w(k) ∈ Rq denotes the noise vector that would affect
the measurement of yr (k) by Dw(k), and the N -periodic
matrices Ck ∈ Rq×n and Dk ∈ Rq×q are defined as

Ck = SkC, Dk = SkD. (14)

It would be natural that we assume D ∈ Rq×q is diagonal.
Remark 1: Suppose that we are given the information that

the i-th component of y(k) is zero for some k . This infor-
mation alone cannot determine whether the measurement of
the i-th component of yr (k) has indeed occurred and is zero,
or this component was not measured at time k . However,
this causes no problems in the following arguments because
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the equation for the observer introduced in the following
subsection involves not only y(k) given by (13) but also the
same matrices Sk (k = 0, 1, · · · ) as in (14).
Sk is assumed to be given and construct a periodically time-

varying observer using the observed output (13).

B. CONFIGURATION OF PERIODICALLY TIME-VARYING
STATE OBSERVER
A basic idea of a state observer is to include the model of the
plant and produce an estimated value x̂ of the plant state x by
emulating the behavior of the plant P. To proceed with our
state observer design for multi-rate plants consisting of (2)
and (13) with this idea, we confine ourselves to the structure
given by

xob(k + 1) = (A− LkSkC)xob(k)

+Buu(k) + LkSky(k), (15)

where Lk , k = 0, 1, . . . are N -periodic observer gains. The
remaining part of this paper is devoted to establishing a
method for designing these gains in such a way that xob(k)
tends to the plant state x(k) as k → ∞. The proposed
observer (15) is obviously a time-varying system.

Note that (15) with S0 = I , S1 = 0, . . . , SN−1 = 0
matches the dual-sampling-rate observer in [16].

C. ERROR SYSTEM WITH PERIODICALLY TIME-VARYING
STATE OBSERVER
The estimation error of the state is defined by e(k) = x(k)−
xob(k) for the observer (15). The error system describing the
behavior of this error is given by

e(k + 1) = Aeke(k) − LkSkDw(k) + Bdd(k), (16)

where the N -periodic matrices Aek are defined by Aek = A−

LkSkC . The N -periodic observer gain Lk should be designed
so that the influence of d(k) and w(k) on e(k) is suppressed
in the above error system, while ensuring the stability of the
matrix Ae :=

∏N
k=1 Aek (= AeN . . .Ae1). More precisely,

we assume that

d∗ = [dT ,wT ]T ∈ l2, (17)

and consider the evaluation output

z(k) = We(k), (18)

where W is a weighting matrix. Then, for the discrete-time
system from d∗ to z denoted by Gz, we aim at stabilizing
Gz and minimizing its l2-induced norm through the optimal
design of the N -periodic gain Lk of the state observer (15).
We can evaluate the l2 induced norm from the disturbance d∗

to the state estimation error e when we setW = I in (18).

III. OPTIMAL DESIGN OF TIME-VARYING GAINS Lk
MINIMIZING THE l2-INDUCED NORM
In this section, the design method of the observer gains Lk
for (15) is provided based on the energy supply function.

As a first step, an analysis method of the l2-induced norm
from d∗ to z is characterized by the following theorem.
Theorem 1: Suppose that the error system (16) and the

weighting matrix W in (18) are given. For given γ > 0, the
following condition (i) holds if condition (ii) holds.

(i) The matrix Ae is Schur stable, and ∥Gz∥l2/l2 < γ .
(ii) There exist N -periodic matrices Pk > 0 satisfying

2k > 0 (19)

for all k = 0, . . . ,N − 1, where 2k is defined as

2k =

Pk−1−ATekPkAek−W
TW −ATekPkBd

−(ATekPkBd )
T γ 2I−BTd PkBd

(ATekPkLkSkD)
T (BTd PkLkSkD)

T

ATekPkLkSkD
BTd PkLkSkD

γ 2I−(LkSkD)TPkLkSkD

. (20)

with P−1 = PN−1.

Proof 1: The (1, 1) block of 2k in (20) is positive-
definite by (19). Therefore, the following condition holds for
k = 0, . . . ,N − 1.

Pk−1 − ATekPkAek > 0 (21)

This implies Schur stability of Ae :=
∏N

k=1 Aek by the result
in [30].

Next, taking ξ (k) = [e(k)T , d(k)T ,w(k)T ]T , the following
inequality holds from (19) for a sufficiently small ε > 0.

ξ (k)T2kξ (k) ≥ εξ (k)T ξ (k) (22)

By a direct computation of the left-hand side of (22) with (16)
and (17), the following inequality holds for k = 0, . . . ,N−1.

e(k)TPk−1e(k) − e(k + 1)TPke(k + 1)

+γ 2d∗(k)T d∗(k) − e(k)TW TWe(k)

≥ εξ (k)T ξ (k) (23)

Note that Sk and Lk are given by N -periodic parameters,
and (23) also holds for k = N ,N + 1, · · · . Here, the
N -periodically time-varying (in k) function

Vk (χ ) = χTPk−1χ, (24)

is a positive definite function for each k , and thus can be
taken as an energy supply function. From (24) and (23), the
inequality

Vk (e(k)) − Vk+1(e(k + 1)) + γ 2d∗(k)T d∗(k)

−z(k)T z(k) ≥ εξ (k)T ξ (k), (25)

holds for each k , where z(k) is the evaluation output in (18).
In (25), Vk (e(k)) − Vk+1(e(k + 1)) can be regarded as a
dissipation function [31].
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Summing up both sides of (25) from k = 0 to k = K for
K > 0 leads to

V0(e(0)) − VK+1(e(K + 1)) + γ 2
∑K

k=0
d∗(k)T d∗(k)

−

∑K

k=0
z(k)T z(k) ≥ ε

∑K

k=0
ξ (k)T ξ (k) (26)

In the definition of the l2-induced norm, the initial plant state
x(0) and observer state xob(0) are assumed to be zero. Hence
the initial error e(0) is zero and thus V0(e(0)) = 0 holds.
Hence, for any given noise d∗ ∈ l2,

(γ 2
− ε)

∑K

k=0
d∗(k)T d∗(k) −

∑K

k=0
z(k)T z(k)

≥ VK+1(e(K + 1)) ≥ 0 (27)

Consequently, by letting K → ∞, we see that the l2-induced
norm of Gz is characterized by the following inequality.

sup
d∗∈l2

∥z∥2
∥d∗∥2

≤ (γ 2
− ε)1/2 < γ (28)

□
The above theorem enables us to analyze the state esti-

mation performance in terms of the l2-induced norm of Gz
by minimizing γ under condition (ii). LMIs in condition
(ii) are easy to analyze numerically by using standard SDP-
solver. We then extend this idea for the design problem of the
observer gains Lk . When Lk are viewed as decision variables
in (19), variable products exist because Pk are also decision
variables. However, this can be resolved by using the tradi-
tional change of variables:

Yk = PkLk (29)

Then, our synthesis method of Lk based on the minimization
of the l2-induced norm from d∗ to z can be summarized as in
the following theorem.
Theorem 2: Suppose that the plant described by (2) and

(13) and the weighting matrixW in (18) are given. For given
γ > 0, the following condition (i) holds if condition (ii)
holds.
(i) There exist Lk ∈ Rn×q, k = 1, . . . ,N such that Ae :=∏N

k=1 Aek is Schur stable and ∥Gz∥l2/l2 < γ .
(ii) There exist the matrices Pk > 0, Yk , k = 0, . . . ,N − 1

satisfying

2̂k > 0 (30)

for all k = 0, . . . ,N − 1, where 2̂k is defined as

2̂k =


Pk PkA−YkSkC PkBd

(PkA−YkSkC)T Pk−1−W TW 0
(PkBd )T 0 γ 2I

−(YkSkD)T 0 0

−YkSkD
0
0

γ 2I


with P−1 = PN−1.

In particular, if (ii) holds, then

Lk = P−1
k mod NYk mod N (31)

are the time-varying gain such that ∥Gz∥l2/l2 < γ is satisfied.
Proof 2: Take Lk = P−1

k Yk with the solution of the LMI
(30). Then, the inequality

2̌k > 0 (32)

holds for each k = 0, . . . ,N − 1, where 2̌k is given as
follows.

2̌k =
Pk PkAek PkBd −PkLkSkD

(PkAek )T Pk−1−W TW 0 0
(PkBd )T 0 γ 2I 0

−(PkLkSkD)T 0 0 γ 2I


By using Schur complement with the following matrix
decomposition of 2̌k , we can prove that (32) is equivalent
to (19).

2̌k =
Pk PkAek PkBd −PkLkSkD

(PkAek )T Pk−1−W TW 0 0
(PkBd )T 0 γ 2I 0

−(PkLkSkD)T 0 0 γ 2I


Hence, (19) holds for all k = 0, . . . ,N − 1. This, together
with Theorem 1, implies that at least the above Lk is one such
time-varying gain such that Ae becomes Schur stable and the
corresponding Gz satisfies ∥Gz∥l2/l2 < γ . This completes the
proof. □
The time-varying observer gains Lk can be obtained by

minimizing γ based on the inequality condition of (ii) of The-
orem 2.We can see that there are no variable products in (30),
and it is possible to solve it as an LMI problem. By using such
obtained Lk , ∥Gz∥l2/l2 < γ is guaranteed. The minimization
problem of γ with condition (ii) in Theorem 2 is also solvable
by using standard SDP-solver. Thus, by designing Lk based
on Theorem 2, we can obtain a multi-rate state observer with
less influence of d∗ on z in the meaning of the l2-induced
norm.

IV. SIMURATIONS
A. DESIGN EXAMPLE OF MULTI-RATE STATE OBSERVER
We illustrate the effectiveness of the multi-rate state observer
by simulations. The parameters for the simulation are
assumed as mu = 2, md = 1, n = 3 and q = 2. Then,
the plant parameters A, Bu, Bd , C and D are given by:

A =

0.95 0.5 0.2
−0.1 0.9 −0.2
0 0.1 0.85

 , Bu =

 0 1
2 0
0.5 2

 ,

Bd =

0.1
0.3
0.2

 , C =

[
1 0.5 0
1 2.5 0.2

]
,D =

[
1 0
0 0.5

]
.

In this subsection, N1 and N2 are given by 2 and 3, respec-
tively. The least common multiple of N1 and N2 is 6 and we
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set the periodically time-varying state observer with a period
of N = 6. In addition, θ1 = θ2 = 0 is assumed. Then, the
structures of Sk are given as follows.

S0 =

[
1 0
0 1

]
, S1 =

[
0 0
0 0

]
, S2 =

[
1 0
0 0

]
,

S3 =

[
0 0
0 1

]
, S4 =

[
1 0
0 0

]
, S5 =

[
0 0
0 0

]
We solve the minimization problem of γ with the condi-
tions in Theorem 2-(ii) and obtain the time-varying observer
gain Lk . A weight W is set as an identity matrix W = I for
Theorem 2. The number of the decision variables of LMI is
73 in total, and when (30) is specifically written down, the
matrix sizes of the coalition LMIs for each k are 9 × 9 in
the simulation setting. By minimizing γ in the LMI condition
of the Theorem 2 with MATLAB function ‘‘mincx’’, γ =

1.33 =: γprop is obtained, and the observer gains are given as
follows:

Lk = P−1
k mod 6Yk mod 6

P−1
0 Y0 =

 0.228 0.294
−0.125 0.267
0.084 0.110

 ,P−1
1 Y1 =

0 0
0 0
0 0

 ,

P−1
2 Y2 =

0.356 0
0.099 0
0.160 0

 , P−1
3 Y3 =

0 0.341
0 0.245
0 0.128

 ,

P−1
4 Y4 =

 0.227 0
−0.065 0
0.101 0

 , P−1
5 Y5 =

0 0
0 0
0 0

 . (33)

For comparison, we consider the three different results for
the dual-rate observer [16]. It is possible to design observer
gain to optimize the l2-induced norm because it can be trans-
formed into LTI systems using the lifting technique. First,
if we use only one output y1 to estimate the state of the
plant, it can be regarded as a dual-rate system with N =

N1 = 2(Case A). The optimal value by designing Lk is
given as γy1 = 1.67. On the other hand, if we use y2 for
state estimation(Case B), γy2 = 1.68 is obtained by the best
observer gain. Alternately, when we interpret that the sensor
outputs y1 and y2 can be observed only for the least common
multiple ofN1 andN2, i.e. the output is regarded as 6-periodic
sensor(Case C), γN−period = 2.10 is obtained by the best
observer gain. Therefore, it has been confirmed from these
numerical example that the state estimation performance of
the proposed method (γprop = 1.33) is better than the three
cases of the dual-rate observers.

Next, we simulate the time response of the estimated state
to verify the effectiveness of the proposed observer. The
initial states of the plant and the observer are assumed as
x(0) = xob(0) = 0. The values of d(k), w1(k) and w2(k) at
each time are selected from random value from the standard
normal distribution with average values µd = 0, µw1 =

µw2 = 0, and its standard deviations for each case are σd =

0.2, σw1 = σw2 = 0.2. Note that we set du(k) = dy1(k) =

dy2(k) = 0 after k = 500.

FIGURE 2. Estimated error of proposed method.

FIGURE 3. Estimated error of dual-rate observer using y1 (Case A).

Fig. 2 shows the case with the proposed method, Fig. 3
shows the case where only y1 can be observed (Case A), Fig. 4
shows the case where only y2 can be observed (Case B) and
Fig. 5 shows the case that the sensor is regarded as 6-periodic
sensor (Case C).

The state estimation error of the proposed method is the
lowest in these figures. The simulation results indicate that
the use of a larger number of output signals gives better
state estimation performance. From the simulation results,
we evaluate a ratio from the noise to the state estimation error
through

gsim =

√∑600
k=0 e(k)T e(k)√∑600
k=0 d(k)T d(k)

(34)

as an estimate of the l2 induced norm from d to e, where the
summations are truncated at k = 600 since e(600) ≃ 0 can
be seen because Ae is Schur stable and d(k) equals zero after
k = 500. For each method, the ratio values are gsim,prop =

0.428, gsim,y1 = 0.735 and gsim,y2 = 0.463, gsim,6−period =

0.594. We can find that gsim < γ for all methods. We can
confirm that gsim,prop is smallest in these methods.

The results of the analysis of the performance for various
combinations of N1 and N2 are shown in Table 1. We assume
θ1 = θ2 = 0 and set Sk (k) so that S0 = I in all combinations.
From Table 1, we can confirm that the higher the frequency
of observation, i.e., the shorter the period of observation, the
better the state estimation performance.
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FIGURE 4. Estimated error of dual-rate observer using y2 (Case B).

FIGURE 5. Estimated error of dual-rate observer using y1 and y2 as
6-periodic sensor (Case C).

B. EFFECT BY DIFFERENT MUTUAL OBSERVATION TIMING
COMBINATIONS OF SENSORS
In this subsection, three different types of observation tim-
ing combinations are compared to evaluate the effects by
selecting different observation timing. Two observed outputs
exist and N1 = N2 = 3 is assumed. It is easy to analyze
different observation timing because all we have to do is
to set appropriate Sk for analyzing the system with various
observation timing combinations.We confirmwhether obser-
vation timing affects state estimation performance or not.
Plant parameter matrices A, B, C , and D are the same as the
former subsection. It means that the sampling periods of the
sensor output y1 and the sensor output y2 are the same. In this
setting, we can consider the observation timing as three cases.
Case 1 is that observation timing is the same for two outputs
i.e. θ1 = θ2 = 0. Case 2 and Case 3 are that the observation
timing is different. In Case 2 and Case 3, θ1 = 0, θ2 = 1,
θ1 = 0 and θ2 = 2 are assumed, respectively. Then, Sk
(k = 0, 1, 2) for each cases are given as follow:

Case1 : S0 =

[
1 0
0 1

]
, S1 =

[
0 0
0 0

]
, S2 =

[
0 0
0 0

]
.

(35)

Case2 : S0 =

[
1 0
0 0

]
, S1 =

[
0 0
0 1

]
, S2 =

[
0 0
0 0

]
.

(36)

Case3 : S0 =

[
1 0
0 0

]
, S1 =

[
0 0
0 0

]
, S2 =

[
0 0
0 1

]
.

(37)

TABLE 1. Performance by various sensing periods.

FIGURE 6. Estimation error of Case 1.

We solve the minimization problem of γ with condition
(ii) in Theorem 2. Then, we obtain periodically time-varying
gains Lk for the three cases. In Case 1, the l2-induced norm
is given as γc1 = 1.43 by solving the LMI in (30) with (35).
The time-varying gains for Case 1 are given by:

Lk = P−1
k mod 3Yk mod 3

P−1
0 Y0 =

 0.276 0.248
−0.166 0.307
0.113 0.076

 , P−1
1 Y1 =

0 0
0 0
0 0

 ,

P−1
2 Y2 =

0 0
0 0
0 0

 . (38)

Next, we consider Case 2 and the l2-induced norm is
given as γc2 = 1.41. The time-varying gains for Case 2 are
given by:

Lk = P−1
k mod 3Yk mod 3

P−1
0 Y0 =

0.348 0
0.083 0
0.155 0

 , P−1
1 Y1 =

0 0.315
0 0.265
0 0.111

 ,

P−1
2 Y2 =

0 0
0 0
0 0

 . (39)

Finally, we consider Case 3 and the l2-induced norm is
given as γc3 = 1.42. The time-varying gains for Case 3 are
given by:

Lk = P−1
k mod 3Yk mod 3

P−1
0 Y0 =

 0.246 0
−0.099 0
0.111 0

 , P−1
1 Y1 =

0 0
0 0
0 0

 ,

P−1
2 Y2 =

0 0.342
0 0.248
0 0.119

 . (40)
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FIGURE 7. Estimation error of Case 2.

FIGURE 8. Estimation error of Case 3.

We can find that the value γ is different by changing the
observation timing of the observer system. The smallest γ is
obtained in Case 2. The numerical simulation results of the
state estimation errors with Case 1, Case 2, and Case 3 are
shown in Fig. 6, 7 and 8, respectively. We also find that gain
parameters are different by changing the observation timing.
From these results, we can see that how to give observation
timing is important for minimizing the estimation error.

C. OBSERVER DESIGN FOR UNSTABLE PLANT
In this section, we briefly discuss observer design for an
unstable plant. Simulation setting is exactly the same as in
section IV-A except for the matrix A. A in this section is given
as follow.

A =

0.95 0.5 0.2
−0.1 0.9 −0.2
0 0.1 0.85

 (41)

In this case, the poles of A are (1.031, 1.085 ± 0.240 i), and
the plant is unstable. We solve the minimization problem of
γ with the conditions in Theorem 2-(ii) and obtain the time-
varying observer gain Lk as follows.

Lk = P−1
k mod 6Yk mod 6

P−1
0 Y0 =

−0.943 1.424
2.944 −1.887

−2.058 2.086

 , P−1
1 Y1 =

0 0
0 0
0 0

 ,

P−1
2 Y2 =

 0.142 0
1.490 0

−0.458 0

 , P−1
3 Y3 =

0 0.257
0 0.964
0 0.110

 ,

P−1
4 Y4 =

−0.421 0
2.291 0

−1.170 0

 , P−1
5 Y5 =

0 0
0 0
0 0

 . (42)

Then, the poles of Ae are given as (0.1270, −0.0000,
−0.0002) and we can see that the error system (16) is sta-
bilized by Lk . We can confirm the multi-rate observer can be
designed by Theorem 2 for the unstable plant.

V. CONCLUSION
In this paper, we proposed a design method of a periodically
time-varying state observer for multi-rate systems. By intro-
ducing N -periodic matrices Sk , the multi-rate observer is
regarded as a periodically time-varying system that is easy
to analyze and design. Furthermore, by using the proposed
time-varying energy supply function, a designmethod of state
observer gains in the sense of the l2-induced norm is provided
as an LMI optimization problem. The proposed method can
easily design state observer gains for systems that include
multiple outputs with various observation periods and timing.
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