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ABSTRACT Adversaries perform port scanning to discover accessible and vulnerable hosts as a prelude
to cyber havoc. A darknet is a cyberattack observation network to capture these scanning activities through
reachable yet unused IP addresses. However, the enormous amount of packets and superposition of diverse
scanning strategies prevent extracting significant insights from the aggregate traffic. Some coordinated
scanners disperse probe packets whose TCP/IP header follows a unique pattern to determine whether the
received packets are valid responses to their probes or are part of other background traffic. We call such
a pattern a fingerprint. For example, a probe packet from a Mirai-infected host satisfies a pattern whereby
the destination IP address equals the sequence number. A fingerprint indicates that the source host has been
involved in a particular scanning campaign. Although some fingerprints have been discovered and known
to the public, there are and will be more undiscovered ones. We intend to unveil these fingerprints. Our
preliminary work automatically identified flexible fingerprints but overlooked low-rate and coordinated
scanners. In this work, we improved the fingerprint identifier, enabling it to detect these stealth scans.
Moreover, we revealed the scans’ objectives by investigating destination port sets. We associated fingerprints
with threat intelligence and verified their reliability. Our approach identified all well-known and eight
unknown fingerprints on one month’s worth of darknet data collected from about three-hundred thousand
unused IP addresses. We disclosed the fingerprints of the Mozi botnet and destination port sets that were
previously unreported.

INDEX TERMS Clustering, darknet (network telescope), fingerprint, port set analysis, scanning campaigns.

I. INTRODUCTION
Because of the growing use of insecure Internet of Things
(IoT) devices [1], [2], IoT-tailored malware and botnets have
recently increased in number and activity. For example,
in 2018, Torabi et al. [1] exposed 26,000 compromised IoT
devices, of which 40% were active in critical infrastruc-
ture. Malware and botnets exploit vulnerable IoT devices
and perform further malicious activities such as spam-
ming, phishing, cryptojacking, stealing private information,
and distributed denial of service (DDoS) attacks. The
Mirai botnet [3] has controlled hundreds of thousands of
IoT devices to induce a spree of massive high-profile DDoS
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attacks since late 2016. Surprisingly, the initial attack on
Krebs [4] exceeded 600 GBps in volume. Mirai has spawned
many variants that follow the same infection strategy.
Echobot [5] is a variant whose campaign has infected devices
across more than ten vendors by exploiting more than
20 unique (software and firmware) IoT-centric vulnerabili-
ties. Such IoT-tailored malware propagates by scanning the
Internet for vulnerable and exploitable IoT devices to recruit
them into coordinated IoT botnets. To mitigate and prevent
large-scale cyber attacks, we need to identify compromised
devices that search for vulnerable devices. One effective
approach is observing Internet traffic with passive sensors
that collect one-way traffic reaching unused IP addresses.

The darknet [6], [7], a network telescope, passively
monitors network traffic with an unreachable dark IP
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address block. Because of its nature, the darknet receives
unsolicited packets from (a) botnets looking for accessible
and vulnerable hosts [3], [8], (b) security companies and
researchers that build maps of the IPv4 Internet (Shodan1

and Censys2), (c) misconfigured hosts caused by hard-
ware/software errors or improper routings, and (d) the
Internet backscatter resulting from DDoS attacks using
multiple spoofed addresses [9], [10]. The darknet is an
effective system for observing indiscriminate Internet-wide
scans and preparing for emerging cyberattacks. However,
the massive amount of packets and the superposition of
the diverse patterns generated by each scan group prevents
meaningful insights from being extracted. Therefore many
studies have aimed to specify malicious and survey-objective
scanner groups from aggregate darknet traffic.

Generally, orchestrated scanners are supposed to have the
following scanning behaviors.
• Scanners target the same destination ports.
• Scanners demonstrate a spatial-temporal correlated
scanning pattern [11], [12].

• The packets from cooperating scanners have the same
fingerprint, i.e., a unique pattern appearing in the packet
header fields (see next paragraph.)

To scrutinize a scanner’s behavior, almost all researchers
have focused on the scanning features such as (1) destination
ports, (2) scan rate, (3) header fields, (4) synchronization,
and (5) fingerprints. These features are key indicators of
well-coordinated scanner groups. To quantify the features,
the early research utilized simple statistics, whereas more
recent studies have applied machine-learning and deep-
learning techniques. Table 1 summarizes the techniques
and input features used by the recent studies that highlight
correlated scanning hosts. These studies have discovered
many distinctive and coordinated scanner groups, but have
had several shortcomings. For instance, the approaches using
the scanner’s features, except for (5) fingerprints, trigger
false positives, which means that unrelated scanning hosts are
falsely regarded as orchestrated scanners. The next paragraph
details the previous studies on (5) fingerprints; the research on
other features is elaborated in Section II.

Scanners often determine whether the received packets
are valid responses to their probes or are part of other
background traffic. Hence, some scanners encode a unique
pattern into each probe packet’s TCP/IP header for low-
cost re-identification. We call such a pattern a fingerprint.
For example, a scanner infected by the Mirai botnet sends
probe packets where a bitwise XOR between the sequence
number and destination IP address equals zero. Because
a fingerprint is a unique pattern for each scan tool, it is
more reliable than other features. Previous research [3], [41]
created fingerprints based on artifacts of open-source codes.
However, some tools might be unknown and unavailable
to the general public; for instance, some may have been

1https://www.shodan.io/
2https://censys.io/

custom-developed by advanced adversaries to avoid such
signature-based detection. Griffioen and Doerr [43] proposed
a method for finding a fingerprint, but they assume a fixed-
form fingerprint, thereby overlooking sophisticated malware
scans with diverse fingerprints. Shaikh et al. [42] applied the
context triggered piecewise hashing (CTPH) algorithm [33]
to the IP header in order to obtain the signatures of
compromised IoT devices. The algorithm divides the file into
multiple segments and computes hashes for each segment.
Hence, localized segment changes do not affect the hashes for
the rest of the file. The authors finally generated IoT-specific
empirical attack signatures. Although the CTPH algorithm
is more flexible than a fixed-form fingerprint, it cannot
handle operations on header fields such as the bitwise
XOR. Lastovicka et al. [45] proposed operating system
(OS) fingerprinting methods using TCP/IP headers in real
networks, to which users can connect any device. They only
utilized fields that depend solely on the OS kernel, initial
SYN packet size (synSize), window size (winSize), and time
to live (TTL). The method calculates the appearance ratio of
the triple (synSize, winSize, TTL) for each OS and regards
the triple with the highest appearance ratio as the fingerprint
of the OS. The method has high coverage but low accuracy.
Their fingerprint is a specific tuple form (synSize, winSize,
TTL) and hence lacks flexibility in the sense that it does not
take another format, such as the bitwise XOR between some
fields.

Our preliminary work [46] devised a method for identi-
fying fingerprints that are represented by TCP/IP headers
and operations on them. Although the method identified
most of the well-known and some unknown fingerprints,
it overlooked low-rate and coordinated scanners. Hence,
we undertook to improve the method so that it could
detect these scanners. Moreover, we revealed the scans’
intentions by investigating the destination port sets. Most
fingerprints are associated with trustworthy and reputable
threat intelligence to verify their reliability. In summary, our
major contributions are as follows.
• We identified all well-known fingerprints (Mirai [3],
Hajime [47], Masscan [48], and ZMap [49]) and
eight unknown fingerprints that included low-rate and
coordinated scanners. In particular, we discovered the
fingerprints of the Mozi botnet and destination port sets,
both of which were previously unreported.

• Scanners with identical fingerprint were distributed in
various networks.

• Most fingerprints had unique destination port sets.
• Some scanners had various fingerprints, and we could
distinguish distinct campaigns from such a scanner.

• We identified IP addresses that were infected by several
botnets simultaneously.

II. RELATED WORK
Darknet analysis has been discussed in the literature from
different perspectives; this section reviews the literature
finding cooperating senders that use the scanning features
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TABLE 1. Techniques and input features used by recent studies that identify well-coordinated scanners. The ‘‘dport’’ column in the scanner’s features
indicates the destination port. ‘‘DBSCAN’’ in the technique column stands for density-based spatial clustering of applications with noise [13].

summarized in Table 1.We classify the relatedwork into port-
based, time-series, behavior-based, and fingerprint-based
approaches. Because the fingerprint-based approach is dealt
with in the previous section, the succeeding subsections
describe the research on the three approaches but first let us
briefly overview them. The port-based approaches suppose
that the destination ports provide deterministic information
that can be used to identify unsolicited co-related scanning
hosts because different malware scan different combinations
of vulnerable ports. Therefore, they perform frequent pattern
mining or embedding on destination ports. The time-
series approaches endeavor to detect frequent spatiotemporal
patterns and synchronization from the packet transmission
strategies of scanners. The behavior-based approaches focus
on scanning characteristics calculated from the TCP/IP
header fields to reveal well-coordinated botnets with similar
scanning objectives.

A. PORT-BASED APPROACHES
Ban et al. [14] applied association rule learning [15] to
darknet traffic and explored the correlation among destination
ports. The discovered association rules represented regulari-
ties among the scanning behaviors of known botnet attacks.
Lagraa et al. [16] proposed an unsupervised graph-based
model to track port scanning behavior patterns among
multiple proved ports. The model performs modularity-
based clustering [17] and identifies vertical and horizontal
port scanning. The authors enriched a found cluster with

metadata (such as geolocation, organization, and domain) and
discovered frequently occurring patterns by using association
rule learning. Soro et al. [18] also applied modularity-based
clustering, but unlike Lagraa’s study [16], their graph-based
approach was simple. They represented the darknet traffic
as a bipartite graph linking traffic sources to the contacted
destination ports. Their framework disclosed coordinated IP
addresses that predominantly targeted specific ports. They
discussed the composition, characteristics, and peculiarities
of the found source group.

Recent three studies [19], [21], [22] have utilized an
embedding technique, Word2Vec [20], to identify source
IP addresses that are coordinated and that engaged in
similar activities, such as malicious port scans. Given many
sentences, each of which is a sequence of words, Word2Vec
returns a vector representation for each word such that the
distance between two vectors is small if the two correspond-
ing words appear near each other in many sentences. In the
context of darknet analysis, the destination port or source IP
address can be regarded as a word, and the above three papers
defined words and sentences as summarized in Table 2.
In IP2Vec [22], words are defined as unions of source and
destination IP addresses, destination ports, and protocols,
whereas a sentence is a sequence consisting of these four
fields. IP2Vec gets vectors corresponding to the value of
each field. This approach was shown to be able to capture
the similarity of source IP addresses from botnet data, but a
scalability problem remained due to the enormous number
of words. DANTE [19] obtains a vector representation of
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TABLE 2. Words and sentences for each algorithm.

destination ports from sequences of ports sent by an IP
address. Then, it defines the vector of an IP address as
the average vector of the destination port’s vectors. The
authors applied DBSCAN [13], a clustering algorithm, to the
vectors of IP addresses. DarkVec [21] defines a sentence as a
sequence of IP addresses that are aimed at the same service,
where the destination port determines the service. It embeds
an IP address only once and, unlike DANTE, does not take the
average of the embedded vectors, which reduces computation
costs and information loss. The authors demonstrated that
DarkVec outperformed both DANTE and IP2Vec.

B. TIME-SERIES APPROACHES
Bou-Harb et al. [23] used the detrended fluctuation analysis
(DFA) technique [24] to probe packets from a sender.
DFA detects intrinsic self-similarity embedded in a nonsta-
tionary time series. The authors identified scanning tools
and observed some statistical features (monotonicity and
randomness) of probe packets from probing tools, worms,
and botnets; however, their approach does not distinguish
between worms and botnets. Fachkha et al. [31] devised
a novel probabilistic model to sanitize darknet data. The
model filters out misconfiguration traffic and has been
used in other studies. The authors performed a time-series
analysis involving dynamic time warping (DTW) [32] and
context triggered piecewise hashing (CTPH) [33] to infer,
characterize, and cluster orchestrated and well-coordinated
probing activities. They uncovered nearly nine thousand
large-scale stealthy, previously undocumented orchestrated
proving events targeting many cyber-physical systems (CPS).
Han et al. [25] estimated the synchronization degree of packet
transmissions among hosts to capture cooperating scanning
campaigns in real time. The authors leveraged a graph-based
approach called graphical lasso [26] to measure the syn-
chronization and to detect anomalies. In their experiments,
their approach detected cyber threats with an accuracy of
97.14%. Another research [27] utilized non-negative matrix
factorization [28] (NMF) to decompose spatiotemporal pat-
terns from complex darknet traffic. Scanner groups with the
same spatiotemporal probing patterns were then highlighted.
This method was able to detect all malware activities
labeled by a human, and the study compared it with recent
detection methods. Kanehara et al. [29] used nonnegative
Tucker decomposition (NTD) [30] to extract interpretable
co-occurrence scanning patterns of a coordinated group.
NTD is an extension of NMF to higher-dimensional data.
Kenehara et al. appended destination ports as a new axis

and created an input tensor. Their system could detect
orchestrated source IP addresses together with the target
destination ports. Han et al. [50] finally integrated graphical
lasso [25], NMF [27], and NTD [29] into an anomaly
detection framework Dark-TRACER and achieved a 100%
recall rate on darknet traffic data (up to /17 subnet scales)
from October 2018 to 2020.

C. BEHAVIOR-BASED APPROACHES
Gates [34] modeled various adversaries’ scanning activities
by understanding their incentives, benefits, and efficiency
criteria. Then, she formulated the detection of multiple
coordinating scanners as a set covering problem, which was
a unique and intriguing approach. Her algorithm supposes
that targets (destination IP addresses) of different scanners
have few overlaps if these scanners cooperate. She finally
found scanners that (1) cover enough IP address space and
(2) have few target overlaps between different scanners.
In a controlled environment, her algorithm achieved a low
false positive rate in detecting horizontal and strobe scans.
Bou-Harb et al. [35] performed heuristic clustering using
five IP/TCP header fields to separate darknet traffic into
independent probing flows. That research’s unique assump-
tion is that a probing flow from an orchestrated scanning
campaign is predictable. The authors used a discrete Fourier
transform (DFT) [36] for interpolation of a probing flow and
a Kalman filter [37] to assess predictability. Their approach
pinpointed a number of orchestrated probing campaigns.
Torabi et al. [38] focused on the scanning objectives and
behavioral characteristics to identify correlated and exploited
IoT devices. The authors inferred the object of a scan from
the unordered collection of scanned ports. The behavioral
characteristics included ten features, including packet rate,
number of source ports, and average length of IP packets.
Their approach normalized the ten features and performed
DBSCAN clustering to identify groups of IoT devices that
behaved similarly. The detected groups were associated with
well-known IoT malware and botnets by using the Shodan
IoT search engine.3 Pour et al. [39] proposed a probabilistic
model to cleanse unrelated traffic through a pretreatment.
The authors used binary classifiers based on convolutional
neural networks or random forests to identify ongoing IoT
botnets. Their framework uses agglomerative clustering to
scrutinize distinctive network feature sets. It revealed a

3https://www.shodan.io/
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momentous 440,000 compromised IoT devices and generated
evidence-based artifacts related to 350 IoT botnets.

III. METHODOLOGY
This section explains how to identify a fingerprint, i.e., a
unique pattern of a scanning activity embedded in TCP/IP
header fields. Section III-A outlines the procedure for
identifying fingerprints, and Section III-B provides the
formal definition and examples of fingerprints. The key
process is detailed in Section III-C.

A. IDENTIFYING FINGERPRINTS
Previous studies have revealed that some scan campaigns use
packets that follow a unique pattern; we call the pattern a
fingerprint. Because a scanning campaign manipulates many
scanners, the pattern is expected to frequently appear in
probing packets from many hosts. Therefore, we identify
fingerprints in the following three steps.

1) Generate TCP functions
A TCP function is a feature function that calculates
a feature of a packet. We can produce TCP functions
by combining TCP or IP header fields manually or
by applying the method in our preliminary work [46]
(see Appendix A).

2) Identify effective signs
Suppose a feature function takes a specific value
for many packets from many hosts. Then, the pair
consisting of the corresponding TCP function and
the value may be part of a fingerprint. We call such
a pair an effective sign. We utilize two methods to
identify effective signs. Our preliminary work [46]
(see Section III-E) proposed the first method that
regarded a pattern as a fingerprint if many packets had
the pattern. The second method prioritizes the number
of hosts over the number of packets that possesses a
pattern. Section III-C describes the second method.

3) Unify effective signs into a fingerprint
We combine several effective signs into a fingerprint.
If two effective signs appear in packets from many
hosts, the fingerprint is the pattern that both effective
signs appear simultaneously. Otherwise, each effective
sign becomes a fingerprint by itself.

B. FINGERPRINT
This section provides the formal definitions of the terminol-
ogy appearing in the previous section and enumerates well-
known fingerprints. Let P be the set of all TCP packets and
B be the set of all binaries. A TCP function f : P → B
is a function that accepts a TCP packet and returns a binary.
The set of all TCP functions is denoted by F := {f | f :
P → B}. For example, f (p) = ip.src is a TCP function that
returns destination IP address of an input packet. sign (f , b)
is a pair consisting of a TCP function f and a binary b. If a
TCP packet p satisfies f (p) = b, p is said to have or satisfy a
sign (f , b). If many source IP addresses have a sign (f , b), the
sign is called an effective sign. Section III-C describes how

TABLE 3. Fingerprints of well-known malwares and survey-objective
scanners. gL2B(·) is a function that outputs the lower two bytes, and ⊕ is
a bitwise XOR that performs the logical inclusive operation on each pair
of corresponding bits.

to specify effective signs. For a certain packet, a sign (f , b) is
regarded as the proposition that has a true value if and only if
the packet has the sign (f , b). A fingerprint is a propositional
formula

1) that is constructed using effective signs as proposition
variables and {∧,∨,¬} as logical operations

2) that becomes true for packets from many source IP
addresses

where ∧ means conjunction, ∨ disjunction and ¬ negation.
A source IP address is said to have a fingerprint if the IP
address sends ‘‘at least one packet’’ for which the fingerprint
becomes true.

Some survey-objective scanners and malware embed
unique patterns into packets, and fingerprints can express
these patterns. For example, an IP address infected by
Mirai [3] sends packets wherein a bitwise XOR between the
sequence number and destination IP address equals zero. This
pattern is represented by the following fingerprint:

tcp.seq⊕ ip.dst = 0. (1)

The well-known fingerprints are summarized in Table 3. If a
fingerprint named NAME becomes true for a packet, we call
the packet NAME packet. For example, a Mirai packet is the
packet that satisfies (1).

C. IDENTIFYING EFFECTIVE SIGNS
This section describes how to identify effective signs (f , b)
given a TCP function f . An effective sign is a fingerprint
component that appears in packets from many hosts.

The appearance ratio (frequency) is used to identify
effective signs. Let B be the set of all binaries, f be a TCP
function, P be a set of TCP packets, S be a set of source IP
addresses, and Ps ⊊ P (s ∈ S) be the set of TCP packets
originating from IP address s. Then, appearance ratio for a
binary b is defined as

r(b) :=
#{s ∈ S | ∃p ∈ Ps, f (p) = b}

#S
(2)

where #A is the cardinality of the set A. The appearance ratio
means the proportion of source IP addresses that have the sign
(f , b). We define {bn} as the sequence of f (P) in descending
order of r(b), where f (P) := {f (p) | p ∈ P} ⊆ B. The
subsequence from the k-th to the last element is defined as

{bn≥k} := (bk , bk+1, bk+2, · · · ). (3)
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TABLE 4. TCP/IP header fields composed of TCP functions.

Moreover, we define r
(
{bn≥k}

)
as

r
(
{bn≥k}

)
:= (r (bk) , r (bk+1) , r (bk+2) , · · · ) . (4)

The effective indicator function e : N+→ R is defined as

e(k) :=
σ 2

(
r
(
{bn≥k}

))
σ 2

(
r
(
{bn≥k+1}

)) (5)

where N+ is the set of positive integers, R is the set of
real numbers, and σ 2(A) is the population variance of A.
The effective indicator e(k) represents the effect of r (bk) on
σ 2

(
r
(
{bn≥k}

))
. If r(bk ) is much higher than r (bℓ) (ℓ ≥

k + 1), e(k) takes on a large value. This implies that
(f , b1), (f , b2), · · · , (f , bk ) are satisfied for packets from
many more hosts than (f , bℓ) (ℓ ≥ k + 1).

Two parameters are used to identify effective signs, a posi-
tive integerK and a positive real number α. We calculate kmax
as follows:

kmax := {1 ≤ k ≤ K | e(k) ≥ α} . (6)

Thus, all the effective signs using a TCP function f are
(f , b1), (f , b2), · · · , (f , kmax). If kmax does not exist, there are
no effective signs.

IV. EXPERIMENTAL SETTINGS
We applied our approach to darknet traffic and analyzed
the fingerprints and the source IP addresses that had
those fingerprints. Section IV-A describes the settings of
our algorithm, and Section IV-B explains our dataset and
computation time. Section IV-C deals with the preprocessing
for analyzing fingerprints.

A. PARAMETERS OF OUR APPROACH
Our experiment utilized all of the TCP functions expressed
by taking a bitwise XOR between (a) 11 TCP/IP header
fields in Table 4 and (b) the lower or higher two bytes of
these fields. For example, the Mirai fingerprint has the ip.dst
⊕ tcp.seq as the TCP function (Table 3), and the Hajime
one has tcp.window (Table 3). We specified effective signs
for each TCP function and combined these effective signs
into fingerprints represented by their logical conjunction.
When Section III-C (Section III-E in [46]) identified effective
signs, we set K = 10 (max_sign = 10) and determined α
(sign_thres) so that at most 20 effective signs would be found
in a day.

TABLE 5. Original and preprocessed darknet traffic data.

B. DARKNET DATA AND COMPUTATION TIME
A darknet, also known as a network telescope, passively
monitors network traffic with an unreachable dark IP address
block. It is an effective system for observing indiscriminate
Internet-wide scans because it does not receive benign and
regular network traffic. Our dataset consists of TCP SYN
packets collected from a darknet operated by NICTER.4

Because TCP SYN packets are used to survey active hosts
and open ports [43], our experiment used only TCP SYN
packets. NICTER’s darknet has 298,280 IP addresses located
worldwide. We applied our method to the TCP SYN packets
collected from it over a period of onemonth, September 2021.
The total number of TCP SYN packets was about 37.1 billion.

We implemented our approach day by day while removing
fingerprints found so far on a fraction of the daily packets
(the total number of packets during one month experiment
is 5.4 billion), which were randomly selected, to reduce the
computation time. Python and Julia language and 24 cores
on a server AMD EPYC 7H12 (64 CPUs and 56 GB RAM)
were utilized. The computation cost was approximately
proportional to the number of packets and TCP functions,
and the average daily computation time was 1.8 hours.
We evaluated our results using all the packets (37.1 billion).

C. PRETREATMENT FOR ANALYZING FINGERPRINTS
In network address translation (NAT) implementation, one
or more local IP address is translated into one or more
global IP addresses. In our experiments, a source IP address
indicates a global IP address.We cleansed unrelated traffic by
removing noise packets (i.e., misconfigured network traffic)
and source IP addresses that sent these packets. Specifically,
we removed any source IP address in which either (a) the
number of destination IP addresses was less than 25 or (b) the
number of packets was less than 30 throughout the entire
experimental period. We also eliminated the packets from
these IP addresses. For example, we removed a source IP
address that sent ten packets from September 1st to 30th,
2022. The numbers of source IP addresses and packets before
and after the pretreatment are summarized in Table 5. The
number of source IP addresses decreased to 22.8%, but 99.7%
of packets remained after the pretreatment. We regarded each
remaining source IP address to be a scanner.

V. EXPERIMENTAL RESULTS
We investigate the identified fingerprints in Section V-A and
the proportions of each fingerprint packet for a scanner in

4Network Incident Analysis Center for Tactical Emergency Response:
https://www.nicter.jp/en
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TABLE 6. All fingerprints identified by our approach. In the objective column, ‘‘Attack’’ means that the fingerprint packet targets a few types of
destination ports, whereas ‘‘Survey’’ means that the fingerprint packet scans various ports. We utilized two methods to identify effective signs. The first is
the one proposed in our preliminary work (see Section III-E in [46]) and is denoted by ‘‘old’’; the second is the one described in Section III-C and is
indicated by ‘‘new’’. Date indicates the first day a method identified a fingerprint; blank means the method did not find the fingerprint during an
experiment. The number of scanners denotes the source IP addresses that sent ‘‘at least one fingerprint packet’’ during the experimental period. ‘‘K’’, ‘‘M’’,
and ‘‘B’’ mean thousand (103), million (106), and billion (109), respectively. Bold numbers means large numbers. #Scanner(/X) indicates the unique
network number when we regard the first X bits of an IP address as a network. ‘‘#Packets/#Scanner’’ is the average packet number of a scanner, i.e.,
#Packets divided by #Scanner. The symbol ∧ means conjunction, and ⊕ is bitwise XOR. The major destination port set is defined as the set of destination
ports of the fingerprint packet. Some of the major destination port sets are defined in Table 7.

Section V-B1. Section V-B2 proposes a method to make
scanner groups based on the proportions. Finally, we analyze
these groups in Section V-B3 to V-B5.

A. IDENTIFIED FINGERPRINTS
Table 6 present all the fingerprints identified by our approach
(see Section III-A). Because many operating systems (OSes)
have default window sizes (or other combinations of header
fields known as defaults for OSes) for their SYN packets
[45], [53], [54], [55], we excluded them from the analysis.
Specifically, our approach found five fingerprint candidates
with only default window sizes of 5840, 8192, 14600, 32120,
or 65535 and excluded them except one with a window size of
14600. The window size of 14600 is a Hajime fingerprint and
the default window size for some Android 4.4 devices. In this
case, we regard the window size of 14600 as the Hajime
fingerprint. Section V-B4 shows that the scanners with the
Hajime fingerprint have major destination ports; hence, this
treatment is rational.

We identified eight attack-objective and four survey-
objective fingerprints of which eight fingerprints were
previously unknown. The fingerprints include all the well-
known fingerprints, Mirai, Hajime, Masscan, and ZMap.
A fingerprint is said to be attack objective if the fingerprint
packets are aimed at specific destination ports, whereas
packets that are survey objective have a wide range of
destination ports. About 74% of all packets come from well-
known survey-objective scanner tools, Masscan and ZMap,
but the number of these scanners is small. In contrast, 28.1%
and 18.9% of all scanners have well-known attack-objective
fingerprints, i.e., Mirai and Hajime, respectively.

The ‘‘old’’ method can identify fingerprints many packets
have even if the number of scanners is small (Atk04–06
and Surv02); the ‘‘new’’ method can detect fingerprints
that many scanners have even if the average number of
packets per scanner (denoted by #Packets/#Scanner) is small
(Mirai, Hajime, Atk01, Atk02, and Surv01). The difference
derives from the algorithm design in which the old (new)
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method regards a pattern as a fingerprint if many ‘‘packets
(scanners)’’ have the pattern.

Fingerprints are distributed among various networks. For
any fingerprint except for Atck01 and Atck02, the class C
(/24) network has an average of less than 3 IP addresses (scan-
ners). Atck01 and Atk02 have 3.6 and 7.8, respectively. In the
case of Mirai, #Scanner / #Scanner(/24)=2.8. Regarding the
class B (/16) network, attack-objective fingerprints are denser
than survey-objective ones. Mirai, Hajime, Atk01, and Atk02
have an average of 20–50 IP addresses (scanners) in the class
B network. In contrast, all survey-objective fingerprints and
Atk03–Atk06 have 1–6 IP addresses (scanners).

Most fingerprints are simple enough to use a TCP function
with only one field, and the tcp.window and tcp.seq are
often included in fingerprints. Interestingly, the TCP function
of the Atk03 fingerprint is the same as the Mirai one;
hence, the adversary may have reused the scan tool of Mirai.
The fingerprints of Atk03, Atk06, and Surv02 have several
effective signs. The major destination port sets are examined
in Section V-B4.

We have a survey-domain scanner list that is the set
of IP addresses whose domains are well-known scanning
entities (Shodan, Censys, etc.). We compared the scanners of
each fingerprint with the list to determine whether or not a
fingerprint was associated with a well-known scanning entity.
Although we could not find a fingerprint of a well-known
scanning entity, we observed a small overlap between the
list and scanners of fingerprints for Masscan, ZMap, and
Surv01, all of which are survey objectives. The domain
of 0.7% of the scanners (IP addresses) with the Masscan
fingerprint is Shadowserver Foundation, and 0.5% is Raid.
The ZMap fingerprint has Shadowserver Foundation (0.9%),
Raid (0.7%), BitSight (0.5%), and Cyber.Casa (0.5%).
Surv01 has Shadowserver Foundation (5.9%), Alpha Strike
Labs GmbH (4.9%), Raid7 (3.8%), Cyber.Casa (3.0%),
BitSight (2.0%), Palo Alto Networks (1.1%), ONYPHE
(0.6%), and Global Digital Network Plus (0.5%). Atk06 has
Shadowserver Foundation (12.5%), whichmeans one of eight
Atk06 scanners has the domain of Shadowserver Foundation.
That scanner sent one packet with the Atk06 fingerprint
and the other 384,220 packets with no Atk06 fingerprint.
Hence, it is not associated with the Atk06 fingerprint. The
other fingerprints had well-known scanning entities of less
than 0.5%. Note that some well-known scanning entities
used various scanning tools. For example, Shadowserver
Foundation usedMasscan and ZMap tools. Another finding is
that no fingerprint was associated with only one well-known
entity.
Remark 1: We identified all the well-known fingerprints

(Mirai, Hajime, Masscan, and ZMap) and eight unknown
fingerprints. The individual fingerprint was distributed
among various networks. The improved method, denoted
by ‘‘new’’ in Table 6, detected fingerprints of low-rate and
coordinated scanners (Atk01, Atk02, and Surv01). Some
scanning entities (such as Shadowserver Foundation and
Rapid7) used various scanning tools.

TABLE 7. Major destination port sets.

FIGURE 1. Proportion of each fingerprint packet relative to total number
of packets for each scanner.

B. FINGERPRINT-BASED SCANNER’s GROUPING
1) SCANNER’s FINGERPRINT RATIO
We calculated the proportion of each fingerprint packet
relative to the total number of packets for each scanner. Fig. 1
portrays the proportions, where the horizontal axis represents
scanners and the vertical axis represents the proportion
of each fingerprint packet. The legend corresponds to the
identified fingerprints in Table 6. Because one packet can
have multiple fingerprints, the sum of proportions can exceed
one. ‘‘Others’’ colored gray means the proportion of packets
with no fingerprints. The figure indicates that about half of
the scanners mainly sent fingerprint packets. 49.4% of the
scanners sent at least 30 packets with a fingerprint, and the
proportion of the fingerprint packet exceeds 33%. We called
the scanners fingerprint scanners. We also discovered that
81.2% of the packets have at least one fingerprint. Thus,
the fingerprints helped us to analyze 81.2% of the packets
and 49.4% of the scanners. Moreover, we found that Mirai
and Hajime packets occupied a large proportion in many
of the scanners. In particular, 13.1% of the scanners sent at
least 30 Mirai packets, and the proportion of Mirai (hereafter,
Mirai proportion, etc.) was 95% or more, while 15.8% sent
at least 30 Hajime packets, and the Hajime proportion was
95% or more. Summing up the two fingerprints, 29.4% of the
scanners sent 30 packets with Mirai or Hajime fingerprints,
and the proportion of packets with Mirai or Hajime was 95%
or more.
Remark 2: We could analyze 81.2% of the packets and

49.4% of the scanners by fingerprints. 29.4% of scanners
predominantly sent Mirai or Hajime fingerprint packets.

2) GROUPING SCANNERS
Fig. 1 indicates that the proportions of each fingerprint
packet have various patterns. We decided to group fingerprint
scanners on the basis of these proportions and in accordance
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TABLE 8. Scanner groups based on proportion of each fingerprint packet. #Scanner(/X) indicates a unique network number when we regard the first X
bits of an IP address as a network.

with two policies: (a) first, we grouped the scanners
having only one fingerprint; then we grouped those having
several fingerprints; (b) we successively made groups while
removing scanners that already had been assigned to a group.
Table 8 shows the resulting groups. In the table, ‘‘Attack’’
indicates a scanner group targeting specific destination ports,
and ‘‘Survey’’ indicates a group that sends packets to a
wide range of destination ports. Section V-B3 provides
evidence supporting the classification results of the group
objectives. The ‘‘affiliation condition’’ in Table 8 indicates
a pair consisting of ‘‘No.’’ and a proposition formula that
decides whether a scanner belongs to the group. ‘‘No.’’
indicates the creation order, and ‘‘No.M‘‘ means that the
group was created after removing scanners in groups No.1 to
No.M-1. The proposition formula represents the requirement
for both fingerprint packets and those proportions. For
example, the condition ‘‘Hajime proportion is 95% or more,
and Hajime packets number 30 or more’’ is denoted by
‘‘Hajime-R ≥ 0.95 ∧ Hajime-P ≥ 30’’. The suffix
‘‘-R’’ means ratio, and ‘‘-P’’ means packets. We call a
group with mostly one fingerprint a pure group (such as
pure-Hajime, pure-Mirai, etc.) and a group with several
fingerprints a mixed group (Atk01-Mirai, Atk02-Mirai, and
Hajime-Mirai). The proposition formula of a pure group
is ‘‘the number of the fingerprint packet is 30 or more,
and the fingerprint proportion is 0.95 or more’’. Therefore,
a pure group consists of scanners that frequently send packets
with a specific fingerprint. We made groups in the order of
pure groups (such as pure-Hajime, pure-Mirai, etc.) followed
by mixed groups (Atk01-Mirai, Atk02-Mirai, and Hajime-
Mirai) and assigned the remaining scanners to the ‘‘others’’
group.

The above procedure produced twelve pure groups that
had the same numbers of fingerprints. The mixed groups
were Atk01-Mirai, Atk02-Mirai, and Hajime-Mirai, and their
proportions of each fingerprint packet are illustrated in Fig. 2.
More than half of the scanners in the Hajime-Mirai group
mainly sent Hajime andMirai packets. Hence, those scanners
were suspected of being infected by both Hajime and Mirai
botnets. Both malware may have infected a device. Another
case is where the scanner may have several devices, and
different botnets (such as Hajime, Mirai, etc.) may have
infected different devices in the scanner.

As with the case of the fingerprints’ network distribution,
the individual scanner groups were distributed over a wide
range of networks. For any fingerprint except pure-Atk02,
the class C (/24) networks had an average of less than 5 IP
addresses (scanners). pure-Atk02 had 10.5 IP addresses.
Atk01-Mirai had an average of 117.6 IP addresses for a class
B (/16) network, while any other group has an average of less
than 37 IP addresses.
Remark 3: Some scanner groups mostly sent only one

type of fingerprint packet, but others sent multiple types.
Individual scanner groups were distributed over a wide range
of networks.

3) SCAN OBJECTIVES OF SCANNER GROUPS
We classified the scanner groups into attack or survey
objectives. An attack-objective group intensively sends
packets to a few destination ports, while a survey-objective
group sends packets to extensive destination ports.

We developed a statistic for deciding the objectives of
scanner groups as follows. We defined a top-k port as a
destination port with the k-th largest number of packets. Fig. 3
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FIGURE 2. Proportions of each fingerprint packet in mixed groups.

FIGURE 3. Proportion of top-k ports in each scanner group.

FIGURE 4. Proportion of top-k ports in each scanner group when we remove scanners whose packets number is in the top
5%.

shows the proportions of the top-1 to top-10 ports and the
other ports. In the pure-Hajime group, which is related to the
malware Hajime, the other ports occupy a large proportion.
This result contradicts the assumption that a group with
an attacking objective intensively sends packets to a few
destination ports. Here, we suspected that a few large-scale
survey-objective scanners incessantly send packets with the
Hajime fingerprint. The following investigation confirms this
hypothesis: 0.1% of the scanners (253 source IP addresses)
in the pure-Hajime group sent packets to more than 60,000
destination ports, and these packets amounted to 70.9% of

those from the pure-Hajime group. These large-scale survey-
objective scanners significantly affect the proportions of top-
k ports. To mitigate their impact, we removed scanners whose
packet number was in the top 5%. Fig. 4 illustrates the
proportions of top-k ports for each scanner group after this
preprocessing. In the pure-Hajime group, the top-1 to top-3
ports occupy 90%, which implies that the pure-Hajime group
has an attacking purpose. The ‘‘others’’ group shows the
same situation: ‘‘other port’’ occupies a large proportion
before the preprocessing (Fig. 3) but a small proportion
after the preprocessing (Fig. 4). The preprocessing had little
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FIGURE 5. Proportion of IP address overlap between a scan group and
survey-objective scanner lists.

effect on the proportions of top-k ports for the other groups.
Here, group is said to have an attack objective if the sum
of proportions of top-1 to top-10 ports is 50% or more in
Fig. 4. Otherwise, the group has a survey objective. This
definition does not contradict the classification results of the
well-known malwares and scan tools; that is, malware Mirai
and Hajime are attack-objective, and scan tools Masscan
and ZMap are survey-objective. The classification results are
listed in the ‘‘Objective’’ field of Table 8.

To ascertain the reliability of the classification results,
we examined the IP address overlap between the scan groups
and survey-objective scanner lists (Fig. 5). In the figure,
‘‘large-scanner’’ indicates that the IP address satisfies two
conditions: (1) there are 30 or more unique destination
ports in a day, and (2) the number of packets exceeds the
number of our darknet’s IP addresses on the same day. 1,345
IP addresses satisfied both conditions on at least one day
during the experimental period. ‘‘domain-scanner’’ indicates
that an IP address is considered a survey-objective scanner
because of the domain name (e.g., Shodan, Censys). The
y-axis indicates the ratio of the intersection of a group and
each scanner list to a group. Three out of the four survey
groups, i.e., pure-Masscan, pure-ZMap, and pure-Surv02,
show overlap with the survey-objective scanner lists, while
the other groups show hardly any overlap. This result is
evidence of the correctness of the group classification.
Remark 4: We classified scanner groups into attack or

survey objectives where the attack-objective group intensively
targets a few ports, while the survey-objective group scans
a wide range of ports. We verified the validity of the
classification results with well-known fingerprints’ objectives
(Table 3) and our survey-objective scanner lists.

4) DESTINATION PORT SETS OF SCANNER GROUPS
In recent years, some botnets have scanned several ports
and aimed at multiple vulnerabilities; hence, investigation of
destination port sets has become more important. This study
defines a destination port set as the set of destination ports
of a scanner in one day. We found that the attack-objective
fingerprint packets have major destination port sets. Fig. 6
illustrates the proportions of destination port sets of finger-
print packets for each pure group. Here, si,d is the destination
port set of a scanner i on day d . Then, the proportion of a

FIGURE 6. Proportion of destination port sets of fingerprint packets from
pure groups. The destination port sets ‘‘Mozi01Pset’’, ‘‘Mozi02Pset’’, and
‘‘Atk05Pset‘‘ are defined in Table 7.

destination port set s is∑
i,d #{si,d | si,d = s}∑

i,s′,d #{si,d | si,d = s′}
. (7)

d can be any day in the experimental period, while i
is restricted to a scanner group and the destination port
set si,d is made from only the corresponding fingerprint
packets. In the pure-Hajime group, 67.2% of the destination
port sets are {23, 80, 8080}, 11.2% are {23, 81}, and 6.7%
are {80, 8080}. In the legend, ‘‘eq-PORTSET’’ means the
port set PORTSET, and ‘‘sub{N }-PORTSET’’ represents
the family set that consists of the proper subset of the
PORTSET whose size is equal to or larger than the size
of PORTSET minus N . For example, sub2-{1, 2, 3} =
{{1, 2}, {2, 3}, {3, 1}, {1}, {2}, {3}}. We define the proportion
of a family set to be the sum of proportions over the
sets of the family set. Note that we defined ‘‘sub{N }-’’ in
order to speculate about the destination port sets for the
IP address space, not our darknet IP addresses. Because
our darknet is a portion of the IP address space, we guess
that a port set that is included in ‘‘sub{N }-PORTSET’’ is
‘‘PORTSET’’ in the entire IP address space. For example,
we regard that Mozi02Pset occupies 79.0% for the Atk02
group concerning the IP address space, where Mozi02Pset
is defined in Table 7. Mozi02Pset is large; hence, the
pure-Atk02 group probably targets many vulnerabilities.
In addition, all scanners belonging to pure-Atk04 and pure-
Atk06 send fingerprint packets to only one port. A few types
of destination port set account for more than 67% for any pure
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FIGURE 7. Proportions of destination port sets of Atk02 and Mirai
fingerprint packets from the Atk02-Mirai group. The destination port set
‘‘MiraiMoziPset’’ is defined in Table 7.

FIGURE 8. Proportions of destination port sets of Atk01 and Mirai
fingerprint packets from the Atk01-Mirai group. The destination port set
‘‘MiraiMoziPset’’ is defined in Table 7.

attack group. Hence, these groups probably target specific
vulnerabilities.

Next, let us investigate the destination port sets of
the mixed groups. Fig. 2 indicates that scanners in the
Atk02-Mirai group mainly send Atk02 or Mirai fingerprint
packets. Fig. 7 illustrates the proportions of destination port
sets of each fingerprint. The major destination port sets of the
Mirai packets consist of 23/TCP, 1023/TCP, and 2323/TCP.
The ports included in the major destination port sets of Atk02
and Mirai are different, where MiraiMoziPset, the major
destination port set of Atk02, is defined in Table 7. The above
results mean that if we use all types of fingerprint packets,
we would analyze the union of the destination port sets of
Mirai and Atk02 packets and thereby mistake several attack
intentions for one intention, but if we analyze the destination
port sets for each fingerprint, then we can distinguish the
different attack intentions. Additionally, Fig. 7 and Fig. 8
indicate that different fingerprints, Atk01 and Atk02, have
the same major destination port. The TCP functions of Atk01
and Atk02 are the same (see Table 6). From the two facts,
we deduce that an adversary may have reused the Atk01
fingerprint to make Atk02 or vice versa.

Finally, we tried to determine whether fingerprint packets’
major destination port sets varied if we restricted these
packets to packets from a scanner group. The destination
port sets of all fingerprint packets (Mirai, Hajime, Atk01,
and Atk02) are almost identical for different scanner groups.
For example, Fig. 6, Fig. 7, and Fig. 8 indicate that the
major destination port sets of Mirai packets are mostly
subsets of {23, 1023, 2323}, while the pure-Mirai group
has an additional destination port set {5555}. The major
destination port sets of Hajime packets are the subsets of
{23, 80, 8080} for both the pure-Hajime and Hajime-Mirai

FIGURE 9. Proportions of destination port sets of Hajime and Mirai
fingerprint packets from the Hajime-Mirai group.

FIGURE 10. Mozi infection rates of each scanner group.

groups (Fig. 6 and Fig. 9). The major destination port set of
Atk01 packets isMozi01Pset in the pure-Atk01 group (Fig. 6)
and MiraiMoziPset in the Atk01-Mirai group (Fig. 8), where
MiraiMoziPset = Mozi01Pset ∪ {8081, 8181, 60001} as
shown in Table 7. Table 6 summarizes the major destination
port sets of fingerprint packets.
Remark 5: Every attack-objective fingerprint packet had

unique major destination port sets, which did not vary
fundamentally, even if the packets were restricted to the
packets from any scanner group.

5) FINGERPRINTS AND DESTINATION PORT SETS OF THE
MOZI BOTNETS
The IBM Security X-Force discovered that the Mozi botnet
accounted for 90% of the total IoT network traffic in
September 2020 [51]. This botnet evolved from the source
codes of infamous malware families such as Mirai, IoT
Reaper, and Gafgyt. Mozi increased the IoT attack volume
from October 2019 to June 2020 by 400% compared
with the total IoT attack cases in the previous two years.
In this section, we revealed that (1) both Atk01 and
Atk02 are probably fingerprints of the Mozi botnet; (2) the
fingerprint packets have the major destination port sets, i.e.,
Mozi01Pset, Mozi02Pset, and MiraiMoziPset, defined in
Table 7.We obtained 286,339 IP addresses suspected of being
infected by the Mozi botnet by connecting the peer-to-peer
network of the Mozi as a dummy host. We believe that this
Mozi IP address list contains 10–20% of all Mozi-infected IP
addresses in the report by NICTER.5

5https://www.nicter.jp/en

23238 VOLUME 11, 2023



A. Tanaka et al.: Detecting Coordinated Internet-Wide Scanning by TCP/IP Header Fingerprint

FIGURE 11. Proportion of destination port sets of the Atk01 fingerprint
packets for each scanner group. ‘‘&Mozi’’ means that scanners are
restricted to those in the Mozi list. ‘‘Mozi01Pset’’ and ‘‘MiraiMoziPset’’ are
defined in Table 7.

FIGURE 12. Proportion of destination port sets of the Atk02 fingerprint
packets for each scanner group. The ‘‘&Mozi’’ means that scanners are
restricted to those in the Mozi list. ‘‘Mozi02Pset’’ and ‘‘MiraiMoziPset’’ are
defined in Table 7.

Fig. 10 shows the Mozi infection rates of each scanner
group. The infection rate is the intersection between a
scanner group and the Mozi list divided by the scanner
group. None of the survey groups (pure-Masscan, pure-
ZMap, pure-Surv01, and pure-Surv02) are included in the
Mozi list. The pure-Mirai and pure-Hajime groups each
have tiny proportions, less than 1%. In contrast, the scanner
groups that send Atk01 or Atk02 packets have proportions
of 20–44% and the Hajime-Mirai scanner group has 16.4%.
Therefore, we suppose that Atk01 and Atk02 are related to
the fingerprint of Mozi. We found the major destination port
sets of the Mozi by restricting the scanners to those of the
Mozi list for the pure-Atk01, pure-Atk02, Atk01-Mirai, and
Atk02-Mirai groups. In the pure-Atk01 group illustrated in
Fig. 11, the proportion of Mozi01Pset becomes 87.6% when
the scanners are restricted to those of the Mozi list, which
is higher than 64.1% when all scanners in the group are
included. This result suggests that Atk01 is aMozi fingerprint
and its major destination port set is Mozi01Pset. We came
to similar conclusions about pure-Atk02, Atk01-Mirai,
and Atk02-Mirai (Fig. 11 and Fig. 12). In summary,
we identified two fingerprints of Mozi botnets, Atk01 and
Atk02, each of which has two major destination port sets
(Table 9).

We tried to determine whether the Hajime-Mirai and
‘‘others’’ groups’ scanners, which overlapped the Mozi list
(Fig. 10), had the features of Mozi botnets. Fig. 2 indicates

TABLE 9. Fingerprints, major destination port sets, and scanner groups of
the Mozi botnets. The major destination port sets are defined in Table 7.

that the Hajime-Mirai group mainly sends Hajime or Mirai
packets. The major destination port sets of these packets do
not differ between before and after restricting the scanners to
the Mozi list, which indicates that the Hajime-Mirai group
has no features of the Mozi botnet. In the ‘‘others’’ group,
the major destination port sets of ‘‘fingerprint packets’’ show
no distinctive features after restricting the scanners to those
on the Mozi list. In contrast, the destination port sets of
‘‘all packets (not restricted to fingerprint packets)’’ after
restricting the scanners to those on the Mozi list are similar
to the Mozi port sets defined in Table 9. These similar
destination port sets have many variations, and none of
them make up a large proportion. We guess an unrevealed
scanner group scanned fixed ports similar to the Mozi ones
and other random ports in the same strategy as the HNS
botnet [56].
Remark 6: We identified two fingerprints of Mozi botnets,

Atk01 and Atk02, each of which has two major destination
port sets (Table 9).

C. ASSOCIATING FINGERPRINTS WITH THREAT
INTELLIGENCE
This section tries to validate the found fingerprints’ reliability
by associating fingerprints with thread intelligence. Because
Section V-B5 demonstrated that Atk01 and Atk02 seemed
to be Mozi fingerprints, this section investigates Atk03–06,
Surv01, and Surv02 and summarizes the results in Table 6.

The major destination ports of Atk03 are 80, 81,
8000, 8080, and 8081, all of which are associated with
HTTP. Cohen et al. [19] detected the source IP addresses
targeting these ports and named these IPs Cluster B.
Torabi et al. [38] noticed that ports 80, 81, 8000, and
8080 were targeted by a relatively large number of compro-
mised devices despite occupying a small portion of darknet
packets. Atk03 is probably related to these two scanner
groups.

On Tuesday, July 6, 2021, Microsoft issued
CVE-2021-34527 regarding a Windows Print Spooler
vulnerability [52]. It affects all versions of Windows and
gives a low-privilege user (attacker) code execution with
admin privileges on themachine. Because 135/TCP is a target
port for the attacker, Atk04 might be associated with the
attack.

Although we can neither associate Atk05 nor Atk06 with
any attack campaigns or information-security vulnerabilities,
these fingerprints target major vulnerable ports 22 (SSH),
23 (Telnet), 53 (DNS), 3389 (remote desktop service),
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80 (HTTP), and 443 (HTTP). We can neither connect
survey-objective fingerprints Surv01 and Surv02 to any
scanning campaigns.

VI. DISCUSSION
A. ADVANTAGES OF PROPOSED APPROACH
We proposed a fingerprint identifier to detect coordinated
scanning campaigns. This section describes the benefits of a
fingerprint-based approach compared with port-based, time-
series, and behavior-based methods. Then, we explain the
superiority of our approach over the other fingerprint-based
approaches.

The greatest advantage of the fingerprint-based approach is
that it identifies coordinated scanning with reliable evidence.
For example, Atk03 in Table 6 is an unpublished fingerprint
in which a bitwise XOR between the destination IP address
and the sequence number takes a specific value. Because the
sequence number is usually a random value, the fingerprint
appears with a probability of 1/232 (the sequence number
is represented by 32 bits). Therefore, many scanners and
packets that have the fingerprint indicate that these scanners
utilize identical scanning software for a specific purpose.
In contrast, port-based, time-series, and behavior-based
approaches detect orchestrated scanners using their original
indicators and parameters. Although these indicators attempt
to quantify the similarity or synchronization of scanning
behavior, their digitalized values are difficult to interpret.
Hence, tuning the parameters is hard, and we can not
recognize to what extent the detected scanners cooperate.
Thus, unrelated scanners wrongly belong to a scanner group
with some probability. Another merit of the fingerprint-based
approach is it captures individual scanning groups. Different
adversaries use distinct fingerprints even if they exploit an
identical vulnerability. Therefore, we can recognize each
scanning group by identifying fingerprints. We should note
that the port-based approach has trouble distinguishing
individual groups because groups with identical target
services scan the same ports.

To the best of our knowledge, our approach is the
first method to identify flexible fingerprints (represented
by TCP/IP headers and operations on them) possessed
by low-rate coordinated scanners. Previous research [3],
[41] created fingerprints from open-source codes. Another
study [43] identified fixed-form fingerprints. However, none
of these methods can discover flexible fingerprints. Our
preliminary work [46] devised an algorithm for identifying
flexible fingerprints, but the algorithm overlooked scanning
campaigns if scanners perform low-rate scanning activity.
This paper developed an algorithm and detected low-rate
scanning activity, such as the Mozi botnet.
Remark 7: The greatest advantage of the fingerprint-based

approach is that it identifies coordinated scanning ‘‘with
reliable evidence.’’ Our method is the first attempt to identify
flexible fingerprints that (1) are represented by TCP/IP
headers and ‘‘operations’’ (such as bitwise XOR) on them;
(2) are possessed by low-rate coordinated scanners.

B. APPLICATIONS
One application of our approach is to change the input data.
Although we are currently utilizing only darknet traffic,
we may obtain more reliable fingerprints if we use traffic
originating from infected devices. Srinivasa et al. [57] iden-
tified 11,119 IP addresses that attacked their honeypot and
network telescope. The probe packets from these sources are
pure and would show explicit characteristics of adversaries.
Our approach could easily discover and reinterpret these
characteristics as fingerprints. Another data source is live
servers. Richter and Berger [58] tracked unsolicited traffic
captured at the firewalls of some 89,000 hosts of a major Con-
tent Distribution Network (CDN) that (1) were distributed
across some 1,300 networks and (2) offered services and
thus emitted traffic. They revealed that conventional darknets
could only partially illuminate scanning activity and might
severely underestimate widespread attempts to scan and
exploit individual services in specific prefixes or networks.
We should obtain new insights by applying our approach to
the dataset.

Fingerprints would assist a honeypot in deluding and
interconnecting with bonnets. Safaei Pour et al. [59] proposed
HoneyComb that behaves like a honeypot on a large darknet
network. Their research centered on Mirai and its variants;
hence, HoneyComb crafted Mirai’s deceiving packets (i.e.,
TCP SYN-ACK packets) to delude and interconnect with
Mirai-infected IoT devices. Making deceiving packets of
various botnets is a challenging task that hinders the extension
of HoneyComb. Fingerprints contribute to creating forged
packets.

C. LIMITATIONS
Although fingerprints are themost reliable feature in identify-
ing scan campaigns, some shortcomings exist. We could not
discover fingerprints for 50.6% of the scanners and 18.8% of
the packets, as demonstrated in Section V-B1. There are two
possibilities for that.

First, we have yet to find more complex fingerprints.
In our experiments, we used only bitwise XOR as the
bitwise operation; hence, we could not find fingerprints
using other operations, such as bit shifts. Although we can
incorporate any bitwise operation into a TCP function, the
number of TCP functions increases as we include more
bitwise operations. Because the computation time of our
algorithm increases at a rate proportional to the number of
TCP functions, we need to restrict their variegation. The
restriction leads to losing the flexibility of TCP functions and
fingerprints.

The other reason we could not uncover fingerprints is
that not all scanners provide fingerprints. A fingerprint is an
auxiliary tool for low-cost re-identification of a probe packet
response, and scanners do not have to possess a fingerprint.
Therefore, we should use some of the other techniques intro-
duced in Section II (port-based, time-series, and behavior-
based approaches) to detect coordinated scanning hosts after
eliminating fingerprint packets and scanners.
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FIGURE 13. Header fields of the IPv4 and TCP protocols. Modifiable fields are in yellow, and unchangeable fields are in
white.

VII. CONCLUSION
We improved a fingerprint identifier to enable it to
detect low-rate and well-coordinated scanning activities.
The improved method discovered these stealth scanners
(Atk01, Atk02, and Surv01) and all the well-known fin-
gerprints (Masscan, ZMap, Hajime, and Mirai) on one
month’s worth of darknet data collected from about 300K
unused IP addresses. We grouped scanners based on the
proportions of the fingerprint packets. Then, we revealed
the intention of each scanner group by scrutinizing the
destination port sets. Most groups had major destination
port sets; hence, we can speculate on the target services
and vulnerabilities. A significant discovery is identifying the
fingerprints of the Mozi botnet and its major destination
port sets, all of which were previously unknown. We also
found the source IP addresses suspected of being infected
by several botnets. We associated fingerprints with threat
intelligence and verified their reliability. In the future,
we want to reveal the OSes of the scanning machines to
understand which OSes are indiscriminately targeted and
infected by malware (e.g., botnets or worms). We will also
discover more reliable fingerprints by using our algorithm
to probe packets captured from dynamic malware analysis.
Finally, we aim to build a system capable of automatically
associating identified fingerprints with open-source threat
intelligence [60].

APPENDIX A GENERATING TCP FUNCTIONS BASED ON
GENETIC ALGORITHM
We define a TCP function as a function that accepts a TCP
packet and returns a binary, and the TCP function is a
fingerprint component. This section describes the method
that our preliminary work [46] proposed to generate TCP
functions. A new TCP function is generated from the current
TCP functions. SectionVII-A shows the TCP/IP header fields
used in the TCP functions. Section VII-B defines the initial
TCP functions, and Section VII-C describes how to make
a new TCP function. Section VII-D presents an analogy
between the genetic algorithm (GA) and our method.

A. HEADER FIELDS USED IN FINGERPRINTS
As shown in Fig. 13, the header fields of the IPv4 and
TCP protocols are categorized into (a) modifiable fields

(yellow) and (b) unchangeable fields (white). Modifica-
tions to unchangeable fields prevent IPv4 or TCP from
working correctly. For example, a destination host can
not parse a packet if the IPv4 version is wrong. There-
fore, attackers do not take unchangeable fields into the
TCP functions.

B. INITIALIZING TCP FUNCTIONS
We define the initial TCP functions F1 ⊆ F as the set of
TCP functions that returns modifiable header fields (colored
yellow in Fig. 13). However, some header fields have the
same binary value for almost all packets. We eliminated the
corresponding initial TCP functions because the outputs of
these functions are indistinguishable and hence inappropriate
for components of fingerprints.

C. GENERATING TCP FUNCTION
Given a set of TCP functions F ⊆ F , our algorithm
repeatedly generates a new TCP function and adds it to
the set. (a) feature extraction and (b) binary operation are
methods to produce a new TCP function from the current
set. (a) feature extraction selects a binary-valued function
k and TCP function f from F . The new TCP function is
defined as k ◦f , where ◦ represents function composition. For
example, k ◦ f = gL2B ◦ ip.dst outputs the lower two bytes
of the destination address. Conversely, (b) binary operation
chooses two TCP functions f , h ∈ F . Then, we produce a
new TCP function ψ(f , g), where ψ : F × F → F .
If f = ip.seq, h = ip.dst, and ψ is the bitwise XOR,
the TCP function ψ(f , g) returns the XOR result between
the sequence number and destination address, denoted by
ip.seq⊕ ip.dst.
There are a wide variety of ways to select a TCP function.

Here, we prioritize simple TCP functions over complex ones
when selecting TCP functions in (a) feature extractions and
(b) binary operations. We assess the simplicity of a TCP
function f by the number of applied function compositions;
below, τcount(f ) equals the minimum number of compositions
plus one:

τcount(f ) := min{i | f ∈ Fi}, where (8)

Fi :=
{
k ◦ f | k ∈ K , f ∈ Fi′ (i

′ < i)
}
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Algorithm 1 Generate TCP Function
Input : F ⊆ F : TCP functions

K : binary-valued functions
(k ∈ K implies k : B→ B)

9 : binary operations on F
(ψ ∈ 9 implies ψ : F ×F → F )

Output: f : a new TCP function

Function select_TCP_function(F):
f ← select f ∈ F with probability

(1/τcount(f ))2∑
f ∈F (1/τcount(f ))

2

return f
Function feature_extraction(F, K):

f ← select_TCP_function(F)
k ← select k ∈ K with a discrete uniform
distribution

return k ◦ f
Function binary_operation(F, 9):

f ← select_TCP_function(F)
g← select_TCP_function(F)
ψ ← select ψ ∈ 9 with a discrete uniform
distribution

return ψ(f , g)
Function generate_TCPfunction(F):

x ∼ Uniform(0,1) // random number from
[0, 1]

if x ≤ 0.5 then
f ← feature_extraction(F,K )

else
f ← binary_operation(F, 9)

return f

∪ {ψ(f , g) | ψ ∈ 9, f ∈ Fi1 , g ∈ Fi2 (i1, i2 < i)}
(9)

for i = 2, 3, · · · . For instance,

τcount (gL2B(ip.seq)⊕ gL2B(ip.dst)) (10)

= τcount (gL2B (ψ(ip.seq, ip.dst)) (11)

= 3 (12)

whereψ denotes bitwise XOR. Finally, a TCP function f ∈ F
is selected with probability,

(1/τcount(f ))2∑
f ∈F (1/τcount(f ))

2 (13)

in (a) feature extractions and (b) binary operations.
generate_TCPfunction in Algorithm 1 is the pseu-

docode for generating a new TCP function. The pseudocode
does not care about how the binary-valued function and ψ :
F × F → F are selected; we can modify it according to
the purpose.

D. ANALOGY BETWEEN GENETIC ALGORITHM AND
GENERATING TCP FUNCTIONS
The genetic algorithm (GA) is used in many research fields to
produce high-quality solutions to optimization problems [61].
In the GA, a population of candidate solutions (individuals)
iteratively evolves into better and better solutions via the
use of biologically inspired operators, such as mutation,
crossover, and selection. In each iteration, the fitness of every
individual is evaluated, and the fit individuals are stochas-
tically selected from the current population. Subsequently,
these individuals are modified via recombination or random
mutation.

Because we could not directly apply the GA to our
problem, we leveraged the ideas behind it for generating
TCP functions. Here, a TCP function corresponds to an
individual, and the fitness of each TCP function is assessed
via τcount. Specifically, we prefer choosing a TCP function f
with a small τcount(f ), which leads to simpler TCP functions.
(a) feature extraction and (b) binary operations correspond
to mutation and crossover. The output of these operations
inherits the input features in the same way as mutation and
crossover.
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