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ABSTRACT The rapid growth in technology and several IoT devices make cyberspace unsecure and
eventually lead to Significant Cyber Incidents (SCI). Cyber Security is a technique that protects systems
over the internet from SCI. Data Mining and Machine Learning (DM-ML) play an important role in Cyber
Security in the prediction, prevention, and detection of SCI. This study sheds light on the importance of
Cyber Security as well as the impact of COVID-19 on cyber security. The dataset (SCI as per the report of
the Center for Strategic and International Studies (CSIS)) is divided into two subsets (pre-pandemic SCI
and post-pandemic SCI). Data Mining (DM) techniques are used for feature extraction and well know
ML classifiers such as Naïve Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR)
and Random Forest (RF) for classification. A centralized classifier approach is used to maintain a single
centralized dataset by taking inputs from six continents of the world. The results of the pre-pandemic and
post-pandemic datasets are compared and finally conclude this paper with better accuracy and the prediction
of which type of SCI can occur in which part of the world. It is concluded that SVM and RF are much better
classifiers than others and Asia is predicted to be the most affected continent by SCI.

INDEX TERMS Significant cyber incidents, cyber security, data mining, machine learning.

I. INTRODUCTION
The speedy advancement in technology and the boom in
the IoT industry increase the possibility of cyber inci-
dents. Especially, after the pandemic COVID-19, this ratio
is in-creased [1], [2]. It is expected that the number of IoT
devices count will reach around 75 billion by 2025 [3].
As per the handbook ‘Cybersecurity Almanac’ released by
‘Cybersecurity Ventures, the global cybercrime cost is
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expected to reach USD 10.5 trillion in 2025, from USD
6 trillion in 2021. In 2021, an organization suffered from a
ransomware attack after every 11 seconds, and it is expected
to suffer after every 2 seconds in 2031 [4]. Table 1 depicts
up-to-date statistics about the internet and social media users
from January 2020 to October 2022. There is an alarm-
ing increase in the percentage of 24.5 active social media
users [5].
Cyber security is a technique to protect systems over

the internet from cyber incidents. A cyber incident means
an activity or event which occurred through the internet
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TABLE 1. Internet and social media users’ statistics.

and jeopardizes the Confidentiality, Integrity, and Availabil-
ity (CIA Triad) of the communication system through any
means [6]. The termSignificant Cyber Incident (SCI)means a
cyber incident that results in manifest damage to the national
security and economy [7]. Cyber security is used by individ-
uals as well as organizations to protect their information and
systems over the internet from unauthorized access.

With the increase in SCI, cyber security measures also
improved to tackle these incidents. DataMining andMachine
Learning (DM-ML) play an important role in cyber inci-
dents prediction, prevention, and Detection by using different
approaches [8], [9], [10].
In this paper, the outfall of SCI has been predicted based

on the datasets, collected from the report of the Center for
Strategic and International Studies (CSIS) [11]. The datasets
consist of textual data comprising of SCI type and the conti-
nent where it occurred. First, it is divided into two parts (pre-
pandemic SCI and post-pandemic SCI) and then analyzed ten
types of SCI that occurred in six continents of the world.
Pre-pandemic (before COVID-19) dataset includes those SCI
which happened during the period from 2003 to December
2019. Similarly, the post-pandemic (after COVID-19) dataset
includes those SCI which happened during the period from
January 2020 to till date. As there are no countries in the
seventh continent ‘Antarctica’, so the only six continents in
our study are considered. Further, it is also investigated how
the data can be used for classification accuracy and eventu-
ally the better classifier for distinguishing different SCI. The
results achieved by focusing on which type of SCI occurred at
which continent of the world. Themain objective of this study
is to explore the benefits of centralized classifier for treating
future SCI.

Data Mining features like n-grams and Bag of Words
(BoW) are more useful now for the feature extraction
from the collected data [12], [13], [14]. ML algorithms
like Naïve Bayes (NB) [15], [16], Support Vector Machine
(SVM) [17], [18], Logistic Regression (LR) [19], [20] and
Random Forest (RF) [21], [22] are used for data classifi-
cation [23]. Finally, the results of pre- and post-pandemic
datasets are compared which concludes with the best results
of SVM, and RF classifiers and Asia (the most affected
continent by SCI) is predicted.

In Section II, a detailed review of DM-ML approaches to
combat these SCI is discussed. In Section III, a methodology

model used to get optimized results is proposed. In Section IV,
the output of the different classifiers is compared and finally
in Section V, it is concluded that SVM and RF are both better
than others.

II. LITERATURE REVIEW
Cyber security is an emerging and enormous challenge in the
world and concerns dealing with different cyber incidents [1].
The important part is to identify the existing incidents using
different DM-ML algorithms. DM helps to identify similari-
ties in the cyber incidents’ patterns while ML trains models
and predicts cyber incidents. This re-view section presents
existing DM-ML approaches to prevent and predict cyber
incidents [24]. DM is concerned with hidden knowledge or
pattern of the dataset while ML is concerned with training
the system based on hidden knowledge. DM approaches
like Association, Classification and Clustering help in iden-
tifying and recognizing the behaviors of cyber incidents.
Association-based algorithms provide real-time prediction
and prevention of cyber incidents because of the strong
incident and vulnerability linkage [25]. The classification
method classifies the existing dataset and is eventually very
helpful in the prediction of Denial-of-Service (DoS) and
Distributed Denial-of-Service (DDoS) cyber incidents [26].
In the DMClustering technique, similar types of incidents are
grouped, and this strategy helps in rectifying phishing cyber
incidents [27].

The authors in [28] used a text mining approach to detect
cyber incidents in digital healthcare. The authors used Natu-
ral Language Processing (NLP) to mine news data and get
insight. Song and Suh [29], proposed a novel framework
using text mining for the assessment and detection of cyber
risk. In [30], The authors proposed an anomaly detector
using accident reports. They worked on textual data and
used the Local Outlier Factor (LoF) for anomalous con-
dition detection. The authors surveyed different DM-ML
approaches formalware detection [31], [32]. In another paper,
the authors used a Deep learning methodology is used for
forecasting cyber-attacks based on the captured data from
network traffic [33], [34], [35]. In another paper [36], cyber-
attack methods and committers have been predicted using
Support Vector Machine (SVM), an ML algorithm. In [37],
the authors concluded different DM-ML approaches like
Bayesian network, Decision Tree, Clustering, and Artificial
Neural Networks (ANN) in cyber security to detect cyber
incidents.

The main motivation of this research study is a centralized
classifier that collects data from the six continents of the
world. This approach maintains a centralized dataset, com-
prising efforts from six continents. Further, DM-ML-based
approaches are very well-known techniques being used to
detect vulnerability in cyber security and that is the reason
n-gram and BoW are used for feature extraction in the model.
For the classifier, NB, SVM, LR and RF are used.
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TABLE 2. Distribution of the pre-pandemic (before COVID-19) dataset.

TABLE 3. Distribution of the post-pandemic (after COVID-19) dataset.

FIGURE 1. Centralized classifier for data collection from six continents.

III. METHODOLOGY
This study is proposed to classify SCI using DM-ML
approaches. Themain objective in this study is the centralized
classifier, as shown in Fig. 1. The dataset is collected from the
six continents of the world.

The dataset is used to train the centralized classifier and
eventually a better performance rather than using a separate
classifier for each continent.

A. DATASET INTERPRETATION
The dataset is the type of SCI, that occurred in 6 conti-
nents of the world (from September 2003 to October 2022),
as per the report of the Center for Strategic and Interna-
tional Studies (CSIS) [11]. The dataset is classified as con-
tinent wise and there is a total of 1047 SCI. Further, it is
divided into two parts (pre-pandemic and post-pandemic)
for comparative analysis. The distributions of the datasets

FIGURE 2. Continent wise SCI count.

are shown in Table 2 and Table 3. There are 504 SCI in
the pre-pandemic dataset and 543 SCI in the post-pandemic
dataset. The SCI count for Asia is higher because it is the
largest continent in the world (See Fig. 2.). The impact of
COVID-19 on SCI (for the year 2020 and year 2021) can
be seen in Fig. 3. Each SCI entry (in a single row) has the
following details. From the dataset, SCI type is chosen as
labeled data.

• Name of the Continent (e.g., Asia)
• Name of the Country (e.g., Pakistan)
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FIGURE 3. Year wise SCI count.

• Year (e.g., 2021)
• Month (e.g., January)
• SCI Type (e.g., DDoS)

B. RESEARH PROBLEM
This study identified, investigated, and solved how to forecast
the name of the continent based on the type of SCI. For this,
four types of classifiers are used to check the efficiency of the
classifiers for the collected datasets.

C. METHOD OF ANALYSIS AND CLASSIFICATION
This section is further divided into three sub-sections. The
whole process is also shown in Algorithm 1.

1) DATA COLLECTION AND PRE-PROCESSING
The data is collected from the report of the Center for Strate-
gic and International Studies (CSIS) and this report is updated
monthly. The aim of the pre-processing data is to remove
noise. The results are improved by reducing errors in the
dataset. For this, extra words are removed and sorted out
ambiguities due to null values in the dataset as well. Then
a single column (Continent) is chosen with labeled data (SCI
type) to solve our research problem. At this stage, our dataset
is ready for feature extraction.

2) FEATURE EXTRACTION
For feature extraction, the most common features of data
mining are n-gram and BoW. We used the concept of
uni-gram and bi-gram models. For uni-gram, n=1, for exam-
ple, ‘‘phishing’’ is a word, and all the SCI are extracted
containing this word from the dataset. And for bi-gram, n=2,
for example, ‘‘SQL Injection’’ are two words, and the SCI
are extracted based on these two adjacent words. At this
stage, BoW is used to carry all uni-gram and bi-gram words.
This BoW is filtered to filter out words with minimum fre-
quency of their occurrence in the dataset. These words are
not further used for features using Term Frequency – Inverse

Algorithm 1 Data Analysis and Classification
Variables: P, X, n, Z, S, N, L, R

P: data after pre-processing
X: data after feature extraction
n: number of words
Z: feature Vector
S: SVM Classifier
N: Naïve Bayes Classifier
L: Logistic Regression Classifier
R: Random Forest Classifier

Input (I): [I: Unclassified instances]
Output (�): [�: Classified instances]
Procedure:

pre-processing [removed null values]
feature extraction for words (n)
If n(1) uni-gram
If n(2) bi-gram

Classification:
Classifiers: S, N, L, R
For Classifiers: Input (Z)
Class APT to Zero-Day Exploit

Case 1: Asia
Case 2: Africa
Case 3: Europe
Case 4: North America
Case 5: South America
Case 6: Oceania

Return (�) Classified Instances.

Document Frequency (TF-IDF), a technique based on the
BoW model is used for text vectorization (in our case feature
vector (504, 6) for pre-pandemic dataset and (543,6) for post-
pandemic dataset).

3) CLASSIFICATION
Four different classifiers of Machine learning are used one by
one.

a: NAÏVE BAYES (NB)
It is based on Bayes’ Theorem, derived from conditional
probability. It is commonly used in supervised learning for
text data classification. NB is efficient for nonlinear problems
because of non-biasedness by outliers and is not efficient if
the assumptions are based on statistically relevant features.
When it comes to classification, NB is a form of probabilistic
learning, so it is used for categorizing texts. One of the most
well-known algorithms, it is used to categorize documents
into one or more groups [38], [39].

b: SUPPORT VECTOR MACHINE (SVM)
It is a soft margin classifier, and it is commonly used to
detect outliers. It is also a supervised learning classifier.
SVM is a vector-on-point approach and is very efficient if
the problem is linear and the dataset is limited. It is also

VOLUME 11, 2023 94489



G. Mumtaz et al.: Classification and Prediction of Significant Cyber Incidents (SCI) Using DM-ML

FIGURE 4. Accuracy measure for different classifiers (Left: pre-pandemic dataset. Right: post-pandemic dataset).

good for nonlinear problems and datasets with many fea-
tures. It has become the standard for cutting-edge machine
learning applications. In machine learning, support-vector
machines are supervised learning models that analyze data
for classification and regression using corresponding learning
methods.

SVMs may easily do a non-linear classification in addi-
tion to their typical linear classification by utilizing the
kernel technique to implicitly transform their inputs into
high-dimensional feature spaces [40]. Applications where
SVMs are employed include web page classification [41],
email classification [42], intrusion detection [43], face iden-
tification, and handwriting recognition [44].

c: LOGISTIC REGRESSION (LR)
Logistic Regression predicts the binary problem and its out-
come efficiently. It gives information about the statistical
signification of features and uses a Probabilistic approach. Its
efficiency can be increased by normalizing the data. Logistic
Regression is a Straight Line, Logarithmic Line approach.
The logistic sigmoid function is used to provide a probability
value as a transform in logistic regression. In classification
issues like determining if an email is spam or not [45],
or whether a tumor is malignant or benign [46], logistic
regression is used as a classification procedure to assign data
to a discrete set of classes.

d: RANDOM FOREST (RF)
Random Forest uses an ensemble learning technique. It con-
sists of many decision trees and by increasing the number of
trees, the efficiency of the model also increases. It also works
on nonlinear problems. In technical terms, it is an ensemble
method (using a divide-and-conquer strategy) for generating
decision trees from a subset of a dataset.

The collection of decision trees used as classifiers is also
known as a random forest [47]. In a classification problem,
each tree acts as a vote, and the winning class is deter-
mined by the total number of votes it receives. RF excels at

classification and regression problems where many entries
and features (often with missing values) are present, help-
ing to produce a highly accurate result while avoiding
overfitting. Additionally, RF helps in revealing the rela-
tive feature importance, letting to select the most important
features.

In this study, these four classifiers are used as our dataset
is non-linear Because of the independence of its features and
we want to explore the ability of the classifier.

IV. EXPERIMENTS AND RESULTS
This research focuses on four different types of classifiers
to perform an experimental study to explore the ability
of the classifier. The output of the classifier is to pre-
dict the name of the continent based on the type of SCI.
To evaluate the performance of the classifiers, we used
Accuracy, Recall, Precision and F1-measure as performance
indicators.

To evaluate the performance of the classifiers, the model
is trained through 1047 SCI. The Accuracy measure after
training all the four classifiers is shown in Fig. 4. The results
clearly show that the accuracy for SVM classifier after the
training (0.988099 for pre-pandemic dataset and 0.972375 for
post-pandemic dataset) is higher than the others.

The accuracy measures (pre-pandemic dataset, post-
pandemic dataset) for NB, LR, and RF are (0.952396,
0.920829), (0.984139, 0.962375), (0.978099, 0.962375)
respectively. Further, the model is tested and predicted the
output based on the type of SCI. Each classifier is tested
one by one and compared with the previous one. In the end,
the efficient classifier is concluded, particularly for the case
under consideration.

Firstly, SVM classifier is used to predict the output. The
evaluated results are shown in Table 4, while the confusion
matrix for the SVM model is shown in Fig. 5. The Accuracy
of this model is 99% and 96% for pre-pandemic and post-
pandemic cases respectively. The values of Precision, Recall
and F1 measure against Africa are all approximately 0.02 for
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TABLE 4. Models evaluated using SVM.

FIGURE 5. SVM confusion matrix (Left: pre-pandemic dataset. Right: post-pandemic dataset).

both cases because of a very limited number of SCI in this
continent.

The precision, Recall and F1 measures against Asia,
Europe, North America, and South America, are all approx-
imately 0.99 which is quite good and shows the goodness
of the classifier. Different evaluation indicators are used
which predict the accuracy of the study. The same results are
observed in the Confusion matrix which identifies actual and
predicted results, as shown in Fig. 5. The SVM classifier con-
fusion matrix clearly shows the actual values and predicted
values against each continent. For instance, the values of the
Asia continent showed 52 for a pre-pandemic case and 66 for
a post-pandemic case for the actual and the same values for
the predicted, which shows the precision values in Table 3.
All the other continent values can also be compared and
checked in the evaluations measure. The heatmap in the study
shows the accuracy level against actual and predicted values
which is shown in Fig. 5.

Secondly, NB Classifier is used to check its efficiency
against other models. The evaluated result against this clas-
sifier is shown in Table 5 and the confusion matrix is shown
in Fig. 6. It is clear from the results that this classifier is not

better than SVM. Its accuracy is 96% for the pre-pandemic
cases and 92% for the post-pandemic cases, which is too less
than SVM and the values of precision, recall and f1-measure
are approximately 0.02 against three continents.

From the confusion matrix, we see Asia-Asia cross val-
ues for both pre-pandemic as well as the post-pandemic
cases, which are quite good in terms of actual vs predicted.
This shows the efficiency of the model only for the Asia
continent. The Oceania-North America cross value is 4 in
pre-pandemic case, and Africa-Asia cross value is 7 due
to which its accuracy level goes down. Here again, the
focus is on the Asia continent due to the large sample size
in the dataset. It is concluded here that NB is not better
than SVM.

Thirdly, LR classifier is used, and the values for Preci-
sion, Recall and F1-measure against Africa are approximately
0.01. As compared with SVM, the accuracy of LR is less than
SVM and This is the main reason SVM is better than LR.
The detailed evaluated result is depicted in Table 6 and the
confusion matrix in Fig. 7.

The actual versus predicted results are quite good against
Asia, North America, and South America as shown by
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TABLE 5. Models evaluated using NB.

FIGURE 6. NB confusion matrix (Left: pre-pandemic dataset. Right: post-pandemic dataset).

TABLE 6. Models evaluated using LR.

confusion matrix. This concludes LR classifier is a good
classifier but when compared to SVM, The SVM is bet-
ter than LR. In the confusion matrix (post-pandemic case),

the Africa-Oceania cross value is 7 which means there
were 7 such SCI (occurred in Africa) and the classifier
predicted Oceania which is the wrong prediction. This is
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FIGURE 7. LR confusion matrix (Left: pre-pandemic dataset. Right: post-pandemic dataset).

TABLE 7. Models evaluated using RF.

FIGURE 8. RF confusion matrix (Left: pre-pandemic dataset. Right: post-pandemic dataset).

one of the reasons the accuracy level goes down when LR
is used.

Finally, and fourthly, the RF classifier is used and evaluated
results with the accuracy of 99% (pre-pandemic) and 96%
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(post-pandemic) are shown in Table 7. The confusion matrix
is shown in Fig. 8. The results are exactly like SVM. One
reason for the similar result is the non-linearity of the data
and limited dataset.

SVM performs very well for the limited dataset. RF results
efficiently for imbalanced classes. SVM, NB, LR and RF
classifiers are evaluated one by one. It is concluded that
SVM and RF are both good classifiers for the case under
consideration.

V. CONCLUSION AND FUTURE WORK
This paper focuses on the research based on Significant cyber
incidents (SCI) from September 2003 to October 2022 as
per the report of the Center for strategic and international
studies (CSIS). The datasets are analyzed and classified using
data mining and machine learning algorithms. Four differ-
ent classifiers such as Naïve Bayes (NB), Support Vector
Machine (SVM), Logistic Regression (LR) and Random For-
est (RF) are used and predicted the output (name of the
continent based on the type of SCI). It is also predicted which
continent is more affected by SCI during the period. Finally,
it is concluded that SVM and RF are both better than other
classifiers against our models, in both cases (pre-pandemic
and post-pandemic) and Asia is the most affected continent
by SCI.

In the future, different datasets can be considered for
SCI and can apply different classifiers with advanced
machine learning techniques like Federated Machine Learn-
ing (FML) to check the efficiency of the classifiers. Further,
Blockchain can also be implemented in our model to enhance
security.
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