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ABSTRACT Deep Learning (DL) systems are difficult to analyze and proving convergence of DL algorithms
like backpropagation is an extremely challenging task as it is a highly non-convex and high-dimensional
problem. When using DL algorithms in robotic systems, theoretical analysis of stability, convergence, and
robustness is a vital procedure as robots need to operate in a predictable manner to ensure safety. This paper
presents the first unified End-to-End (E2E) learning framework that can be applied to both classification
problems and real-time kinematic robot control tasks. In the proposed forward simultaneous learningmethod,
the weights of all layers of the fully connected neural networks are updated concurrently. The proposed E2E
learning framework uses an adjustable ReLU activation function so that convergence of the output error to
a bound, which is dependent on the neural network approximation error, can be ensured. In particular, it is
shown that the error between ideal output and estimated output of the network can converge to and stay in a
certain bound, and this bound reduces to zero when the approximation error is zero. Therefore, the robustness
of the learning system can be ensured even in the presence of the approximation error. Two case studies are
done on classification tasks using MNIST and CIFAR10 datasets by using the proposed learning method,
and the results show that the E2E learning method achieves comparable test accuracy as the gradient descent
method and the main advantage is that convergence can be ensured during training. The framework is also
implemented on a UR5e robot with unknown kinematic model, which is the first result on real-time E2E
learning of deep neural networks for kinematic control of robots with guaranteed convergence.

INDEX TERMS Deep neural networks, end-to-end, online learning.

I. INTRODUCTION
Deep learning networks have been employed for many
successful applications, but the majority of them are based
on empirical results. The learning of deep neural networks
(DNNs), is generally based on backpropagation and gradient
descent [1], [2] which are well-known to be a black-box
approach. The theoretical understanding of why deep learn-
ing succeeds in many cases remains obscure. Applying these
deep neural networks in robotics creates a unique problem,
as robots usually work in a safety-critical scenario. Using
deep learning models that lack theoretical understandings for
robotic applications could pose potential risks. Convergence
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analysis, for instance, is an important issue but has yet
to receive sufficient considerations from machine learning
scientists. Applying an algorithm of which convergence is not
guaranteed to a robot system can make the system unstable
and cause damages or accidents. Moreover, ignorance of the
convergence and other theoretical issues in deep learning
would hinder its future development to become more reliable
and more trustworthy. Therefore, developing a theoretical
learning framework for deep neural network structures where
the convergence of the algorithms can be analyzed is crucial
for deep learning to be deployed safely and robustly in robotic
systems.

For the past decades, the convergence analysis of robot
and control systems has focused on using Shallow Neural
Networks. Most works focused on training only the output
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weights of the shallow network with linear output activation
functions [3], [4], [5], [6], [7], [8], [9], [10] and others
provided methods of training two weights together, including
input and output weights [11], [12], [13]. However, as DNNs
enjoy better generalization property than shallow ones for
more general tasks [14], employing DNNs in robotic and
control systems has always been an important research topic
to explore [15]. In [16], a real time DNN adaptive control
structure was presented, but the inner layers were first trained
offline by stochastic gradient descent and then fixed when the
output weights are updated in real-time. In [17], a modular
adaptive DNN control scheme which consists of an update
law for weights of output layer and estimation laws for setting
constraints for weights of inner layers was also proposed
to ensure stability in tracking control of dynamic systems.
In [18], the Lyapunov-based stability analysis of real-time
weight adaptation laws for each layer of a feed-forward
DNN was presented. These results in [16], [17], and [18] are
focusing on real-time control of dynamic systems.

Besides the applications of DNNs in real-time control
tasks, DNNs aremore widely applied in data related problems
such as classification and regression problems with large
amount of data generated. Recently, there has been an
increasing attention in explainable artificial intelligence
(XAI) [19], which leads to the interests of developing
theoretical frameworks for understanding the convergence
problems of E2E learning of DNNs based on gradient descent
(GD) [20], [21], [22]. The training loss is computed at the
final output layer, and then the gradients are calculated at
each layer to update the weights. Various attempts have
been made to theoretically analyze DNNs with E2E learning.
In [20], it was shown that stochastic gradient descent
(SGD) could find a global minima on the training of over-
parameterized DNNs. In [21], it was proved that gradient
descent could achieve zero training loss when training deep
over-parameterized neural networks (NNs). This analysis
relied on the special structure of Gram Matrix. In [22], it was
shown that, for a binary classification problem, under certain
assumptions of the training data, GD and SGD could find
the global minima in the training of an over-parameterized
deep network with ReLU activation functions. However,
these results [20], [21], [22] are achieved based on the
strong assumption that the DNNs are over-parameterized.
This means each inner layer of DNNs must have an infinite
or huge width. Therefore these over-parameterized DNNs
are not feasible for most practical implementations and
hence approximation errors always exist. Moreover, the
formulation is based on the optimization perspective, which
is hard to integrate with existing real-time robot control
methods.

As it is challenging to directly analyze the high-dimensional
problems in DNNs, one way is dissecting the DNNs into
various-layer NNs, which is called layer-wise learning.
This method builds and trains the DNNs by adding the
layers or modules sequentially, and training is based on
the shallow networks. This method was first proposed

as a pre-training method called greedy layer-wise pre-
training [23], [24]. Since it was a pre-training method,
fine-tuning of the whole network using backpropagation
of global errors was still required. Recently, this idea
has emerged again as an independent learning method to
train deep neural networks [25], [26], [27], [28], [29],
[30], [31], [32], [33]. Some theoretical analyses have
been developed based on layer-wise learning. In [30], the
convergence analysis of deep linear networks was given
based on a layer-wise learning using block coordinate
gradient descent. It gave the optimal learning rate for training
and analyzed the effects of width, depth and initialization
of deep linear networks. However, deep linear networks
are rarely used in practical scenarios as they have poor
approximation ability compared to nonlinear ones. In [31],
an analytic layer-wise learning framework was proposed for
learning deep fully connected neural networks. The learning
algorithm was tested on both classification problems and
real-time kinematic control. In [32], a forward progressive
learning framework was proposed for training and analyzing
the deep convolutional neural networks (CNNs). The
proposed method was evaluated on benchmarking datasets on
classification problems. In [33], an analytic layer-wise deep
learning framework was proposed for robot control, and the
convergence of the tracking error is guaranteed in real-time.

Since the learning of DNNs is an iterative process, the
major issue with layer-wise learning is that the training
of the subsequent layers or blocks needs to wait until the
previous ones are fully trained. Online learning in layer-wise
methods is not feasible for most real-time robot systems as
the weights cannot be updated simultaneously as a full deep
network in an E2E manner, which is essential for real-time
learning operations. It is limited to repetitive tasks as only
one layer can be updated in each operation. In addition, the
weights of inner layers or blocks are fixed once completing
training and hence cannot be adjusted according to changes in
tasks.

This paper presents an E2E learning framework with
convergence analysis that can be applied to both classification
problems and real-time kinematic control. The proposed
forward simultaneous E2E learning algorithm allows all
layers of a deep fully connected network (FNN) to be
updated simultaneously without having to wait for previous
layers, which saves computation time compared to layer-wise
learning. Each layer is updated by a virtual learning system
with proposed update laws that ensure the convergence of
the training process. The update laws of the virtual learning
systems are based on Adjustable ReLU activation function
and batch updating, while also taking into account the effects
of approximation error. The proposed theoretical framework
is general and therefore can also be used in other end-to
end learning algorithms or update laws, so long as the
convergence of each virtual learning system can be shown.
The main contributions of this paper are listed as follows:
i, Development of a unified forward simultaneous E2E

learning framework to ensure the convergence and

VOLUME 11, 2023 21993



S. Li et al.: Theoretical Framework for E2E Learning of DNNs With Applications to Robotics

robustness of the learning systems in the presence
of approximation errors. This framework ensures the
error converges to a certain bound considering the
existence of the approximation error of the network.
In most implementations, there exists a finite error in
learning or training in neural network approximation.
We show that the output error converges to certain bound
which is related to the size of the approximation error.
This is the first unified theoretical framework for E2E
learning of deep networks, that can be used for both
classification tasks and real-time kinematic control tasks
while ensuring convergence. The case studies show that
the proposed algorithm can achieve similar performance
compared to SGD and the main advantage is that the
convergence can also be ensured.

ii, Development of a real-time task space kinematic control
method for robots with unknown kinematic model,
based on the proposed E2E learning framework. This is
the first result on real-time E2E deep learning kinematic
control of robots with guaranteed convergence.

iii, The concept of adjustable ReLU activation function is
introduced in the update laws so that the convergence
can be achieved without the process of pre-training,
which was required in [31] and [32]. The proposed
framework also does not require the assumptions of
over-parameterized NNs as in [20], [21], and [22].
Unlike the existing results on E2E deep learning, the
effects of approximation errors are taken into consider-
ation in the theoretical analysis to ensure robustness.

The proposed framework is applied to two classification
tasks using the MNIST [34] dataset on a deep FNN and
CIFAR10 [35] dataset on a deep CNN using transfer learning.
An online kinematic robot control task was also implemented
using a UR5e manipulator with the proposed learning
framework. It is shown that the proposed method can achieve
comparable results to SGD for classification tasks while
ensuring convergence. The online kinematic control of the
industrial robot is the first result which demonstrates the
feasibility of E2E deep learning control of robots in real-time.
The experimental results show that the convergence of the
tracking errors can be ensured.

II. PROBLEM STATEMENT
The aim of End-to-End learning is to train each layer’s
weights of a multilayer fully connected network concurrently.
The output of the multilayer NN can be formulated as:

yNN (k) = σ
(
Wnφn−1(· · ·W2φ1(W1x1(k)))

)
(1)

where x1(k) is the kth original input data, the ideal weight
matrices of all layers are represented as W1, . . . ,Wn, the
activation function of jth layer is represented as φj, j =
1, 2 . . . n − 1, the activation function of the final layer is
represented as σ .

One of the most commonly used activation function in
DNNs is the Leaky ReLU activation function. It was found
to enable better training of deeper networks [36] compared

to previous widely used activation functions such as sigmoid
and tanh, and has become the most popular activation
function for deep neural networks [37].

Consider an input column vector xwith a weight matrixW
and an output activation function φ, then we have:

φ(Wx) = φ



w11 w12 · · · w1n
w21 w22 · · · w2n
...

...
. . .

...

wm1 wm2 · · · wmn

 x

 (2)

Let wj = [wj1 wj2 · · · wjn] denote the jth row vector
of the weight matrix, and φj denote the activation function
corresponding to each wjx, then equation (2) is written as:

φ(Wx) = φ
([
w1 w2 · · · wm

]T x)

=


φ1(w1x)
φ2(w2x)

...

φm(wmx)

 (3)

When φ is the Leaky ReLU activation function, for each
element φi(wix), i = 1, . . . ,m, in φ(Wx):

φi(wix) = riwix, ri = {
1, for wix ≥ 0

s, for wix < 0
(4)

where s is a small postive constant and is usually set as
0.01 for a standard Leaky ReLU.

Using equation (4), Equation (3) can be written as:

φ(Wx) =


r1w1x
r2w2x

...

rmwmx



=


r1
r2

. . .

rm

Wx (5)

Property 1:
The activation function φ of Leaky ReLU can be

represented as a diagonal matrix R so that:

φ(Wx) = RWx (6)

where

R =


r1
r2

. . .

rm

 , ri = {
1, for wix ≥ 0

s, for wix < 0
(7)

III. FORWARD SIMULTANEOUS END-TO-END LEARNING
FOR FNN BASED ON BATCHES
In this section, we introduce the forward simultaneous End-
to-End learning based on batches. The learning procedure is
then summarized in Algorithm 1 of section III-C.
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FIGURE 1. A forward simultaneous End-to-End learning method, where an n layer multi-layer fully connected network is updated concurrently with
n − 1 virtual learning systems. (a) Full network– a deep fully connected network with n − 1 hidden layers. (b) n − 1 virtual learning systems. The input of
each learning system xj can be calculated by passing the original input through previous layers’ weights. For each virtual learning system, only the input
weights Ŵj are kept for the full network.

A. FORWARD SIMULTANEOUS END-TO-END LEARNING
PROCESS
Based on property 1, the target y(k) of an n− 1 hidden layer
FNN with the kth original input x1(k) is formulated as:

y(k) = σ
(
WnRn−1(k) · · ·W2R1(k)W1x1(k)

)
+ ϵ(k) (8)

where ϵ(k) is the approximation error, the ideal weight matrix
of jth layer is represented as Wj, and the ideal activation
function matrix of jth layer is represented as Rj(k).
The complete structure of a deep fully connected network

with n−1 hidden layers updated by E2E learning is shown in
Fig 1. During training, when the kth input x1(k) of a certain
batch is fed into the network, all layer’s weight matrices
are updated as estimated weight matrices Ŵ1, Ŵ2, . . . , Ŵn
respectively as shown in Fig 1(a), and therefore the estimated
output of the multilayer NN is formulated as:

ŷ(k) = σ
(
Ŵn(k)R̂n−1(k) · · · Ŵ2(k)R̂1(k)Ŵ1(k)x1(k)

)
(9)

For ease of presentation, we represent the input of jth layer
during training as xj(k),

xj(k) = R̂j−1(k)Ŵj−1(k) . . . Ŵ2(k)R̂1(k)Ŵ1(k)x1(k) (10)

where xj(k) is a column vector with size of (nj × 1), nj is the
number of neurons of jth layer, Ŵt (k), t = 1, . . . , j − 1 are
estimated weights and R̂t (k) denotes the estimated activation
function matrix which corresponds to the inputs Ŵt (k)xt (k).

During the training process, n− 1 virtual learning systems
are designed in a forward manner as shown in Fig 1(b),
meaning the input for each system is constructed by passing
the original input through previous layers’ weights. The sys-
tems are developed to train the corresponding layer’s weights
concurrently. Each virtual learning system is composed of
two two-layer FNNs, one updates estimated input weights
Ŵj(k) and one updates estimated pseudo output weights
Ŵ▷

j (k), j = 1, 2, . . . n− 1; and only the input weights Ŵj(k)
are kept after learning except for the last 2 layers represented
by the n − 1th learning system, where the output weights
Ŵ▷

n−1(k) are actually Ŵn(k). Every virtual learning system
updates the correspondingweight matrices of the full network
simultaneously using the proposed update laws.

Before training, all the weights are randomly initialized
as W̄[0]

j and W̄▷[0]

j , j = 1, 2, . . . n − 1 as illustrated in
Fig 2(a). The training data is divided into multiple batches
with batch size of p. When the 1st batch of data xj(k), k =
1, 2, . . . p comes in, weights matrices Ŵj(k) and Ŵ▷

j (k) are
updated at the same time. When a data in this batch comes
in, the first virtual learning system learns the weights of the
first layer Ŵ1(k) based on fixed W̄▷[0]

1 . At the same time,
the second virtual learning system learns the weight matrix
Ŵ2(k) based on fixed W̄▷[0]

2 , and the jth virtual learning
system’s input weight Ŵj(k) is updated based on the fixed
pseudo output weight W̄▷[0]

j . Also, the pseudo output weights
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FIGURE 2. Concurrent batch updating process of the forward simultaneous End-to-End learning method for the j th virtual learning system, with each
batch contains p data. (a) updating of the j th virtual learning system using the 1st batch of data based on initialized weight W̄[0]

j and

W̄▷[0]
j , j = 1, 2, . . . n − 1. (b) Update the j th virtual learning system using the 2nd batch of data. Weight Ŵj (p) and Ŵ▷

j (p) from 1st batch will be used

for 2nd batch updating, which means W̄[1]
j = Ŵj (p) and W̄▷[1]

j = Ŵ▷
j (p). (c) Update the j th virtual learning system using the b − 1th batch of data.

(d) Update the j th virtual learning system using the bth batch of data. W̄[b−1]
j = Ŵj ((b − 1)p) and W̄▷[b−1]

j = Ŵ▷
j ((b − 1)p).

Ŵ▷
1 (k), Ŵ▷

2 (k), . . . , Ŵ▷
j (k) . . . , are updated concurrently

with the same data in the same batch when input weight
matrices are fixed as W̄[0]

1 , W̄[0]
2 , . . . , W̄[0]

j , . . ..
In this way, after training with the 1st batch of data,

as shown in Fig 2(b), final weights of Ŵ1(p), Ŵ2(p), . . . ,
Ŵn−1(p) are obtained as W̄[1]

1 , W̄[1]
2 , . . . , W̄[1]

n−1. The
final output weights after training are obtained as
¯W▷[1]

1, W̄▷[1]

2 , . . . , W̄▷[1]

n−1 . For the jth learning system, the
input and output weights are obtained as: W̄[1]

j = Ŵj(p)

and W̄▷[1]

j = Ŵ▷
j (p). These weights are used for updating

of the virtual learning systems for the next batch of data as
illustrated in Fig 2(b).
After 1st batch is trained, the second batch’s data comes

in and all the weights are updated by repeating the previous

procedure. Fig 2(d) shows the training procedure when bth
batch of data xj(k), k = (b − 1)p + 1, (b − 1)p + 2, . . . bp
comes in. The fixed weights of bth batch are obtained from
b − 1th batch, as shown in 2(c), as W̄[b−1]

j = Ŵj((b − 1)p)

and W̄▷[b−1]

j = Ŵ▷
j ((b − 1)p). After all the data have been

fed into the network, one epoch of training is completed
and the training is repeated for multiple epochs. In the next
subsection, update laws are developed to update all weights
concurrently.

In this proposed learning framework, the weights of
the full network are updated concurrently by the corre-
sponding virtual learning systems. In a certain batch, all
the systems work in an independent way and therefore
are able to update the weights simultaneously, which
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reduces the computation time as compared to layerwise
learning.

B. BATCH UPDATING LAWS FOR FORWARD
SIMULTANEOUS END-TO-END LEARNING
As shown in Fig 1, each virtual learning system is a
two-layer network that includes the input weight matrix Ŵj

and output matrix Ŵ▷
j . According to the training process

briefly introduced in section III-A, virtual learning systems
are designed to update estimated input and output weight
matrices Ŵj and Ŵ▷

j concurrently.
Firstly, consider the data xj(k) in the bth batch is fed

into the jth virtual learning system during training, input
weight matrix is updated as estimated input weight matrix
Ŵj(k) when output pseudo weight matrix W̄▷[b−1]

j is fixed,

where W̄▷[b−1]

j is acquired from training of previous b− 1th

batch data. For the 1st batch, W̄▷[0]

j is obtained by random
initialization. Hence, the estimated output of jth layer ŷj(k) is
formulated as:

ŷj(k) = σ
(
W̄▷[b−1]

j R̂a
j (k)Ŵj(k)xj(k)

)
(11)

where xj(k) is defined in (10) and R̂a
j (k) denotes an

estimated Adjustable ReLU (AdjReLU) activation function
matrix which corresponds to the inputs Ŵj(k)xj(k), which is
proposed as follows:

R̂a
j (k) =


r̂1(k)

r̂2(k)
. . .

r̂m(k)

 ,

r̂i(k) = {
1, for ŵi(k)x(k) ≥ 0

a, for ŵi(k)x(k) < 0
(12)

Different from the leaky ReLU matrix R whose elements
are fixed, the value of variable a ∈ [0, 1] in AdjReLU matrix
can be automatically adjusted during training for the purpose
of ensuring the convergence.

There exists an ideal input weight matrix W[b]
j corre-

sponding to the fixed output weight matrix W̄▷[b−1]

j , an ideal
activation function matrix Ra

j (k) which corresponds to the

inputs W[b]
j xj(k) and an approximation error ϵj(k) such that

the target of the network y(k) is:

y(k) = σ
(
W̄▷[b−1]

j Ra
j (k)W

[b]
j xj(k)

)
+ ϵj(k) (13)

Secondly, for the same virtual learning system, when kth
input xj(k) of the same batch of data is fed into the network
during training, output weight matrix is updated as estimated
weight matrix Ŵ▷

j (k) when W̄
[b−1]
j is fixed, where W̄[b−1]

j is
acquired from training of previous b−1th batch data.. Hence,
the estimated output of jth layer ŷ▷j (k) is formulated as:

ŷ▷j (k) = σ
(
Ŵ▷

j (k)R̂j(k)W̄
[b−1]
j xj(k)

)
(14)

where R̂j(k) is an estimated activation function matrix which
corresponds to the inputs W̄[b−1]

j xj(k).

There exists an ideal weight matrix W▷
j
[b], and an

approximation error ϵ▷
j (k) such that the target of the network

y(k) is:

y(k) = σ
(
W▷

j
[b]R̂j(k)W̄

[b−1]
j xj(k)

)
+ ϵ▷

j (k) (15)

After Ŵ▷
j have been updated using this batch of data, it is

denoted as W̄▷[b]

j , which can be used in training of next batch
of data.
From (11) and (13), the error ej(k) between target y(k) and

estimated output ŷj(k) can be formulated as:

ej(k) = y(k)− ŷj(k)

=σ
(
W̄▷[b−1]

j R̂a
j (k)W

[b]
j xj(k)+W̄▷[b−1]

j ERj (k)W
[b]
j xj(k)

)
−σ

(
W̄▷[b−1]

j R̂a
j (k)Ŵj(k)xj(k)

)
+ ϵj(k) (16)

where ERj (k) = Ra
j (k)− R̂a

j (k). Let

δj(k)

= W̄▷[b−1]

j R̂a
j (k)W

[b]
j xj(k)

−W̄▷[b−1]

j R̂a
j (k)Ŵj(k)xj(k)+ ϵEj (k) (17)

where

ϵEj (k) = ϵj(k)+ W̄▷[b−1]

j ERj (k)W
[b]
j xj(k) (18)

Equation (17) can also be expressed as:

δj(k) = W̄▷[b−1]

j R̂a
j (k)1Wj(k)xj(k)+ ϵEj (k) (19)

where1Wj(k) =W[b]
j −Ŵj(k). Using (14) and (15), the error

e▷j (k) between the target y(k) and estimated output ŷ▷j (k) can
be formulated as:

e▷j (k) = y(k)− ŷ▷j (k)

= σ
(
W▷

j
[b]R̂j(k)W̄

[b−1]
j xj(k)

)
−σ

(
Ŵ▷

j (k)R̂j(k)W̄
[b−1]
j xj(k)

)
+ ϵ▷

j (k) (20)

Let

δ▷
j (k) = 1W▷

j (k)R̂j(k) W̄
[b−1]
j xj(k)+ ϵ▷

j (k) (21)

where 1W▷
j (k) =W▷

j
[b]
− Ŵ▷

j (k).

The input weight matrix Ŵj(k) is updated based on fixed
weight W̄q▷[b−1]

j and error ej(k), and the output weight

matrix Ŵ▷
j (k) is updated based on fixed weight W̄[b−1]

j
and error e▷j (k), the two weights are updated separately and
concurrently based on the following two update laws:

Ŵj(k + 1) = Ŵj(k)+ αjR̂a
j (k)(W̄

▷[b−1]

j )TLj(k)ej(k)xTj (k)
(22)

Ŵ▷
j (k + 1) = Ŵ▷

j (k)+ α▷
j L▷

j (k)e
▷
j (k)(R̂j(k)W̄

[b−1]
j xj(k))T

(23)
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where αj and α▷
j are positive scalars, Lj(k) and L▷

j (k) are

positive diagonal matrices. Let xj+1(k) = R̂j(k)W̄
[b−1]
j xj(k),

then, Ŵj(k) and Ŵ▷
j (k) can be updated with the following

update laws in vector form:

ŵj,i(k + 1) = ŵj,i(k)+ αjxj,i(k)R̂a
j (k)(W̄

▷[b−1]

j )TLj(k)ej(k)
(24)

ŵ▷
j,i(k + 1) = ŵ▷

j,i(k)+ α▷
j xj+1,i(k)L

▷
j (k)e

▷
j (k) (25)

where xj,i(k) and x(j+1),i(k) are the ith element of xj(k) and
xj+1(k), ŵj,i(k) and ŵ▷

j,i(k) denotes the ith column of the
estimated weight matrices Ŵj(k) and Ŵ▷

j (k).
Let1wj,i(k) = wj,i− ŵj,i(k) and1w▷

j,i(k) = w▷
j,i− ŵ

▷
j,i(k),

wj,i and w▷
j,i denotes the ith column of the ideal weight matrix

Wj andW▷
j , the update law (24) and (25) can be written as:

1wj,i(k + 1) = 1wj,i(k)− αjxj,i(k)R̂a
j (k)(W̄

▷
j [b− 1])

T

× Lj(k)ej(k) (26)

1w▷
j,i(k + 1) = 1w▷

j,i(k)− α▷
j xj+1,i(k)L

▷
j (k)e

▷
j (k) (27)

The objective function V (k) at kth step is proposed as:

V (k) =
n−1∑
j=1

1
αj

nj∑
i=1

1wTj,i(k)1wj,i(k)

+

n−1∑
j=1

1

α▷
j

n▷
j∑

i=1

1w▷T
j,i (k)w▷

j,i(k) (28)

where nj and n▷
j are the number of neurons of jth input layer

and output layer. Therefore, the objective function at k + 1th
step is:

V (k + 1) =
n−1∑
j=1

1
αj

nj∑
i=1

1wTj,i(k + 1)1wj,i(k + 1)

+

n−1∑
j=1

1

α▷
j

n▷
j∑

i=1

1w▷T
j,i (k + 1)1w▷

j,i(k + 1)

(29)

Using equations (26) and (27), we have:

V (k + 1)

=

n−1∑
j=1

(
1
αj

nj∑
i=1

(1wj,i(k)− αjxj,i(k)R̂a
j (k)(W̄

▷[b−1]

j )TLj(k)ej(k))T

(1wj,i(k)− αjxj,i(k)R̂a
j (k)(W̄

▷[b−1]

j )TLj(k)ej(k))
)

+

n−1∑
j=1

(
1

α▷
j

n▷
j∑

i=1

(1w▷
j,i(k)− α▷

j xj+1,i(k)L
▷
j (k)e

▷
j (k))

T

(1w▷
j,i(k)− α▷

j xj+1,i(k)L
▷
j (k)e

▷
j (k))

)
(30)

From kth step to k+1th step, the change in objective function
can be expressed as 1V (k).

1V (k)

= V (k + 1)− V (k)

=

n−1∑
j=1

( nj∑
i=1

−xj,i(k)1wTj,i(k)R̂
a
j (k)(W̄

▷[b−1]

j )TLj(k)ej(k)

−eTj (k)L
T
j (k)W̄

▷[b−1]

j R̂a
j (k)1wj,i(k)xj,i(k)

+αjeTj (k)L
T
j (k)W̄

▷[b−1]

j R̂a
j (k)x

2
j,i(k)R̂

a
j (k)

×(W̄▷[b−1]

j )TLj(k)ej(k)
)

−

n−1∑
j=1

( n▷
j∑

i=1

1w▷T
j,i (k)xj+1,i(k)L▷

j (k)e
▷
j (k)

−e▷j
T (k)L▷

j
T (k)xj+1,i(k)1w▷

j,i(k)

+α▷
j e

▷
j
T (k)L▷

j
T (k)x2j+1,i(k)L

▷
j (k)e

▷
j (k))

)
(31)

Using equation (19) and (21),1V (k) is then formulated as:

1V (k)

= −

n−1∑
j=1

(
(δj(k)− ϵEj (k))

TLj(k)ej(k)

+eTj (k)L
T
j (k)(δj(k)− ϵEj (k))

−eTj (k)αjµj(k)LTj (k)W̄
▷[b−1]

j R̂a2
j (k)

×(W̄▷[b−1]

j )TLj(k)ej(k)

−(δ▷
j (k)− ϵ▷

j (k))
TL▷

j (k)e
▷
j (k)

+e▷j
T (k)L▷

j
T (k)(δ▷

j (k)− ϵ▷
j (k))

−e▷j
T (k)α▷

j ρj(k)L▷
j
T (k)L▷

j (k)e
▷
j (k)

)
(32)

where µj(k) =
∑nj

i=1 x̂
2
j,i(k) and ρj(k) =

∑n▷
j

ı=1 x
2
j+1,ı (k).

Consider the term ϵEj
T (k)Lj(k)ej(k) in (32), where ϵEj (k)

is consisted of approximation error ϵj(k) and a term
W̄▷[b−1]

j ERj (k)W
[b]
j xj(k) as described in (18). Note that

ϵEj
T
(k)Lj(k)ej(k) = ϵj

T (k)Lj(k)ej(k)

+(W̄▷[b−1]

j ERj (k)W
[b]
j xj(k))TLj(k)ej(k)

(33)

Since ERj (k) = Ra
j (k)− R̂a

j (k), we have:

ERj (k) =

r1(k)− r̂1(k) . . .

rnj (k)− r̂nj (k)

 (34)

where ri(k) correspond to wbi xj(k) and r̂i(k) correspond to
ŵixj(k).
During training, the variable a of AdjReLU activation

function Ra
j (k) defined in (12) is adjusted such that the term
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(W̄▷[b−1]

j ERj (k)W
[b]
j xj(k))TLj(k)ej(k) in (33) is close to

zero.
Each element in ERj (k)W

[b]
j xj(k) is represented as:(

ri(k)− r̂i(k)
)
wbi x(k)

= {
0, if wbi xj(k), ŵi(k)xj(k) are of same sign

(1− a)wbi x(k), if w
b
i x(k), ŵi(k)xj(k) are of opposite sign

(35)

At the beginning phase, the variable a is selected as 1 so
that the ideal AdjReLU activation function matrix Ra

j (k) and

estimated AdjReLU R̂a
j (k) are both identity matrices. There-

fore, each element |ri(k)− r̂i(k)| in the error ERj (k) equals to
zero and that (W̄▷[b−1]

j ERj (k)W
[b]
j xj(k))TLj(k)ej(k) = 0

If errors ej(k) are small after training with a = 1, the
estimated term ŵi(k)x(k) is close to the ideal term wbi x(k)
and if they have the same sign, then, according to (35),(
ri(k) − r̂i(k)

)
wbi x(k) = 0. Since the change of sign occurs

at 0, when wbi x(k) and ŵix(k) are of opposite sign, wbi x(k)
should be close to zero. Therefore,

(
ri(k) − r̂i(k)

)
wbi x(k) =

(1 − a)wbi x(k) are also small. Therefore, variable a can
be adjusted according to the error ej(k), so that the term
(W̄▷[b−1]

j ERj (k)W
[b]
j xj(k))TLj(k)ej(k) ≈ 0.

Hence, at the beginning phase, the value of a can be set
as 1 ensuring that (W̄▷[b−1]

j ERj (k)W
[b]
j xj(k))TLj(k)ej(k) = 0.

At the ending phase, the value of a can be adjusted
from 1 towards a small positive scalar to introduce
nonlinearity in the activation function while ensuring
(W̄▷[b−1]

j ERj (k)W
[b]
j xj(k))TLj(k)ej(k) ≈ 0. In that case, equa-

tion (33) has become:

ϵEj
T
(k)Lj(k)ej(k) ≈ ϵj

T (k)Lj(k)ej(k) (36)

Using (36), 1V (k) is then expressed as:

1V (k) = −
n−1∑
j=1

(
(δj(k)− ϵj(k))TLj(k)ej(k)

+eTj (k)L
T
j (k)(δj(k)− ϵj(k))

−eTj (k)αjµj(k)LTj (k)W̄
▷[b−1]

j R̂a2
j (k)

×(W̄▷[b−1]

j )TLj(k)ej(k)

+(δ▷
j (k)− ϵ▷

j (k))
TL▷

j (k)e
▷
j (k)

+e▷j
T (k)L▷

j
T (k)(δ▷

j (k)− ϵ▷
j (k))

−e▷j
T (k)α▷

j ρj(k)L▷
j
T (k)L▷

j (k)e
▷
j (k)

)
(37)

Let djM , d▷
jM be positive constants such that:

eTj (k)αjµj(k)LTj (k)W̄
▷[b−1]

j R̂a2
j (k)(W̄▷[b−1]

j )TLj(k)ej(k)

≤ djML2jM∥ej(k)∥
2 (38)

e▷j
T (k)α▷

j ρj(k)L▷
j
T (k)L▷

j (k)e
▷
j (k)

≤ d▷
jML

▷
jM

2
∥e▷j (k)∥

2 (39)

Here LjM and L▷
jM denotes maximum eigenvalues of the

matrix Lj(k) and L▷
j (k) for any k . Therefore, 1V (k) is

written as:

1V (k) ≤
n−1∑
j=1

(
− (δj(k)− ϵj(k))TLj(k)(ej(k)− ϵj(k))

−(ej(k)− ϵj(k))TLTj (k)(δj(k)− ϵj(k))

− (δj(k)− ϵj(k))TLj(k)ϵj(k)

−ϵj(k)TLTj (k)(δj(k)− ϵj(k))

+ djML2jM∥ej(k)∥
2
)

+

(
− (δ▷

j (k)− ϵ▷
j (k))

TL▷
j (k)(e

▷
j (k)− ϵ▷

j (k))

−(e▷j (k)− ϵ▷
j (k))

TL▷
j
T (k)(δ▷

j (k)− ϵ▷
j (k))

− (δ▷
j (k)− ϵ▷

j (k))
TL▷

j (k)ϵ
▷
j (k)

−ϵ▷
j (k)

TL▷
j
T (k)(δ▷

j (k)− ϵ▷
j (k))

+ d▷
jML

▷
jM

2
∥e▷j (k)∥

2
)

(40)

The activation functions of output layer σ are chosen as
monotonically increasing and with bounded derivative whose
upper bound is fjσM and lower bound is fjσm. Comparing
between ej(k) − ϵj(k), e▷j (k) − ϵ▷

j (k) in (16),(20) and
δj(k)− ϵj(k), δ▷

j (k)− ϵ▷
j (k) in (19),(21), then:

i, the ith element of ej(k)−ϵj(k) and δj(k)−ϵj(k), e▷j (k)−
ϵ▷
j (k) and δ▷

j (k)− ϵ▷
j (k) are of the same sign, i.e.

(eji (k)− ϵji (k))(δji (k)− ϵji (k)) ≥ 0,

(e▷ji (k)− ϵ▷
ji (k))(δ

▷
ji (k)− ϵ▷

ji (k)) ≥ 0, ∀i = 1..p

(41)

ii, the absolute value of the ith element of ej(k) − ϵj(k),
e▷j (k) − ϵ▷

j (k) are no more than fjσM times the ith
elements of δj(k)− ϵj(k), δ▷

j (k)− ϵ▷
j (k) i.e.

|eji (k)− ϵji (k)| ≤ fjσM |δji (k)− ϵji (k)|,

|e▷ji (k)− ϵ▷
ji (k)|

≤ fjσM |δ▷
ji (k)− ϵ▷

ji (k)|, ∀i = 1..p

(42)

iii, the absolute value of the ith element of ej(k) −
ϵj(k), e▷j (k) − ϵ▷

j (k) are no less than fjσm times the
corresponding elements of δj(k)−ϵj(k), δ▷

j (k)−ϵ▷
j (k),

i.e.

fjσm|δji (k)− ϵji (k)| ≤ |eji (k)− ϵji (k)|,

fjσm|δ▷
ji (k)− ϵ▷

ji (k)|

≤ |e▷ji (k)− ϵ▷
ji (k)|, ∀i = 1..p

(43)
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From the properties stated in (41), (42), the following
inequalities can be assured for:

− (δj(k)− ϵj(k))TLj(k)(ej(k)− ϵj(k))

− (ej(k)− ϵj(k))TLTj (k)(δj(k)− ϵj(k))

≤
−2Ljm
fjσM

(∥ej(k)∥2 + ∥ϵj(k)∥2 − 2∥ej(k)∥∥ϵj(k)∥) (44)

− (δ▷
j (k)− ϵ▷

j (k))
TL▷

j (k)(e
▷
j (k)− ϵ▷

j (k))

− (e▷j (k)− ϵ▷
j (k))

TL▷
j
T (k)(δ▷

j (k)− ϵ▷
j (k))

≤
−2L▷

jm

fjσM
(∥e▷j (k)∥

2
+ ∥ϵ▷

j (k)∥
2
− 2∥e▷j (k)∥∥ϵ

▷
j (k)∥)

(45)

where Ljm, L▷
jm is the minimum eigenvalues of the matrix

Lj(k), L▷
j (k) for any k .

The terms (−(δj(k)− ϵj(k))TLj(k)ϵj(k)− ϵj(k)TLTj (k)
(δj(k)− ϵj(k))) in (40) is smaller than zero if (δj(k)− ϵj(k))T

and ϵj(k) are of the same signs. However, since (δj(k) −
ϵj(k))T and ϵj(k) can be different signs, from the properties
stated in (41), (43), the following inequality can be used:

(−δj(k)+ ϵj(k))TLj(k)ϵj(k)

+ϵj(k)TLTj (k)(−δj(k)+ ϵj(k))

≤
2LjM
fjσm
∥ej(k)∥∥ϵj(k)∥ +

2LjM
fjσm
∥ϵj(k)∥2 (46)

Same for the term (−(δ▷
j (k) − ϵ▷

j (k))
TL▷

j (k)ϵ
▷
j (k) −

ϵ▷
j (k)

TL▷
j
T (k)(δ▷

j (k)− ϵ▷
j (k))) in (40), from the properties

stated in (41), (43), we can get the following inequality:

(−δ▷
j (k)+ ϵ▷

j (k))
TL▷

j (k)ϵ
▷
j (k)

+ϵ▷
j (k)

TL▷
j
T (k)(−δ▷

j (k)+ ϵ▷
j (k))

≤
2L▷

jM

fjσm
∥e▷j (k)∥∥ϵ

▷
j (k)∥ +

2L▷
jM

fjσm
∥ϵ▷

j (k)∥
2 (47)

Substituting inequalities (44),(45) and (46),(47) into (40),
we have:

1V (k) ≤
n−1∑
j=1

(
−2Ljm
fjσM

(∥ej(k)∥2 + b2ϵ − 2∥ej(k)∥bϵ)

+
−2L▷

jm

fjσM
(∥e▷j (k)∥

2
+ b▷

ϵ
2
− 2∥e▷j (k)∥b

▷
ϵ )

+
2LjM
fjσM
∥ej(k)∥bϵ +

2LjM
fjσM

b2ϵ

+
2L▷

jM

fjσM
∥e▷j (k)∥b

▷
ϵ +

2L▷
jM

fjσM
b▷
ϵ
2

+djML2jM∥ej(k)∥
2
+ d▷

jML
▷
jM

2
∥e▷j (k)∥

2
)

(48)

Here bϵ , b▷
ϵ are upper bounds for approximation error

ϵj(k), ϵ▷
j (k) of the deep neural network for any k .

Rearranging inequality (48) we can get:

1V (k) ≤
n−1∑
j=1

(
− (

2Ljm
fjσM
− djML2jM )∥ej(k)∥2

+(
2LjM
fjσm
−

2Ljm
fjσM

)b2ϵ + (
2LjM
fjσm
+

4Ljm
fjσM

)∥ej(k)∥bϵ

)
+

(
− (

2L▷
jm

fjσM
− d▷

jML
▷
jM

2)∥e▷j (k)∥
2

+(
2L▷

jM

fjσm
−

2L▷
jm

fjσM
)b▷

ϵ
2
+ (

2L▷
jM

fjσm

+
4L▷

jm

fjσM
)∥e▷j (k)∥b

▷
ϵ

)
(49)

It can be shown that if

∥ej(k)∥

≥
bϵ

2
(
2Ljm
fjσM
− djML2jM

)[
4Ljm
fjσM
+

2LjM
fjσm

+

√
8Ljm
fjσM

djML2jM +
8LjM
fjσm

(
4Ljm
fjσM
− djML2jM

)
+

(
2LjM
fjσm

)2]
(50)

∥e▷j (k)∥

≥
b▷
ϵ

2
(

2L▷
jm

fjσM
− d▷

jML
▷
jM

2
)[4L▷

jm

fjσM
+

2L▷
jM

fjσm

+

√
8L▷

jm
fjσM

d▷
jML

▷
jM

2
+

8L▷
jM

fjσm

(
4L▷

jm
fjσM
− d▷

jML
▷
jM

2
)
+

(
2L▷

jM
fjσm

)2]
(51)

and
2Ljm
fjσM
− djML2jM > 0,

2L▷
jm

fjσM
− d▷

jML
▷
jM

2
> 0 (52)

then 1V (k) ≤ 0 can be assured. This means that when
the error is large, then 1V (k) ≤ 0 and the error is
therefore reduced until it reaches this the bound described
by equation (50), (51), and finally stays inside it, ensuring
convergence. So for a certain batch of data, the estimated
weights of the multi layer NN are converging towards ideal
weights for this batch. This process keeps repeating in batches
until the error settles in a reasonable bound. Therefore, the
error would stay within an ultimate bound after reaching it.

In the ideal case where, if ϵj(k), ϵ▷
j (k) are zero for any k ,

from (50), (51) the bound reduces zero. If the approximation
error can be considered as zero, then equation (37) can be
rewritten as:

1V (k) = −
n−1∑
j=1

δTj (k)Lj(k)ej(k)−
n−1∑
j=1

eTj (k)L
T
j (k)δj(k)

−

n−1∑
j=1

δ▷
j
T (k)L▷

j (k)e
▷
j (k)
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−

n−1∑
j=1

e▷j
T (k)L▷

j
T (k)δ▷

j (k)

+

n−1∑
j=1

eTj (k)αjµj(k)LTj (k)

×W̄▷[b−1]

j R̂a2
j (k)(W̄▷[b−1]

j )TLj(k)ej(k)

+

n−1∑
j=1

e▷j
T (k)α▷

j ρj(k)L▷
j
T (k)L▷

j (k)e
▷
j (k) (53)

Removing the ϵj(k), ϵ▷
j (k) in property (41), (42), (43),

the conditions still be assured. Therefore, the following
inequality can be ensured:

1V (k)

≤ −

n−1∑
j=1

2
fσm

eTj (k)Lj(k)ej(k)−
n−1∑
j=1

2
fσm

e▷j
T (k)L▷

j
T (k)e▷j (k)

+

n−1∑
j=1

eTj (k)αjµj(k)LTj (k)W̄
▷[b−1]

j R̂a2
j (k)

×(W̄▷[b−1]

j )TLj(k)ej(k)

+

n−1∑
j=1

e▷j
T (k)α▷

j ρj(k)L▷
j
T (k)L▷

j (k)e
▷
j (k) (54)

When Lj(k) and L▷
j (k) are chosen such that

2
fσ
Lj(k)−

(
αjµj(k)LTj (k)W̄

▷[b−1]

j R̂a2
j (k)(W̄▷[b−1]

j )TLj(k)
)

> 0

(55)
2
fσ
L▷
j (k)−

(
α▷
j ρj(k)L▷

j
T (k)L▷

j (k)
)

> 0 (56)

The above conditions ensure that 1V (k) < 0. Since the
objective function of the n layer MLFN is non-positive,
moreover, V (k) is also bounded from below, 1V (k) is
converging as k increases, which also suggests that all errors
are converging. αj and α▷

j are selected small enough to
ensure convergence. Also, theoretically, in each update the
gain matrix Lj(k), L▷

j (k) can be automatically adjusted
by (55) (56).
Remark: Note that the proposed framework is general

as the convergence analysis is based on summation of
multiple virtual learning systems. Therefore, other updating
algorithms which the convergence of the each virtual system
can be analyzed can also be similarly designed for End-to-
End learning of deep neural networks by using the proposed
framework.

C. SUMMARY OF END-TO-END LEARNING ALGORITHM
For a multi-layer fully connected network, formulated in (9),
our algorithm updates each layer’s weights Ŵj, j = 1, . . . , n
of the MLFN concurrently. The learning algorithm of the
n layer MLFN is presented in Algorithm 1, the details are
described as follows:

(a) For each input data(x1(k), y(k)) in the bth batch of
training dataset:
(1) Formulate each virtual learning systems’ input

xj(k) using (10) and output ŷj(k) ŷ
▷
j (k) using (11)

and (14).
(2) Calculate each virtual learning systems’ error

ej(k) = y(k)− ŷj(k), e
▷
j (k) = y(k)− ŷ▷j (k).

(3) Concurrently update all n−1 input weight matrices
Ŵj(k) with fixed output weight matrix W̄▷[b−1]

j and

update all n − 1 output weight matrices Ŵ▷
j (k)

with fixed input weight matrix W̄[b−1]
j using (22)

and (23). Fixed input and output weights for bth
batch are obtained from b − 1th batch: W̄▷[b−1]

j =

Ŵj(k), W̄▷[b−1]

j = Ŵ▷
j (k), k = (b− 1)p.

(4) When all the data in the bth batch have been trained,
current weights Ŵj(k) and Ŵ▷

j (k) will be kept for

b + 1th batch’s updating, which means W̄▷[b]

j =

Ŵj(k), W̄▷[b]

j = Ŵ▷
j (k), k = bp.

(b) Continue with the next batch of training sample and
repeat the steps described in (a) until all the input data
in the training dataset have been fed into the deep FNN.

(c) After all the input data in the training dataset has been
fed into the FNN, an epoch is completed. The learning
is repeated for multiple epochs.

IV. CASE STUDIES
In this section, we present the testing results of the
proposed forward simultaneous E2E learning algorithm on
both classification tasks and online kinematic control task.
The classification task is implemented on a fully connected
network and classifier of a convolutional neural network
using two datasets. The online control task is implemented
on a UR5E industrial robot arm.

A. MNIST DATASET
MNIST dataset, which is a commonly used image dataset,
is used to test our algorithm on classification problems
using fully connected networks. The deep neural network is
constructed as a 5-hidden layer network with the structure
of 784-300-LReLU-200-LReLU-150-LReLU-100-LReLU-
100-LReLU-10-sigmoid. The full network structure used
standard Leaky ReLU activation functions with gradient of
0.01 when input is smaller than zero at hidden layers and
sigmoid activation functions for the output layer.

The full network was trained based on five vir-
tual learning systems which were running concurrently:
784-300-AdjReLU-10-sigmoid (virtual learning system I),
300-200-AdjReLU-10-sigmoid (virtual learning system II),
200-150-AdjReLU-10-sigmoid (virtual learning system III),
150-100-AdjReLU-10-sigmoid (virtual learning system IV),
and 100-100-AdjReLU-10-sigmoid (virtual learning system
V). Each virtual learning system updated the weights
following update laws in (22) using AdjReLU and (23)
using standard Leaky ReLU at hidden layers. The activation
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Algorithm1 Forward Simultaneous End-to-End Learning for
Updating Each Layer’s Weight Ŵj of n Layer MLFN Based
on Batches

1: Initialization:
epoch = 0,
b = 0,
k = 0,
The weights of n − 1 virtual learning systems are
randomly initialized as W̄[0]

j and W̄▷[0]

j , j = 1, 2, . . . n−
1

2: repeat
3: epoch← epoch+1
4: repeat
5: b← b+ 1, where b is the bth batch of input data
6: repeat
7: k ← k + 1, where k is the kth input data
8: Update each layer’s input weight Ŵj(k) concur-

rently with fixed output weight matrix W̄▷[b−1]

j
based on Equation (22)

9: Update each layer’s output weight Ŵ▷
j (k) con-

currently with fixed input weight matrix W̄▷[b−1]

j
based on Equation (23)

10: until k = l ∗ p, l = 1, 2, . . ., where p is the batch
size

11: W̄▷[b]

j = Ŵ▷
j (lp), W̄

[b]
j = Ŵj(lp)

12: until all batches of data have been trained
13: until required epochs have been trained
Output: Estimated weight matrices Ŵj, j = 1, 2, . . . n

function for the output layer are sigmoid activation functions,
same as the full network.

During training, the value of a for AdjReLU in (12) was
selected according to the value of error in (16) following the
strategies in section III-B (paragraph before (36)). In this
case study, the variable a is initially set as 1 and then
gradually adjusted to 0.01 to introduce nonlinearity in the
activation function. The value of a stops at 0.01, which is
the default value for standard leaky ReLU activation function,
so that the activation function keeps some information when
input is negative to avoid dying ReLU problem. During the
adjustment process, the value of a is calculated according to
a = ∥e∥−ϵ

∥e∥ , where ϵ is a small constant value set as 0.01.
When the error is large at the beginning phase of training,
a is close to 1 and when the error reduces, the value a also
reduces with a stopping rule set so that it stops when a reaches
0.01 finally.

The deep neural network was trained with both SGD and
proposed method. First, the initial learning rate for both
methods were set as 0.5 and the same initial weights were
used for both methods. For the proposed method, the learning
gains were then automatically adjusted according to the
conditions in (52) and (53). It can be seen fromFig 3 that SGD
diverges after 6 epochs while the proposedmethod converges.

FIGURE 3. Loss of SGD and proposed method in first 6 epochs.

FIGURE 4. Norm of training error ∥e∥ in (16) of virtual learning system V
for MNIST dataset with AdjReLU with gradient of a.

To ensure the covergence of SGD for further comparison,
the learning rate selected for SGD was later manually
adjusted to 0.05 and was decreased by half after 50 epochs,
other hyperparameters were also tuned for the test results of
the full network to achieve best performance. The training
and testing accuracies of both SGD and proposed method are
presented in Table 1. The final test result of SGD is 98.48%.
For the proposed method, the learning gains were also set as
0.05 and were then automatically adjusted according to the
conditions in (52) and (53). The adjustment of gradident a
for adjustable relu is shown in Fig 4 and the batch size was
selected as 32 for all virtual networks.

It can be seen from the results in Table 1 that the accuracies
of the proposed method is comparable to standard SGDwhile
ensuring convergence during learning.

B. CIFAR10 DATASET
The CIFAR10 dataset contains 10 classes of color images
with the size of 32 by 32 pixels. For this dataset, we used
a pretrained CNN called VGG11 based on ImageNet [38]
dataset and trained its classifier for CIFAR10. VGG11, a deep
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TABLE 1. Training & test accuracies (%) by SGD and proposed method for
MNIST dataset.

FIGURE 5. Norm of training error ∥e∥ in (16) of virtual learning system II
for CIFAR10 dataset with gradient of a.

CNN, contains eight convolutional layers with kernel size
of three and a classifier with three fully connected layers.
The full classifier has the structure of two hidden layers each
has 512 neurons and a output layer as 512-512-LReLU-512-
LReLU-10-sigmoid. The full classifier used standard Leaky
ReLU activation functions with slope of 0.01 when input
is smaller than zero at hidden layers and sigmoid activation
functions for the output layer.

The full classifier was trained with two virtual lear-
ning systems which were running simultaneously:
512-512-AjReLU-10-sigmoid (virtual learning system I) and
512-512-AjReLU-10-sigmoid (virtual learning system II).
Each virtual learning system updated the weights following
update laws in (22) using AdjReLU and (23) using standard
Leaky ReLU at hidden layers. The activation function for the
output layer were sigmoid activation functions, same as the
full classifier. The value of a was adjusted following the
same strategies as in the previous case study as shown in
Fig 5, and the test result for the full classifier of SGD was
tuned to the best accuracy. The learning rate selected for SGD
was 0.001 and it finally achieved a test accuracy of 88.4%.
For the proposed method, the initial learning gains were set
as: L1 = L2 = diag [0.001, . . . 0.001] and were adjusted
according to the conditions in (52) and (53) during training.
The batch size was selected as 32 for all virtual learning
systems.

TABLE 2. Training & test accuracies (%) by SGD and proposed method for
CIFAR10 dataset.

It can be seen from results in Table 2 that, for the classifier
of a CNN, the final results of the proposed method achieve
similar results compared to standard SGD while ensuring
convergence during learning.

C. ONLINE KINEMATIC CONTROL EXPERIMENT ON UR5E
The Jacobian matrix is essential to perform task space control
of a robot [39]. When the Jacobian matrix is unknown, it is
difficult to perform real-time control in task space [40] as the
Jacobian matrix provides directional feedback information in
task-space. In this subsection, we show that DNNs can be
trained to approximate the unknown Jacobian matrix using
our proposed learning algorithm.

Consider the system at the kth sampling time, the velocities
of the end effector in task space ẋ is related to the rate of joint
velocities q̇ as:

ẋ(k) = J(q(k))q̇(k) (57)

where J(q(k)) is the overall Jacobian matrix from joint space
to sensory task space.

For a DNN, apply the idea of weight designation in [33],
equation (57) can be written as following (13) and (15):

ẋ(k) =
p∑

h=1

σ h
(
W̄▷[b−1]

j (k)Ra
j (k)W

[b]
j (k)qj(k)

)
q̇h(k)+ ϵ▷

j (k)

(58)

ẋ(k) =
p∑

h=1

σ h
(
W▷[b]

j (k)Rj(k)W̄
[b−1]
j (k)qj(k)

)
q̇h(k)+ ϵj(k)

(59)

where j = 1, . . . n − 1 denote the jth learning systems, p
denotes the number of joints, q̇h(k) is the hth element in q̇(k)
and the activation function σ is selected as identity activation
function for control task and qj is the input for the jth learning
system. The estimated Jacobian matrix Ĵj can be obtained
from the output of the network following (11) and (14):

ˆ̇x▷
j (k) = Ĵ▷

j (q(k), W̄
▷[b−1]

j , Ŵj)q̇(k)

=

p∑
h=1

σ h
(
W̄▷[b−1]

j (k)R̂a
j (k)Ŵj(k)qj(k)

)
q̇h(k) (60)

ˆ̇xj(k) = Ĵj(q(k), Ŵ▷
j , W̄[b−1]

j )q̇(k)
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=

p∑
h=1

σ h
(
Ŵ▷

j (k)R̂j(k)W̄
[b−1]
j (k)qj(k)

)
q̇h(k) (61)

For learning systems j = 1, . . . n − 1, the weights
are updated based on output error e▷j (k) formulated
using (58) (60) and ej(k) formulated using (59) (61):

e▷j (k) = ẋ(k)− ˆ̇x▷
j (k)

=

p∑
h=1

σ h
(
W̄▷[b−1]

j (k)Ra
j (k)W

[b]
j (k)qj(k)

)
q̇h(k)

+ ϵ▷
j (k)

−

p∑
h=1

σ h
(
W̄▷[b−1]

j (k)R̂a
j (k)Ŵj(k)qj(k)

)
q̇h(k) (62)

ej(k) = ẋ(k)− ˆ̇xj(k)

=

p∑
h=1

σ h
(
W▷[b]

j (k)R̂j(k)W̄
[b−1]
j (k)qj(k)

)
q̇h(k)

+ ϵj(k)

−

p∑
h=1

σ
(
Ŵ▷

j (k)R̂j(k)W̄
[b−1]
j (k)qj(k)

)
q̇h(k) (63)

Therefore the error e▷j (k) and ej(k) is the same as the output
error in (16) and (20). The errors e▷j (k), j = 1, . . . n− 1 and
ej(k), j = 1, . . . n−2 are then applied in the update laws (24)
and (25) to ensure convergence during training the network.

Note that J▷
j , j = 1, . . . n − 1, are formulated for the

update law and are not used during kinematic control. Only
the jocabian matrix Ĵn−1(q(k), Ŵn, W̄

[b−1]
n−1 ) of the n − 1th

learning system is used for control task and rest are only
for updating process. The control task is implemented on
the n − 1th vritual system. The reference joint velocity q̇ is
proposed as:

q̇(k) = Ĵ†n−1(q(k), Ŵn, W̄
[b−1]
n−1 )(ẋd (k)− α(x(k)− xd (k)))

= Ĵ†n−1(q(k), Ŵn, W̄
[b−1]
n−1 )(ẋd (k)− α1x(k)) (64)

where Ĵ†n−1(q(k), Ŵn, W̄
[b−1]
n−1 ) denotes the pseudoinverse

matrix of the estimated Jacobian Ĵn−1(q(k), Ŵn, W̄
[b−1]
n−1 );

α is a positive scalar; xd (k) denotes the desired position
and ẋd (k) represents the desired velocity of the end
effector in the sensory task space. Multiply (64) with
Ĵn−1(q(k), Ŵn, W̄

[b−1]
n−1 ) on the left hand side gives

Ĵn−1((q(k), Ŵn, W̄
[b−1]
n−1 )q̇(k) = ẋd (k)− α1x(k) (65)

Subtracting (57) and (65) gives

J(q(k))q̇(k)− Ĵn−1(q(k), Ŵn, W̄
[b−1]
n−1 )q̇(k)

= ẋ(k)− ẋd (k)+ α1x(k) (66)

= 1ẋ(k)+ α1x(k)

Let ε(k) = 1ẋ(k) + α1x(k) be the online feedback error in
online learning, from (57)(59)(61) and (63) (63) we have:

ε(k) = J(q(k))q̇(k)− Ĵn−1(q(k), Ŵn, W̄
[b−1]
n−1 )q̇(k)

=

p∑
h=1

σ h
(
Wn(k)R̂n−1(k)W̄

[b−1]
n−1 (k)qn−1(k)

)
q̇h(k)

+ϵn−1(k)

−

p∑
h=1

σ h
(
Ŵn(k)R̂n−1(k)W̄

[b−1]
n−1 (k)

×qn−1(k)
)
q̇h(k) (67)

Hence, we can use the online feedback error ε(k) instead
of en−1(k) in (63) in the n − 1th learning system. The
online feedback error ε(k) is used in update law (25) and the
convergence of ε(k) is therefore guaranteed.
In the online task, the robot performed an online trajectory

tracking control task in 3D space. The input [q, q̇] and
output ẋ can be collected from the robot communication with
sampling time of 0.01s.

The full network used for approximating the jacobian
matrix is a three-hidden layer FNN with the structure of
3-12-LReLU-12-LReLU-12-LReLU-3-identity. The input
and output size of the network were both 3 and each
hidden layer had 12 neurons.The activation functions used
between hidden layers were standard Leaky ReLU activation
functions, and the output activation functions were identity
activation functions. The full network was trained based on
two virtual learning systems which were running concur-
rently: 3-12-AdjReLU-3-identity (virtual learning system I),
12-12-AdjReLU-3-identity (virtual learning system II),
12-12-AdjReLU-3-identity (virtual learning system III).
Each virtual learning system updated the weights following
update laws in (22) using AdjReLU and (23) using standard
Leaky ReLU at hidden layers. The activation function for the
output layer are identity activation functions, same as the full
network.

The trajectory tracking task were done on two separate cir-
cles C1 and C2. C1 is a circle centered at [−0.4,−0.35, 0.5]
with a radius of 0.15m and C2 is a circle centered at
[0.08,−0.4, 0.5] with a radius of 0.1m. The specified trajec-
tory is: xC11 = −0.4 + 0.28 cos (ωt) − 0.9 sin (ωt) ; xC12 =
−0.35 + 0.85 cos (ωt) + 0.4 sin (ωt) ; xC13 = 0.5 +
0.45 cos (ωt) + 0.2 sin (ωt) ; xC21 = 0.08 + 0.1 cos (ωt) −
0.9 sin (ωt) ; xC22 = −0.4 + 0.9 cos (ωt) + 0.4 sin (ωt) ;
xC23 = 0.5+0.45 cos (ωt)+0.2 sin (ωt) ;At first 20 seconds,
the desired angular frequency was 0 rad/s to do a set point
control so that the robot can move to the initial position.
The desired angular speed at full speed was 2π/T s, after
accelerating from 0 rad/s in the T s. Then the robot would
decelerate from full speed to 0 rad/s in another T s and finally
be at rest for the last 20 s.

The two circles were placed on different planes and were
far away from each other. The tracking task started atC1 first.
As the method is model free, to provide a good initialization,
data were manually collected near the plane of C1 and two
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FIGURE 6. The value of a and norm of output error e in (62) of C1 of
virtual learning system III.

FIGURE 7. The tracking errors in C1.

FIGURE 8. The tracking errors in C2.

FIGURE 9. Desired and actual trajectories of the robot end-effector in
sensory space for training circle C2.

virtual learning systems were pretrained using the proposed
method for 200 epochs with initial learning rate of 0.01. This

area is used as a home or starting position for all control
tasks of the robot. Then the trained weights were used for the
initialization weight for online tracking of C1. As shown in
Fig. 6, the value of a for AdjReLU was selected to according
to the value of error in (16) and (62) following the strategies
in case studies. In this online experiment, the value of a was
adjusted continuously. As shown in Fig 7, the online learning
guaranteed the convergence of tracking errors for circle C1.
After online learning of C1, the robot was moved from

C1 to the initial position near C2 by following a straight line
path using the proposed controller. From there, the online
learning of tracking C2 started directly without any offline
training. As shown in Fig 8 and Fig 9, during online learning,
the tracking errors converged to small value and the actual
trajectory was close to the desired one.

From the online trajectory tracking task, our proposed
E2E framework guarantees the convergence of the tracking
errors during online training. The online learning allows the
network to adapt to a new circle C2 which is far away from
the original task space near C1.

V. CONCLUSION
In this paper, we have presented a forward simultaneous E2E
framework to train deep fully connected neural networks
so that convergence to a bound can be ensured. The
classification tasks including MNIST and CIFAR10 datasets
implemented on deep FNNs have shown that our E2E
learning framework can achieve similar test accuracy as SGD
method with guaranteed convergence. The online kinematic
control task has also shown that a robot with unknown
kinematics can learn with guaranteed convergence in a safe
way.
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