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ABSTRACT Surrogate safety measures (SSMs) are critical tools for evaluating the safety performance of
mixed traffic. Crashes are rare events, and historical crash data are scarce for mixed traffic that includes
autonomous and/ or connected vehicles. Recent safety review papers focus on traditional human-driven
vehicles (TVs) and do not encompass advanced technology vehicles such as autonomous vehicles (AVs),
connected vehicles (CVs), and connected-autonomous vehicles (CAVs). This study examines the develop-
ment, implementation, and shortcomings of SSMs and SSM-based models used for mixed traffic safety
evaluation. We review the current relevant literature and apply a case study analysis using a real-world
mixed traffic dataset. The study summarizes the fundamental SSM guiding concepts, as well as their most
significant metrics including threshold values employed in the past for SSMs and SSM-based models.
Primary benefits and limitations of examined SSMs and SSM-based models are also underlined. This review
reveals significant gaps in the literature that might guide future research paths in SSM-based mixed traffic
safety assessment. Critical gaps include the absence of robust SSM threshold selection criteria, the suitability
of current SSMs in mixed traffic research, microsimulation modeling that lacks proper calibration and
validation, and the absence of a framework for selecting or combining multiple SSMs.

INDEX TERMS Mixed traffic, surrogate safety measures, real-world mixed traffic dataset, autonomous
vehicles, connected vehicles, connected-autonomous vehicles.

I. INTRODUCTION
The introduction of autonomous vehicles (AVs) is expected
to improve traffic safety by reducing human involvement and
driver errors. We define a mixed-traffic condition where the
traffic stream contains different vehicle technologies, includ-
ing connected-autonomous vehicles (CAVs), autonomous
vehicles (AVs), connected vehicles (CV), and traditional
vehicles (TVs). The traffic dynamics of CAVs and AVs are
different from TVs [1]. Therefore, the introduction and mix of
these vehicles are likely to impact traffic flow and associated
traffic safety.

Most studies on the safety assessment of AVs or CAVs
operating in mixed traffic have used traffic conflict concepts
due to the absence of historical crash data. A traffic conflict
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is defined as an observable evasive action taken by a driver to
avoid a crash between his/her and neighboring vehicles [2].
Like crashes, traffic conflicts are affected by traffic patterns,
road users, road geometry, and other factors. In addition,
a relationship exists between crash and traffic conflict fre-
quencies [3]. According to Hyden, most traffic interactions
between vehicle pairs are undisturbed passages [3]. A small
portion of the interactions can be categorized as potential
conflicts, while crashes are sporadic. Assuming the relation
between conflicts and crashes is known, it is theoretically
possible to estimate the frequency of crashes based on the
traffic conflict measurement [4]. Nonetheless, the portion
of traffic conflicts that may result in crashes is not fixed;
instead, it varies with different traffic compositions and
across sites [5].

To measure traffic conflicts, researchers commonly use
surrogate safety measures (SSMs). SSMs use pair-wise
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vehicular velocity and spacing attributes derived from vehic-
ular trajectories to report traffic conflicts [6]. The primary
goal of using SSMs is to identify probable conflict
types emerging from the temporal or spatial proximity
of vehicle pairs based on the premise that the closer
vehicles are to each other, the more likely they are to col-
lide [7]. However, not all surrogate measures related to traf-
fic safety can be effective SSMs. An effective SSM must
be derived from those traffic conflicts potentially linked to
crashes [8]. Moreover, there should be a statistically signif-
icant relationship between traffic conflicts and the resulting
crashes.

Several review papers have shown the importance and
applicability of SSMs for the safety assessment of TV traffic
streams. For example, Gettman & Head focused their review
on SSMs used in simulation [9]. Another review by Mahmud
et al. examined proximal SSMs, primarily those that detect
traffic conflicts based on temporal or spatial proximity [7].
Johnsson et al. highlighted the SSMs used to assess the
safety of vulnerable road users such as pedestrians and bicy-
clists [10]. SSMs and related traffic conflict approaches were
mapped by Arun et al. [11]. Their main goal was to develop
a consistent framework for traffic conflict reporting method-
ologies to use in traffic safety assessments. Arun et al. [12]
conducted another review of SSMs, this time focusing on
the application of SSMs used for traffic conflict assessment
in the period from 2010 to 2019. Zheng et al. conducted a
review focusing on the modeling methodologies of traffic
conflict frequency and severity [13]. Pinnow et al. discussed
the kinematic SSMs, as well as whether these surrogates
may be contextualized at different road geometries [14].
Wang et al. reviewed the applications of SSMs in CAV
traffic stream safety modeling [15]. Tafidis et al. reviewed
the potential safety implications of SAE Level [16] 4
and 5 AVs [17].

Despite the prevalence of SSMs in the safety literature, a
comprehensive review of SSMs in the context of mixed traffic
safety assessment is missing. In the coming decades, the
market share of AVs [16] driving alongside TVs is expected
to increase [18], [19]. In addition, since mixed traffic vehi-
cle dynamics are quite different from homogenous traffic
streams, a review of the applications of SSMs for mixed traf-
fic safety assessment is an important step for future research
in this emerging area.

The objectives of this review paper are (a) to present a
comprehensive review of SSMs used in mixed traffic safety
assessment; (b) highlight their applications; and (c) uncover
research gaps. In addition, the study applies SSMs to a dataset
of mixed AVs and TVs to highlight their utility and levels of
consistency in mixed traffic safety evaluation. The paper is
organized as follows: First, we describe the method used to
identify and review the relevant literature and explain the case
study. Next, we present the findings, organized by individual
SSMs and SSM-based models. Finally, a discussion and
recommendations for future research are presented, followed
by conclusions.
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Il. METHODOLOGY

In this section, we describe the method used to search and
review the current literature on the use of SSMs for mixed
traffic safety. We then provide a case study description and
application of the method to a real-world dataset.

A. LITERATURE REVIEW PROCESS

The authors adopted a narrative review following the for-
mat described by Wee & Banister to guide the literature
search [20]. Figure 1 shows the workflow followed to iden-
tify and screen articles for eligibility. First, we identified
keywords for the search. Several synonyms were used for
traffic conflicts, such as near-crash, safety-critical events,
near misses, and risky events. In some studies, traffic con-
flict measurements are themselves referred to as surrogate
measures. In other studies, the term surrogate measures stand
for conflict indicators. Vehicular proximity in time and space
is also used synonymously with surrogate measures. As this
review focuses on mixed traffic comprising CAVs, AVs, CVs,
and TVs, synonyms of those terms were also used. Thus,
the following keywords and their combinations were used
to search the literature: traffic conflicts, safety surrogate,
surrogate measures, near-crash, near miss, mixed traffic near-
crash, connected automated vehicle, automated vehicle, con-
nected vehicle, and safety simulation. The search focused
on the following databases: Google Scholar, Web of Sci-
ence, Scopus, Transport Research International Documenta-
tion (TRID), and Taylor & Francis.

We used a direct Google search for essential reports or
manuals, such as the United States’ Federal Highway Admin-
istration (FHWA) Surrogate Safety Assessment Model [21].
Our search approach is not intended to be exhaustive;
rather, it is to search for those relevant studies that properly
address the research objectives. Selected sources included
peer-reviewed journal articles and conference proceedings.
In addition, some textbooks, reports, doctoral dissertations,
masters’ theses, and unpublished working papers that signif-
icantly contribute to surrogate safety measure research were
also included. In several cases, a backward snowballing strat-
egy [22] was used to identify relevant literature on the subject.
Because the notion of surrogate safety measures in mixed
traffic is still in its development, the backward snowballing
method allowed us to collect and review relevant material that
was deemed appropriate. In total, this search strategy yielded
160 studies that have used SSMs to assess traffic safety.
Among these, only 48 studies focused on mixed traffic safety.
We used RefWorks, a reference management tool, to manage
the references.

B. CASE STUDY DESCRIPTION

Scholars have adopted models of adaptive cruise control
(ACC) and cooperative adaptive cruise control (CACC) con-
trollers to assess the impact of AVs and CAVs on traf-
fic safety and operation [23], [24]. The main difference
between ACC and CACC is that the latter has the vehicle to
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FIGURE 1. Literature search approach.

TABLE 1. Case study platooning scenarios.

Leader Follower AVs Total
Automation Experiment
Vehicle Vehicle Level Time (s) and
Type Model Type | MO0l | oA F 2018) | Distance (m)
Hyundai Kia
TV | lonig ™V | Niro N/A 7 ‘(‘)'7450 N
hybrid 2019 2019 ’
Mitsubishi Ford S
AV SpaceStar AV Max Level 2 2723 10810 ;
2019 2019 ’
Hyundai Ford S
vV Toniq AV Max Level 2 2723 12810 ;
hybrid 2019 2019 ’
Mitsubishi Kia
AV | SpaceStar vV Niro Level 2 ;;j‘f;) .
2019 2019 ’

everything (V2X) including vehicle-to-infrastructure (V2I)
and/or vehicle-to-vehicle (V2V) connectivity.

Though the market share of ACC-equipped vehi-
cles has increased, virtually no private or commercial
CACC-equipped vehicles currently drive on the road. A few
CACC prototypes are used in controlled environments for
testing purposes only [25]. ACC-equipped vehicles are
considered the first proxy of future AVs [26], therefore,
researchers’ interest in assessing ACC vehicles’ impact on
traffic safety has also increased. In this case study, we use
the OpenACC [27] dataset. It contains several experimental
car-following trajectory data collected in different campaigns
using test tracks and actual highways, thus providing an
overview of AV dynamics that use ACC as their car-following
algorithm under various driving conditions. This study uses
a dataset collected in the first quarter of 2019 at a site in
northern Italy.

The OpenACC campaign involved three days of
car-following testing from Ispra to Vicolungo and back. Test-
ing was performed with various vehicle brands and models
driving in car-platoon formations [27]. The campaign was
on-road, and all vehicles were equipped with Ublox 8 GNSS
data acquisition devices. The acquired data had a sampling
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frequency of 10 Hz [27]. The vehicles, while driving in AV
mode, used ACC car-following. When in ACC mode, human
drivers did not intervene. Thus, the vehicles’ acceleration
and deceleration were strictly guided by the ACC function.
In emergency cases, drivers were allowed to apply the brake
pedal. AVs were programmed to use the shortest time gap set-
ting to avoid cut-in situations from other users. Additionally,
no overtaking was performed. For this study, we selected four
different leader-follower car-following scenarios as shown in
Table 1: (a) TV-TV platoon: (b) AV-AV platoon (c) a TV-AV
platoon and (d) AV-TV platoon.

We extracted, for each vehicle in a platoon, the following
attributes:

1. Speed profile

2. Time gap distribution with other vehicles

3. Acceleration profile

4. Relative speed vs. lead vehicle

5. Relative distance vs. lead vehicle

6. Inter-vehicular spacing

The extracted data was used for SSM analysis. All sce-
narios were carried out in the open highway with no
interruptions.

lIl. FINDINGS

In this section, we present a summary of the findings based
on the literature review and case study analysis. We describe
the applications of SSMs, as well as their shortcomings in the
context of mixed traffic safety evaluation.

A. SSMs USED IN MIXED TRAFFIC SAFETY RESEARCH

We first categorize SSMs used in mixed traffic safety assess-
ment into two classes a) Individual SSMs and b) SSM-based
models. We further divide the individual SSMs into five
categories and the SSM-based models into six categories.
In this section, we discuss the applications and limitations of
the individual SSMs and SSM-based models’ for assessing
mixed traffic safety. Definitions and related equations for
individual SSMs can be found elsewhere (Appendix found
within the supplementary files on IEEE Xplore). A liter-
ature summary of SSM applications in mixed traffic safety
assessment is given in the Appendix found within the sup-
plementary files on IEEE Xplore.

1) INDIVIDUAL SSMs

a: TIME-BASED SSMS (TSSMS)

TSSMs are the most frequently used SSM for mixed traffic
safety assessment as depicted in Figure 2. They use the
temporal proximity between a vehicle pair to flag a traffic
interaction as traffic conflict [28]. TSSMs assume that vehi-
cle pairs may be on a collision course within a considered
time interval [7]. Therefore, TSSMs cannot identify conflicts
where a collision course between vehicle pairs does not
exist [29]. Time to collision (TTC) is the most widely used
TSSM for mixed traffic safety assessment. TTC is popular
because of its simplicity in measurement; however, TTC has
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several limitations. First, TTC can only report the number of
conflicts, but it cannot assess the severity of conflicts [30].
Second, TTC assumes that consecutive vehicles will maintain
current speeds while ignoring many potential conflicts due to
acceleration or deceleration discrepancies [31]. Third, TTC
cannot measure the potential risk of car-following scenarios
when the following vehicle’s speed is equal or slightly below
that of the leading vehicle, while the spacing between two
vehicles is comparatively short, so that a slight perturbation
could generate a rear-end collision risk [32].

In addition, TTC is strictly dependent on linear measure-
ments. Thus, for turning movements, TTC may not provide
the correct interpretation. The first limitation of TTC is
addressed by several other TSSMs. For example, the time-
integrated time-to-collision (TIT), a TTC-dependent SSM
introduced by Minderhoud & Bovy [33] accounts for the
severity of traffic conflicts by integrating the difference
between a TTC threshold and the TTC value at time instant
t. Ozbay et al. [34] proposed a modified time to collision
(MTTC) to overcome the shortcomings related to acceler-
ation or deceleration discrepancies. The third limitation is
addressed in the time to collision with disturbance (TTCD)
SSM introduced by Xie et al. [35]. TTCD can assess rear-end
conflicts when the following vehicle is slower than the lead-
ing vehicle and the leading vehicle generates a disturbance
to the following vehicle by an abrupt deceleration. Another
widely used TSSM used for mixed traffic safety assessment
is post encroachment time (PET). PET is used for angle
and turning traffic conflict reporting. Several drawbacks are
noted for conflict reporting using PET. First, though a lower
PET value indicates a higher conflict severity, it does not
consider the vehicle pairs’ speed and distance. Thus, the
severity results may not be accurate. Second, PET measure-
ment requires a fixed spatial collision point, and thus it cannot
consider conflicts that change its spatial dynamics, especially
in rear-end interactions. Finally, PET is not suitable for con-
flict identification while the vehicle pairs are in the same lane.

b: DECELERATION-BASED SSMS (DESSMS)

In car-following situations, the following vehicle will decel-
erate in response to the leading vehicle’s evasive action to
avoid a collision [7]. DeSSMs evolved from the idea that
traffic conflicts can be reported by the rate of decelera-
tion applied in response to a sudden event. Like TSSMs,
DeSSMs presume that the vehicle pairs must have a collision
course and unchanged path and speed within the considered
time interval. In addition, DeSSMs must have a threshold to
differentiate between conflicting and non-conflicting traffic
interactions [9].

Deceleration rate to avoid crash (DRAC) is the most fre-
quently used deceleration-based SSM for mixed traffic safety
assessment, as shown in the Appendix found within the
supplementary files on IEEE Xplore. Our review found
that DRAC does not consider the response time (RT) of the
following vehicle. Adomah et al. suggest a modified DRAC
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FIGURE 2. Frequency of SSM categories documented in the literature.

(MDRAC) as an improvement over regular DRAC [36]. The
key distinction between DRAC and MDRAC is that the latter
considers the response time of the following vehicle. In addi-
tion, DRAC cannot account for several potential traffic con-
flicts since it does not consider road and vehicle types [6]. For
example, the same DRAC threshold is used under both dry
and wet pavement conditions. Furthermore, heavy vehicles
have a more difficult braking maneuver due to their greater
mass [37]. Therefore, using the same DRAC threshold for
both passenger cars and heavy vehicles is inadvisable.

To overcome some of these limitations, Cunto & Sac-
comanno [6] proposed a crash potential index (CPI) that
estimates individual vehicle crash risks considering pavement
conditions and driver type. CPI gives the probability of a
given vehicle’s DRAC exceeding its maximum allowable
deceleration rate (MADR) during a given interval. MADR
is defined as the maximum deceleration a vehicle can apply
to avoid a collision for a given road and vehicle type. CPI
works well with rear end collision detection; however, it is not
suitable for detecting conflicts due to lateral movements [7].
Joetal. [38] and Ko et al. [39] used CPI to assess mixed traffic
safety comprising CVs and TVs. However, no documented
application of CPI in mixed AVs or CAVs was found in
the documented literature. According to Cunto & Sacco-
manno [6], the mean and standard deviation of MADR for
passenger vehicles are 8.45 m/s?and 1.40 m/s?, respectively.
For both trucks and buses, the mean and standard deviation
of MADR is 5.01 m/s?and 1.40 m/s?, respectively. We expect
that in the application of CPI to mixed AVs and CAVs fleets,
significant changes to the values of MADR will be needed
to reflect change in response patterns. This is a ripe area for
future research.

c: DISTANCE-BASED SSMS (DSSMS)
Here, the distance available to avoid a collision is the main
element for conflict reporting. DSSMs depend on the vehi-
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cles’ safe stopping distance (SSD) computation. SSD mea-
sures the distance within which the following vehicle could
maneuver to avoid a collision with the leading vehicle with
maximum deceleration when the leading vehicle makes a
sudden deceleration. SSD depends on the RT of the vehi-
cles, initial speed, and pavement condition. One advantage of
using DSSMs is that the threshold is mostly fixed. However,
RT estimates are critical to producing accurate outcomes
in DSSMs traffic conflict reporting. Researchers have used
different values of RT for different classes of vehicles. For
example, Li et al. [40] assumed 0.1 s RT for CAVs, and
Okamura et al. [41] assumed 0.3 s RT for AVs. Neither author
justified their RT values. Should the assumption of RT be
inaccurate, then the DSSMs may under or over report the
number of conflicts.

In this review, we found that time-exposed rear end crash
risk (TERCRI) [42] is the most frequently cited DSSM
(Appendix found within the supplementary files on IEEE
Xplore). TERCRI uses the concept of rear-end crash risk
index (RCRI). RCRI is also used for mixed CAVs and TVs,
such as in Li et al. [40]. Our review also found that DSSMs
cannot report traffic conflicts due to lane changes. In addition,
DSSMs do not consider overtaking sight distance, which
could be a critical safety issue for two-way traffic.

d: ENERGY-BASED SSMS (ESSMS)

The idea of ESSMs is borrowed from vehicle kinetics, which
describes the influence of speed on kinetic energy involved
in collisions. ESSMs measure the amount of energy dissi-
pated during a collision. The dissipated energy in a colli-
sion depends on the speeds and the mass of vehicle pairs
involved and the angle at which the vehicles approach each
other (see [43]). The primary assumption in ESSMs is that
all traffic collisions are inelastic. Therefore, the amount of
energy dissipated mirrors the conflict severity. In addition,
no threshold is used for ESSMs to report a traffic conflict;
instead, it only reports the traffic conflict severity. One of the
main limitations of ESSM resides within its assumption that
all collisions are inelastic; therefore, ESSMs cannot measure
the energy absorbed by the deformation of the colliding
bodies.

The only documented ESSM used for mixed traffic safety
assessment is DeltaV. DeltaV shows the change in velocity
between pre-collision and post-collision trajectories of a
vehicle pair (See Appendix found within the supplemen-
tary files on IEEE Xplore). The surrogate safety assess-
ment model (SSAM) reports DeltaV as a part of its output.
However, the implications of DeltaV are limited because
it does not consider the temporal or spatial proximity of a
traffic conflict. In the SSAM model, DeltaV is measured
between two vehicles considering the angle and velocity
they have when TTC;, takes place. Therefore, an encounter
with a TTCp,;, greater than a second can have the same
computed DeltaV value as an encounter with a TTCp, of
less than a second. This is highly in dispute with the principles
of TSSMs.
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e: COMBINED SSMS (CSSMS)

SSMs that do not fit into any of the preceding distinctive
classes and are either combination of previous distinctive
classes or use new a knowledge domain are referred to as
combined SSMs. Combined SSMs have been developed to
overcome the constraints of single class SSMs by providing
additional aspects and by adding new knowledge to inter-
preting traffic conflicts. Driving volatility (DV) is frequently
used in mixed traffic safety assessment (see Appendix found
within the supplementary files on IEEE Xplore). DV uses
vehicle kinematics and statistics knowledge to report a traf-
fic conflict by tracking miniscule variations (e.g., speed,
acceleration) in driving that affect the vehicle’s longitudinal
control. Increases in DV indicate an increase in collision
probability [44]. Deviation in speed, acceleration, and jerk
can be attributed as DV [45], [46](See Appendix found
within the supplementary files on IEEE Xplore). Ding
et al. [47] introduced an average damping ratio (ADR) to
show how vehicular oscillations are damped or amplified
through a vehicle platoon. Vehicular oscillations may be the
main cause of system string instability. Conversely, string sta-
bility describes how a vehicle string mitigates the oscillation.
Therefore, if the oscillation is damped as it propagates back
through the platoon, the collision probability is reduced and
vice-versa. ADR uses the combined knowledge domain of
vehicle kinematics and statistics to show string stability as
a surrogate to report rear- end conflicts [48]. Finally, MaxS
(maximum speed of the vehicle), a default output of the
SSAM model, is used by Tibljas et al. [49] to assess the safety
impact of AVs in mixed traffic at a roundabout.

2) SAFETY MODELS

Surrogate safety models report traffic conflicts by combining
separate SSMs or by using data-driven probabilistic esti-
mation methods. To the authors’ best knowledge, six cate-
gories of surrogate safety models have been used for mixed
traffic safety assessment: 1) Uncertainty model; 2) Extreme
value theory model; 3) Causal and counterfactual Model; and
4) SSAM; 5) Deep learning (DL) and machine learning (ML)
based surrogate safety models; and 6) Fuzzy logic based
surrogate safety model.

a: UNCERTAINTY MODEL
Vehicle motion parameter estimates (e.g., speed, acceleration
or deceleration, time gap) are significant aspects to consider
when reporting traffic conflicts, but so are variations in vehi-
cle types, driving behavior, and road geometry. Different
combinations of drivers and vehicles could produce different
results for the same vehicular motion characteristics. Accord-
ing to Davis et al. [50], an accurate model that estimates
traffic conflicts may be built by considering the uncertainty
in driving behavior and vehicles while evaluating the crash
probability.

Uncertainty modeling aims to build a probabilistic model
using available data to represent both the marginal and joint
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probability density function (PDF) of the random variables
in the crash prediction system. Uncertainties in variations in
vehicles, driving behavior, and road geometry are considered
random variables in the uncertainty model. The general equa-
tion for the uncertainty models’ crash prediction is described
as follows:

N
P (crash) = 1 — Z P(A) 1)

i=0

where A; represents the i necessary measure for crash avoid-
ance. These measures include but are not limited to steering
rate, braking rate, and road geometry. The measures can be
mutually exclusive or correlated. For probability estimation,
the sample distribution must be identified. Two methods
estimate the PDF of random variables based on data: a) a
parametric approach, which fits the data to a specific prob-
ability distribution, such as negative binomial, exponential
or Gaussian distributions; and b) a nonparametric approach.
The latter represents any arbitrary distribution shape entirely
based on available data using kernel functions or mixture
models (e.g., Gaussian mixture model (GMM) and copula
functions). For example, Liu et al. [51] used a Gaussian
copula model in the uncertainty modeling step to accurately
represent various uncertainty sources in the road traffic con-
ditions based on real-world AV data.

b: EXTREME VALUE THEORY (EVT)

Extreme value analysis can model the stochastic behavior of
the process that is abnormally large or small within a dataset
found in the tails of probability distributions. The EVT
approach in safety analysis is used because it can estimate
those rare, unsafe traffic interactions or traffic conflicts [52].
EVT makes the implicit assumption that the stochastic behav-
ior of the modeled process is sufficiently smooth to allow
extrapolation to unobserved levels [53]. Therefore, EVT aims
to predict probabilities for rare events such as a crash. EVT
offers two methods to sample extreme events: a) The block
maxima (BM) using generalized extreme value distribution
(GEV), and b) the peak over threshold (POT) using gener-
alized pareto distribution (GPD). The BM method divides
the sample time into blocks of a certain length and sam-
ples the largest value (or r largest values) in each block.
In contrast, in the POT method, all peak values are sampled,
and the values over a certain threshold are used to model
the extremes. Asljung et al. [54] applied EVT to estimate
AV safety. The authors used the POT method to define the
probability distribution.

c: CAUSAL AND COUNTERFACTUAL MODEL

According to the causal model, the probability of an
encounter yielding a traffic conflict depends on the initial
condition (U) and evasive action (X), where the probability
of a crash is:

P(y,x,u) = P(y|x,u) P(x|u)Pu) @
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Here, y is crash-related outcome and P (y, x, u) is the prob-
ability distribution of the crash-related outcome. P(u) is a
probability distribution over the values taken on the initial
conditions; P(x|u«) is a conditional probability distribution for
the evasive action; and P(y|x, u) is a conditional probability
distribution for the evasive action and the initial variables.
Once the traffic probabilities for each of a set of evasive
events and initial conditions are calculated, the expected num-
ber of traffic conflicts corresponding to the observed conflicts
can be obtained by summing the probabilities [50]. Tarko
and Lizarazo [5] demonstrated the use of causal relationship
in their study estimating rear end conflicts using driving
simulator data. The authors assumed that a traffic interaction
could be a conflict if caused by a failure or lag in the response
of road users. Therefore, using the failure or lag in response
as a cause, the authors estimated the probability of rear end
crashes.

d: SURROGATE SAFETY ASSESSMENT MODEL (SSAM)
SSAM combines multiple independent SSMs into a model to
report a traffic conflict. It is a software that extracts vehicle
trajectory information from microscopic models to automat-
ically find, classify, and analyze traffic conflicts [21]. SSAM
also has statistical analysis features for conflict frequency and
severity reporting. A facility simulated with the desired traffic
conditions employs SSAM to assess traffic safety (typically
simulating several replications with different random number
seeds). Each simulation run generates a TRJ file contain-
ing the associated vehicular trajectories. SSAM serves as a
post-processor to evaluate the batch of TRIJ files. It looks for
conflict scenarios in vehicle-to-vehicle encounters, collects,
and reports them all.

e: DEEP LEARNING (DL) AND MACHINE LEARNING (ML)
BASED SURROGATE SAFETY MODELS

Deep and machine learning methods have been widely
reported due to the availability of computational resources
and the emergence of extensive data generated from multi-
ple sources [55]. These high-frequency naturalistic driving
data contain detailed information on crashes and near-crash
events. DL and ML-based surrogate models use this informa-
tion coupled with driver behavior and vehicular movements
to report a traffic conflict in real-time [56]. Our review found
abundant applications of ML-based road safety models for
homogenous traffic streams (TV, AV, or CV). Some popular
ML techniques used for road safety research include regres-
sion analysis [57], decision trees [58], and support vector
machines (SVMs) [59]. Similarly, the application of DL-
based surrogate safety models for homogenous traffic streams
(TV, AV, or CV) is plentiful [60], [61], [62], [63], [64], [65].
For example, Hu et al. used individual SSMs and machine
learning models for initial prediction of traffic conflicts and
coupled the outcomes with macro traffic state of TV stream
to propose a deep leaning based surrogate safety model [65].
Using a different approach, Jiang et al. combined a convolu-
tional neural network (CNN) and a long short-term memory
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(LSTM) based neural network to report traffic conflicts. The
authors used CNN to extract trajectory data from traffic
videos and LSTM to predict traffic conflicts. Our review
found that the application of deep learning method to report
traffic conflicts considering mixed traffic is insufficient [66],
[67]. In one of just two existing studies, Arvin et al. used
CNN-LSTM to report traffic conflicts considering mixed
AV-TV traffic [67].

f: FUZZY LOGIC-BASED SURROGATE SAFETY MODELS
Fuzzy logic-based models are not constrained to binary cases
of true and false; rather, fuzzy logic includes O and 1 as
extreme cases of truth but with various intermediate degrees
of truth [68]. Also, most of the SSMs employed rely on
classical set theory to separate safe and unsafe conditions,
using thresholds that are many times arbitrary. However, con-
sidering much of the data used, the recognition and response
lag of the controllers, driver heterogeneity, manufacturer het-
erogeneity, and the consideration of marginal error, it is rea-
sonable to assume that a definite distinction between totally
safe and entirely unsafe conditions is difficult [69]. Therefore,
researchers have used fuzzy-based SSM to avoid rigid thresh-
olds and consider system uncertainties [68], [69], [70], [71].
Among the studies of this topic, Mattas et al. used real-world
AV trajectory data to validate the proposed fuzzy logic based
SSM [70]. The authors found that the fuzzy-based SSM
outperformed traditional SSMs in reporting traffic conflicts.
The fuzzy logic based reported traffic conflicts yielded a
higher correlation with actual safety-critical situations than
the traditional SSM-reported traffic conflicts.

B. STUDY PLATFORMS AND FACILITIES COVERED
Among the literature that dealt with mixed traffic safety
assessment, microsimulation studies were prevalent (82%)
per Figure 3(a). Only 11% of the studies used real-world
data, and only a handful were in driving simulators (4%) or
agent-based modeling (4%). Among the simulation studies,
34 (89%) out of 38 studies used TTC as an SSM. Real-world
studies also used TTC. The type of study platform heavily
influenced the choice of SSMs in real-world studies. For
example, studies that used real-world data in mixed traffic
collected their data on test tracks or highways, exclusively on
car-following and not considering lane changing. Therefore,
SSMs that could report rear-end conflicts were chosen.
Consequently, we found multiple applications of TTC,
DRAC, TTCD, RCRI, and MaxS for mixed traffic safety
assessment using real-world data. In addition, researchers
have used DV to capture the dangerous variations in vehicle
kinematic parameters through statistical dispersal measures
such as standard deviation and coefficient of variation [44],
[72]. Our review also found that lane-changing effects were
strictly considered in simulations environments. Figure 3(b)
shows that most mixed traffic safety assessment studies were
conducted on freeways with and without dedicated lanes
(DLs) (49%) and on arterials (21%). Study of signalized
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FIGURE 3. Study platforms and facilities reviewed.

intersections and roundabouts each comprised 13%,
while hardly any research was conducted on alternative
intersections.

C. REVIEW OF SSM THRESHOLD SETTINGS
Traffic conflict reporting by individual SSMs is threshold
dependent. Different studies have used different threshold
values considering the diversity of roads, driver types, partic-
ipating road users, and vehicle types. As mentioned earlier,
TSSMs cannot flag a traffic interaction as a traffic conflict
unless a threshold is defined. For TVs, the threshold selection
of TSSMs relies on the value of the RT of drivers, while
for AVs and CAVs, the threshold selection relies on the RT
(sensing, communication, and mechanical delays) of the vehi-
cles. Our review found that the TTC threshold preferences
typically vary between 1.5 and 4 seconds for TVs [33].
Most of the reviewed studies set the same TTC threshold
for mixed traffic without considering the effect of vehicle
technology. Many researchers employed the same 2 s TTC
threshold [73], [74] and 1.5 s [75], [76], [77] for different
types of vehicles operating in mixed traffic situations (see
Appendix found within the supplementary files on IEEE
Xplore). A few researchers used different TTC thresholds
based on the car following situations; however, no justifica-
tion of the threshold value selection was cited. For example,
Virdi et al. [78] employed two different TTC thresholds for
two different car-following scenarios. The authors assumed
a threshold of 0.75 s when a CAV was the following vehicle
and 1.5 s when a TV was the following vehicle. Conversely,
Sinha et al. [75] assumed no traffic conflicts when CAVs were
the following vehicles. However, when a TV was the fol-
lowing vehicle, they set the TTC threshold to 1.5 s. Rahman
and Abdel-Aty [42] justified using the same TTC threshold
selection for all types of vehicles operating in a mixed traffic
scenario via sensitivity analysis and demonstrated that TTC
threshold selection (from 1s to 3 s) had a minor effect on
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the resulting number of traffic conflicts. Many researchers
use the same strategy to justify using the same TTC thresh-
olds for all types of vehicles operating in a mixed traffic
situation [42], [74], [79].

Furthermore, Ye and Yamamoto [46] did not consider any
TTC threshold. Instead, the authors showed that the distri-
bution of TTC values for different mixed traffic conditions
varied based on the market penetration rate of CAVs. They
also reported the TTC,j, to demonstrate the conflict severity
of a particular mixed traffic condition. Though the study gave
an overview of the driving safety conditions of mixed traffic,
it was impossible to report the number of conflicts without a
threshold value. Similar to TTC, the PET threshold depends
on the RT of drivers/vehicles. Archer [80] used a PET thresh-
old value of 1.0 s. Interestingly, a handful of researchers
used a longer PET threshold of 5 s to define risky situations
[75], [76]. However, no justification for this relatively large
threshold was documented. Similar to TTC, researchers of
mixed traffic safety used the same PET threshold for all
vehicle types, though the RT for TVs, CAVs, and AVs is likely
different.

Our review found that the DRAC threshold ranges from
3 m/s? to 3.40 m/s%. For example, AASHTO [81] recom-
mends a DRAC threshold of 3.40 m/s. Similarly, Archer [80]
proposed that if a vehicle braking exceeds 3.35 m/s?, it should
be reported as a conflict, consistent with the AASHTO rec-
ommendations. Research by Xie et al. [35] used a different
DRAC threshold of 3.0 m/s? to report traffic conflicts of a
real-world CV data. Although the authors used a lower DRAC
threshold of 3.0 m/s?, they did not justify their decision.

In summary, no consensus exists for selecting the SSM
thresholds. Nonetheless, the outcome of traffic conflict anal-
ysis relies heavily on threshold selection. Songchitruksa &
Zha [82] noted that using the traditional TTC threshold of
1.5 s produced eight times more conflicts than a threshold
of 1.0 s in the safety assessment of CVs. This result demon-
strates the importance of selecting the proper threshold for
traffic conflict reporting by individual SSMs.

Our review found that the traffic environment can also
affect the SSM threshold selection. Arun et al. [12] found
that in organized traffic environments, the ordered nature of
traffic flows makes it easier to correctly measure speed and
distance, a requirement for TTC calculation. Conflict studies
in less-organized traffic situations must rely on manual con-
flict detection methods, and typically use higher TTC thresh-
olds to account for human error. In addition, thresholds are
indicative of the safe limit of driving capabilities. Therefore,
in the case of AVs and CAVs and their interaction with TVs,
a justified threshold selection process is required. Further
research is needed on developing a defensible framework for
determining SSM thresholds based on the road facility type
and the traffic mix.

D. FINDINGS FROM THE CASE STUDY
The goal of the case study analysis is to draw general infer-
ences on the use of SSMs for mixed traffic safety assessment
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by analyzing different car-following scenarios as described in
section II-B.

1) COMBINING SSMs IS MORE EFFECTIVE THAN USING A
SINGLE SSM FOR TRAFFIC CONFLICT REPORTING

Figure 4 (a-d) depicts the reported case study scenarios of
traffic conflicts using three different SSMs. The four figures
show different time intervals with similar duration (200 s).
We chose different time intervals because not all time inter-
vals had reported traffic conflicts. Figure 4 (a-d) shows that
traffic conflicts reported by a single SSM may not accurately
reflect the overall safety of the investigated cases. For exam-
ple, Figure 4 (a) shows that according to difference of space
distance and stopping distance (DSS), the traffic interaction
from 5-20 s is flagged as traffic conflict. However, neither
DRAC nor TTC flagged it as such. This occurs because each
SSM has its own definition and measurement methodology.
However, the traffic interaction from 77-80 s is flagged as a
traffic conflict by all three SSMs, increasing confidence in
assessing a potential conflict.

We see similar findings from Figure 4 (b-d). For example,
Figure 4 (c) shows that the traffic interaction from 615-618 s
was flagged as a traffic conflict by all three SSMs, giving the
analyst a higher confidence in the actual conflict occurrence.
The same observation can be made in Figure 4(d) in the
period 370-374s. Though DSS, DRAC, and TTC measure
rear-end traffic conflicts, they did identify different time steps
as traffic conflicts. In addition, Figure 4 makes clear that
DSSMs (DSS) tend to report a lot more traffic conflicts than
temporal TSSMs (TTC) and DeSSMs (DRAC).

Some researchers have combined SSMs to report traffic
conflicts. For example, Ding et al. [47] used TTC, TIT, TET,
and ADR to report traffic conflicts. However, they did not
explain the motivation for the selected four out of the dozens
of SSMs available. Similarly, Guériau and Dusparic [83]
chose TTC and PET to report traffic conflicts without jus-
tifying their choice of SSMs. In fact, our review found that
no collective guidance exists to propose the best set of SSMs
that can accurately report traffic conflicts considering the
different traffic facilities and vehicle composition. As a result,
the use of SSMs in traffic safety studies is hampered by the
lack of an overarching framework.

2) DISCOUNTING ACCELERATION AND DECELERATION
VARIATIONS WITHIN AN INTERVAL YIELDS FEWER TRAFFIC
CONFLICT REPORTS

Our review found that TTC and DRAC generally report
fewer traffic conflicts because both assume that within a
considered interval of time, the acceleration or deceleration
of the subject vehicle pairs will remain unchanged. Our case
study confirms those findings. Figure 5 (a-d) shows that TTC
and DRAC reported fewer traffic conflicts than MTTC in
all car-following scenarios. MTTC considers acceleration or
deceleration discrepancies of the vehicles within considered
interval of time. Our analysis also found that distance-based
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FIGURE 4. Conflict reporting profile via 3 SSMs.

SSMs are less affected by acceleration or deceleration dis-
crepancies.

3) THE ROLE OF RESPONSE TIME

Our analysis revealed that SSMs’ traffic conflict reporting
depends on the assumed RT values. The case study analy-
sis corroborates our review finding that increasing the RT
assumption by 0.5s for TV-TV scenarios increased the num-
ber of traffic conflicts reported by RCRI by 50%, DSS by
35%, and margin to collision (MTC) by 42%. We observed a
similar trend for all other scenarios as well. Therefore, we rec-
ommend estimating RT for all vehicles involved (e.g., TVs,
AVs, CAVs), rather than assuming a fixed value, to enable
accurate traffic conflict reporting.

IV. DISCUSSION AND FUTURE DIRECTIONS
This paper reviewed the SSMs and SSM-based models
used in mixed traffic safety assessment studies. In addition,
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FIGURE 5. Reported duration in conflict by car following scenario
and SSM.

we analyzed a real-world case study using mixed-traffic pla-
toons comprising AVs and TVs to draw general inferences
on the use of individual SSMs for mixed-traffic safety anal-
ysis. The review of literature and case study analysis have
identified several limitations and research needs in the current
literature. Those are briefly discussed below.

A. SSMs SHORTCOMINGS IN MIXED TRAFFIC SAFETY
LITERATURE

This subsection discusses limitations in existing research
practices for assessing mixed traffic safety using SSMs.

1) SIMULATION-BASED STUDIES LACK PROPER
REPRESENTATION OF UNSAFE DRIVING
Most reviewed mixed-traffic safety assessment studies were
simulation-based, per Figure 3 (a). Simulation models tend to
replicate safe driving behavior, not aberrant driving behavior.
As a result, simulation platforms cannot simulate intense and
dangerous vehicle interactions [83].

Simulation platforms use car-following models and lane
changing models to represent the driving behavior. All car-
following and lane-changing models used in simulation
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platforms (e.g., Wiedemann 99, Intelligent Driving Model
(IDM), Adaptive Cruise Control (ACC) and Cooperative
Adaptive Cruise Control (CACC)) are coded to be collision-
free. For example, SUMO [84] uses the ACC car-following
model [85] to represent AV car-following. SUMO uses a col-
lision avoidance mode so that the AV car-following remains
collision-free. To illustrate using the ACC car-following
model, AV acceleration is a function of gap error and speed
difference with the preceding vehicle. When the distance of
the subject AV with the preceding vehicle is below 100 m, the
speed difference between the AV and its preceding vehicle is
less than 0.1 m/s, and the gap error is negative, the following
vehicle will activate the collision avoidance mode. In this
mode, the following AV will use emergency deceleration to
avoid collision [84].

Furthermore, current simulation tools lack the adjustments
to driving behavior related to road geometry, which may
lead to traffic collisions. For example, most of the micro-
simulation platforms (e.g., VISSIM) use links and connectors
to direct traffic flow. In a case where connectors of two oppos-
ing left turn at an intersection are created without overlapping
opposing left-turn paths, no chance exists for the opposing
left turns to experience head-on conflicts. In the real world,
drivers may not strictly follow lane markings. Therefore,
applying SSM in the simulation platform may ignore these
potential conflicts.

2) MICRO-SIMULATION MIXED TRAFFIC STUDIES LACK
PROPER CALIBRATION

Our review found that about 30% of existing simulation
studies did not report any calibration efforts, while the rest
included calibration with traditional vehicle traffic streams
only. The paucity of mixed traffic data makes the calibration
and validation process for mixed traffic safety simulation
challenging. However, safety assessment using SSM lacking
proper calibration may produce misleading conclusions [15].
As an example, if DRAC is used as an SSM and applied to
a simulated trajectory, the acceleration profile of the real-
world and simulated data should be similar. However, Das
et al. found that the default parameter values of the ACC
model [86] generate trajectories with significantly differ-
ent acceleration profiles from real-world acceleration pro-
files. Thus, SSM should only be used for assessing mixed
traffic once thorough calibration and validation have been
completed.

3) INABILITY TO CAPTURE BEHAVIORAL HETEROGENEITY

Individual SSMs and SSM-based models cannot capture
unobserved vehicular heterogeneity. Traffic conflicts are
extracted from vehicular trajectories that show vehicular posi-
tion over time. However, many other unobserved factors
can contribute to traffic conflicts that cannot be captured
through individual SSMs or SSM-based models. For exam-
ple, in mixed traffic, the design variations of AVs posed by
different manufacturers may cause unobserved heterogeneity.
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In addition, the interaction of AVs or CAVs with TVs may
be affected by driver age, occupation, and socio-demographic
factors that are not observable by the current SSMs or SSM-
based models. If we ignore unobserved heterogeneity, the
SSM-based model will be incorrectly specified, and the esti-
mated parameters will be biased and inaccurate, leading to
flawed conclusions and estimates.

TABLE 2. Identified datasets with mixed vehicle fleet.

Dataset Vehicles S’?E ‘?,V Publicly
(Reference) involved a ;:::lmn Available
Knoop et al. [87] AVs & TVs Level 1 No
USDOT Carma AVs, CVs &
[88] CAVs Level 1 &2 Yes
Li et al. [89] AVs & TVs Level 1 &2 Yes
OpenACC [27] AVs & TVs Level 1 &2 Yes
THEA Connected
Vehicle Pilot CVs & TVs N/A No
[90]

4) LACK OF REAL-WORLD DATA ON AV AND CAV LATERAL
RESPONSE

Our review found only three publicly available datasets
[27], [91], [92] as shown in Table 2. These datasets only
comprise car-following trajectories and lack lane changing,
merging, diverging, or weaving trajectories. Our review indi-
cates that traffic conflicts related to lane changing com-
prise a significant portion of the total conflicts [15]. Con-
sequently, a simulation model calibrated based exclusively
on car-following trajectories will miss many of the traffic
conflicts related to lane changes.

5) SHORTCOMINGS OF SSM-BASED MODELS
Some SSM-based models, such as the uncertainty model
and EVT, can estimate a traffic conflict without explicitly
setting thresholds, giving them a significant advantage over
individual SSMs. Those models use a predefined statisti-
cal distribution to estimate traffic conflicts. For example,
EVT model calibration uses traffic conflict extremes. These
extreme observations are rare, especially when the conflict
observation time is short. Due to this small sample size, the
identified conflict extremes by either the BM approach or the
POT approach may not represent the actual extremes [93].
Using non-real extremes for EVT model development vio-
lates the asymptotic assumption, the foundation of EVT. Con-
sequently, the fitted parameters of the EVT distribution could
be biased and less accurate due to the limited sample size.
Thus, it is crucial to investigate how the sample size affects
the statistical assumptions of the models. Based on our review
regarding sample size, we find that it is also necessary to use
an appropriate sample size of traffic conflicts to estimate an
unbiased, accurate model [94].

Additionally, data-driven surrogate safety models (such as
deep learning-based and fuzzy logic-based models) are now
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considered reliable means to report traffic conflicts. The ease
of data collection and resulting abundance of fine-resolution
data facilitate modeling traffic conflicts with data-driven
models. Nonetheless, data-driven models are not without
drawbacks. For example, deep learning models tend to over-
fit. Consequently, the proposed model correlates only within
the range of the underlying dataset. Therefore, the transfer-
ability of the proposed model raises some questions. Another
problem with deep learning algorithms is that they can map
input and output well but do not understand well the context
of the data.

Moreover, deep learning methods are still a black box;
therefore, the explicability of these models is challenging.
Conversely, a significant drawback of fuzzy logic control
systems is that they depend entirely on human knowledge
and expertise. Labeling the dependent variable is not binary
and thus needs human justification to define the dependent
variable. Therefore, the systems require a lot of testing for
validation and verification. Additionally, all data-driven mod-
els depend on the accuracy of the data. Hence, it is necessary
to check the validity and accuracy of the data before using it
for modeling purposes.

B. RESEARCH NEEDS

As stated earlier, simulation models lack representation
of anomalous driving behavior. Therefore, the outcome of
simulation-based safety studies is also limited. Calibration
through real-world car following and lane-changing mixed
traffic data can mitigate this limitation. Recently several field
studies on AV and CAV platooning have been conducted (e.g.,
CARMA, OpenACC). Unfortunately, most collected data are
either protected by industry copyright or not publicly avail-
able. Consequently, researchers must still rely on simulation-
based studies, which are also hindered by the lack of data.
Therefore, it is important to grow the current set of field
experiments with mixed traffic, including car following and
lane-changing observations. It is also important to make those
data publicly available.

1) EXPLORING THE VALIDITY OF CURRENT SSMs

Previous research expended substantial effort to justify using
SSMs to assess traffic safety [5], [95]; however, those efforts
focused exclusively on homogenous TV streams. It is unclear
whether SSMs validated for a TV traffic stream are appli-
cable to mixed traffic. One straightforward way to validate
an SSM is to compare its frequency with crash data. How-
ever, historical crash data are absent for AVs and CAVs in a
mixed traffic stream. In addition, the response of AVs and
CAVs is expected to differ from TVs, depending on their
automation levels. We reviewed ten current ACC-equipped
AVs by different manufacturers and found that users of
ACC-equipped vehicles can choose their driving mode. For
example, the 2021 Honda Civic has four different gap setting
options (short, middle, long, and extra-long), ranging from
1.1s to 2.9s [96], whereas, a 2021 Cadillac XT4 has three
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different gap options ranging from 1.1sto 2.5 s [97]. In reality,
conservative time gap driving in a Honda AV is unlikely to be
equivalent to conservative time gap driving in a Cadillac AV.
Thus, AVs and CAVs can have different driving styles and
desired time gaps, even within the same automation levels.

Furthermore, TV drivers may behave differently in the
presence of CAVs and AVs in the traffic stream. Therefore,
it is advisable to set a standard of SSMs in mixed traffic
that can account for the different traffic scenarios, automa-
tion levels, and driving styles. As such, existing SSMs and
corresponding thresholds may require some revision. For
instance, the TTC threshold of 1.5s or the DRAC threshold
of 3.35 m/s?> must be evaluated to determine if they will
still work in a mixed traffic scenario. The question remains
whether TV-based SSM models are applicable under mixed
traffic conditions.

2) EXPLORING THE SUITABILITY OF SSMs BY FACILITY TYPE
The accuracy of the traffic conflict reporting by SSMs
depends on the type of facilities considered. For exam-
ple, detecting rear-end and right-angle conflicts is vital to
assess traffic safety at signalized intersections. Our review
found that studies on signalized intersections used SSMs that
are efficient in rear-end and right-angle conflict reporting.
TTC and DRAC can report rear-end and head-on traffic
conflicts, whereas PET reports right-angle traffic conflicts.
Our review also found that TTC, PET, and DRAC were
the most frequently used SSMs in the safety assessment of
signalized intersections. Conversely, roundabouts eliminate
all straight-line interactions between the vehicles except on
the approaches [11]. Therefore, PET was the most frequently
used SSM for encroaching type traffic conflict reporting for
roundabouts. Overall, the field lacks clear recommendations
on which set of SSMs should be applied based on the type of
facility being examined.

3) EXPLORING THE SUITABILITY OF SSMs BY ROAD USERS
INVOLVED

The suitability of SSM selection also depends on the road
users involved. For example, Tageldin and Sayed [98] stud-
ied pedestrian-vehicle conflicts in five cities—New York,
New Delhi, Shanghai, Vancouver, and Doha—and found that
TSSMs such as TTC were useful for traffic conflict detection
in the organized traffic environments of New York and Van-
couver. However, they were less relevant as a traffic conflict
measure in New Delhi’s less-organized traffic environments.
The authors also concluded that TTC could not measure
conflicts in a non-lane discipline-based traffic environment.
Jhonson et al. [10] reviewed several SSMs for characterizing
traffic conflicts involving pedestrians and found that no uni-
versal SSM can meet all the distinct conditions under various
application contexts. Thus, they favor selecting SSMs based
on the application context. Finally, Zheng et al. [93] also
observed the lack of consensus on a standard set of SSMs and
suggested that appropriate SSMs may vary by involved road
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users. Thus, a lack of clear guidance prevails on which set of
SSMs to use depending on the road users involved. In addi-
tion, in our review, we observed a dearth of research on the
safety of vulnerable road users (e.g., pedestrians, bicyclists,
and disabled people) in mixed-traffic settings.

4) APPLICATION OF DRIVING SAFETY FIELD METHODS

The driving safety field method considers the interaction
among the behavioral field, kinetic field and static field
while assessing road safety [99]. Nonmoving road objects,
such as a stopped vehicle, determine the static field. The
kinetic field includes the moving objects on roads, such as
vehicles and pedestrians. The individual characteristics of
drivers determine the behavioral field. SSMs only consider
the kinetic component by analyzing the trajectories of an
interacting vehicle pair, ignoring the static and behavioral
parts of road safety assessment. In addition, SSMs are usually
selected based on the scope of the study and methodological
suitability, making it difficult to generalize the results [100].
Mixed traffic has brought significant heterogeneity to the
behavioral and kinetic fields. Our review found no application
of driving safety field methods while assessing mixed traffic
safety. Therefore, applying the driving safety field in mixed
traffic safety assessment may be a promising direction for
future research.

5) DEVELOPING THE CAPABILITY FOR REAL TIME TRAFFIC
CONFLICT DETECTION

Detecting traffic conflicts in real time may assist authorities in
better managing their transportation network safety through
proactive risk mitigation measures like real-time signal opti-
mization at signalized crossings or traffic demand manage-
ment on freeways. Crashes on major arterials or freeways in
peak hours can cause significant increases in both travel time
and vehicular emissions. In addition, the early mix of AVs and
TVs is likely to result in a highly dynamic traffic situation
in which human driver behavior is likely to be temporally
unstable and constantly evolving [101]. Therefore, research
focused on real-time traffic conflict detection will have far-
reaching implications in improving overall traffic flow along
with vehicle emission profiles.

V. SUMMARY AND CONCLUSION
The market penetration of AVs on the road fleet is steadily
rising. Additionally, much research progress has been made
on AV safety in the past few years. The potential for traffic
conflict-based analysis to enhance traffic safety has prompted
a slew of research over the last decade aiming to identify
traffic conflicts more accurately for mixed traffic. However,
a comprehensive review of SSMs for mixed traffic conflict
assessment needs to be included, which this paper addresses.
This study categorized individual SSMs into five classes:
time-based, distance-based, deceleration-based, energy-
based, and combined. Furthermore, SSM-based models are
categorized into six classes: uncertainty model, extreme
value theory model, causal and counterfactual model,
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surrogate safety assessment model, deep learning and
machine learning-based surrogate safety models, and fuzzy
logic-based surrogate safety models. In addition, the research
highlighted SSMs and SSM-based models’ application in
mixed traffic and uncovered some critical research gaps.
A significant gap is the lack of robust SSM threshold selection
criteria. Our review also uncovered inconsistency in selecting
SSM threshold values and a lack of convincing evidence for
selecting a particular SSM threshold. In addition, our review
found that the current SSMs have been validated mostly
under traditional vehicle traffic streams. Since mixed traffic
crash data are scarce, the validity of the current SSMs and
corresponding thresholds have yet to be proven adequate for
mixed traffic conditions.

The scarcity of real-world mixed traffic data comprising
different traffic mixes, connectivity, and automation has also
hindered our ability to validate the utility of SSMs for mixed
traffic. Our review found that real-world mixed traffic data
scarcity compelled researchers to rely on simulation-based
studies. The validity of simulation studies involving equipped
vehicles (AVs, CAVs, and CVs) is challenged due to the lack
of real-world calibration and validation datasets. Addition-
ally, simulation-based studies often lack in accurately rep-
resenting anomalous driving behavior that can cause safety
hazards.

Our analysis found that the use of a combination of SSMs
is generally more effective in traffic conflict reporting than
using a single SSM. However, no method currently exists to
determine how to select and combine multiple SSMs based on
facility and road user type. Our review found little guidance
on selecting SSMs or SSM-based models based on different
road users or facility types. Applying context-appropriate
SSMs and corresponding thresholds can be the key to deliv-
ering conflict-based analysis that contributes significantly to
our understanding of traffic safety.

There are several limitations of this study that must be
acknowledged. The experimental case study was restricted to
SAE level 2 ACC-equipped vehicles with no lane-changing
information. Thus, traffic conflicts introduced by improper
lane changes were not investigated. Furthermore, the results
were limited to a restricted set of settings (e.g., short time
gap settings for AVs) and field tests (e.g., no disturbance
from surrounding vehicles). Tests were always scheduled for
non-peak hours in particular scenarios. Moreover, the mixed
traffic studied only had AVs and TVs.

Finally, despite the substantial documented progress in
developing and implementing various SSMs in mixed traf-
fic, significant opportunities remain to enhance the use of
the reviewed methodologies. This research proposes several
avenues for further traffic-conflict investigation and applica-
tions in mixed traffic.
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