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ABSTRACT Multiobjective reliability-redundancy allocation problem (MORRAP) needs to maximize
system reliability and minimize cost, weight, and volume with underlining constraints. In the systems’
design and analysis phase, uncertainties can occur from various sources, such as manufacturing variability,
environmental conditions, user behavior, etc. To deal with this, we present a generalization of the
traditional MORRAP under multiple empirical and ambiguous circumstances, named interval type-2
fuzzy multiobjective reliability redundancy allocation problem (IT2FMORRAP). The newly formulated
IT2FMORRAP considers optimizing goals as reliability, cost, and weight for a series-parallel system with
interval type-2 fuzzy number. The mathematical formulation is established under which the proposed
IT2FMORRAP model reduces to TIFMORRAP (type-1 fuzzy MORRAP), IVMORRAP (interval-valued
MORRAP), and classical MORRAP. An Enhanced Karnik-Mendel and NSGA-II algorithm-based solving
strategy is developed for the proposed IT2FMORRAP. The real-world dataset is considered to demonstrate
the efficacy of the solution method for the proposed problem. A K-mean clustering technique identifies the
best solution sets from the knee region of the generated Pareto fronts. An experimental study on commonly
used performance metrics reveals that IT2ZFMORRAP performs significantly better than TIFMORRAP and
crisp MORRAP. Further, the statistical analysis also confirms the hypothesis established in the empirical
research. Finally, a comparative performance study has been conducted with notable state-of-the-art papers
from the literature to encounter an appropriate establishment for the proposed work in the domain.

INDEX TERMS Multi-objective reliability optimization, type-2 fuzzy reliability, type-2 fuzzy cost, type-2
fuzzy weight, NSGA-II, k-mean clustering.

I. INTRODUCTION

Reliability optimization is a prominent investigation issue
in the design and engineering discipline that has earned
massive attention over the last several decades. Reliability
refers to its propensity to perform accurately throughout a
particular time. The most well-known method of enhancing
system reliability is redundancy which concerns the surplus
of extra components in the system. Component redundancies,
therefore, are connected to unnecessary expenditures of rise
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in cost, weight, volume, etc., from the perspective of model
development. As a result, systems designers put tremendous
effort into developing solutions that smack the ideal balance
of redundancies and reliability. Researchers have used a
variety of methodologies over the decades to determine the
optimal reliability and redundancy trade-off, and the issue
has come to be acknowledged as the reliability redundancy
allocation problem (RRAP) [1], [2].

MORRAP (multiobjective RRAP) seeks to optimize total
reliability, weight, and cost with optimal reliability and
redundancies, were one goal conflicts with another [2].
Although different system configurations were taken into
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FIGURE 1. Series-parallel systems.

consideration by researchers to examine MORRAP, recently,
research studies have primarily focused on the m states series
parallel design as shown in Fig. 1. An m states series-parallel
configuration has independent m subsystems in series, and
each subsystem has n; (i € 1, 2, ...m) parallelly engineered
components, as depicted in Fig. 1. A subsystem is in an active
state even if some of its components are not functioning since
they provide the same functionality.

The members of subsystems are frequently non-repairable,
with two conceivable conditions, functional or non-
functional. The operational conditions of the component’s
reliability are understood, defined, and autonomous. That
implies the loss of an individual component does not harm
the functional capabilities of the corresponding subsystem
or the entire functioning of the system. Nevertheless, there
are several empirical uncertainties built into the component
reliability of the system that needs to be addressed [3].
Sources of the uncertainties in the subsystem are due to the
facts listed as follows:

o The reliability of a device is strongly affected by
the environment under which the system is operating.
Therefore, it is almost impossible to estimate the exact
quantitative value representing the system’s reliability,
cost, and weight.

o Possibly, the redundant modules may be of various
models (materials used by manufacturers) and lack
critical information regarding the reliability, cost, and
weight needed to evaluate component parameters.

o During the design process, it is difficult to identify the
number of redundant modules that can be chosen in a
subsystem to ensure superior outcomes for the system.

o System designers have no definite idea about the
parameters, viz., cost, volume, and weight, during
design. Consequently, they have only guessed and
used the estimated values for designing decisions.
These estimations are typically based on imprecise,
incomplete, and insufficient knowledge.

Therefore, it is essential to use suitable techniques for
managing such uncertainties and improving system mod-
eling. These uncertainties are a rudimentary aspect of the
modeling that has been unseen lately. Thus, the realistic
construction of MORRAP necessitates the deliberation of
such empirical uncertainties associated with parameters as
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they have a serious impact on the modeling framework. These
uncertainties in the component parameters of the system are
modeled as fuzzy quantities [4] by several researchers [5], [6],
[7]. Because these inconsistencies in the component char-
acteristics affect the goals, such as reliability, cost, weight,
volume, and so on, the realistic construction of MORRAP
demands that these uncertainties be taken into consideration.
Several studies [5], [6], [7] represent these uncertainties
as fuzzy quantities. However, the type-1 fuzzy numbers
(T1FNs) are an inefficient approach to managing the uncer-
tainty from the multiple sources of the system. It is because
T1FNs have severe interpretability issues and inaccuracies,
and the membership values of T1FNs are crisp. So, they
cannot be used to model the higher-order uncertainties
(81, [9], [10].

Type 2 Fuzzy Numbers (T2FNs) are an extension of
TIFNs that allow for a more precise representation of
uncertainty [11]. A TI1FN is defined by a membership
function that assigns a degree of membership between 0 and 1
to each element of the universe of discourse, whereas a
T2FN is defined by a primary membership function and
a secondary membership function that assign degrees of
membership, respectively, between 0 and 1 to each element
of the universe of discourse. It is a fact that the researcher
intends to use another variety of T2FS called interval type-2
fuzzy set (IT2FS) due to the high computational effort of
T2FS. A T2FS is converted to the IT2FS whenever the
level of secondary association functions is equivalent to
one. Several other researchers have carried out significant
contributions [8], [12], [13], [14], [15] and made this concept
a magnificent field of study. Interval type-2 fuzzy numbers
(IT2FNs) can discourse the weakness of T1FNs while the
degree of belongingness is also demarcated with a type-1
fuzzy illustration [3], [16], [17], [18], [19], [20], [21].
Therefore, the main reasons for taking IT2FNs into account
for modeling the component characteristics in MORRAP

may be summed up as follows:
a) Subsystems may include components from several

suppliers and be constructed using raw resources of
mixed qualities. So, the cost, weight, and reliability
parameters of the connected components used in
separate subsystems may differ.

b) Additionally, design engineers of a specific system
could only have a limited understanding of the potential
attributes for such component attribute values through-
out the designing process. They must provide exact
values for the characteristics of the parameters, which
they rarely do: thus, they used only approximated
values. Therefore, IT2 fuzzy quantities are the best
option for modeling them.

c) The degree of belongingness of the inherent uncertain-
ties in the costs, weight, and reliability components
may modify according to the perceptions of decision-
makers.

So, IT2FNs become the most appropriate to model the
scenario In this paper, an IT2FMORRAP is planned to
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exploit reliability and simultaneously diminish the cost and
weight of a series-parallel configuration. With intention
parameters as IT2FNs, we highlighted circumstances wher-
ever the theoretical IT2FMORRAP paradigm transforms
to TIFMORRAP with T1FNs, IVMORRAP with interval-
value (IV) numbers, and MORRAP with crisp or real
numbers. Further, IT2FMORRAP, TIFMORRAP, and crisp
MORRAP have indeed been addressed by using NSGA-II-
based solvent procedures. The dataset of a pharmaceutical
plant is being used to examine the solution strategy’s
effectiveness for perceived cases. A k-mean classification
representation is also used to locate the highest quality
solution sets from the produced Pareto optimal solutions.
The major contribution and motivations of this work are as
follows:

1) Proposed a novel Multi-Objective Reliability Redun-
dancy Allocation Problem (MORRAP) using Interval
Type-2 Fuzzy Numbers (IT2FN) for modeling uncer-
tainties namely, IT2ZFMORRAP.

2) The IT2FMORRAP optimizes three objectives simul-
taneously, such as reliability, cost, and weight of a
series-parallel system.

3) The underlining situations are established under which
the proposed model abridges to TIFMORRAP, which
consider with IVMORRAP, which finally eases to
classical MORRAP.

4) A novel solution approach is proposed using the
Enhance Karnik-Mendel algorithm and NSGA-II.

5) Experimental simulations are conducted, and results
demonstrate that the proposed IT2ZFMORRAP is supe-
rior to that of TIFMORRAP and crisp MORRAP.

6) A k-mean clustering technique is used to recognize
the most suited solution region of the optimal Pareto
fronts, and indicators, namely, the number of solutions,
spacing, spread, diversity, hypervolume, and normal-
ized hypervolume performance, are applied to compare
the formulations.

7) Statistical analysis also confirms the hypothesis estab-
lished in the experimental study.

8) A simulation study along with comparative perfor-
mance analysis with some other state of art methods
from the literature has been conducted.

The remaining work is prepared as follows: An related study
of the research work has been given in Section II. Sec-
tion III presents the mathematical preliminaries. Section IV
describes the formulation of the proposed model and its
exceptional cases. Section V explains the problem-solving
strategy. Section VI has examined the simulation findings
and comparative analyses are presented in Section VII.
Section VIII is where the paper is concluded.

II. LITERATURE REVIEW

This section will briefly address the research works on the
approaches described in this paper. Two subsections cover
current IT2FS and reliability optimization studies.

VOLUME 11, 2023

A. INTERVAL TYPE-2 FUZZY SET AND APPLICATIONS
Many situations arise in daily life in which there are
more than two choices needed to be considered while
making a decision. Solving problems of such kind requires
considering more than two possible truth values. Thus, binary
yes/no is insufficient for these circumstances, and complex
representations are needed. In 1965, Zadeh presented the
fundamental concept of fuzzy sets (T1FSs) [4]. The TIFS’s
uncertainties make it difficult to calculate the precise degree
of belongingness. To get around this, Zadeh devised the idea
of T2FSs. After that, an IT2FS was described as a unique
mathematical formulation of T2FS by assuming a uniform
secondary degree [8], [13], [22]. The higher-order IT2FSs
expand the range of uncertainties that can be addressed in
real-time and broaden the applications. IT2FSs have been
used in a variety of applications, including control systems,
decision-making, inventory system, pattern recognition, and
image processing [16], [23], [24]. IT2FSs are more effective
than T1FNs in many cases, particularly in situations where
the uncertainty is high or the data is imprecise.

Recently, Ashraf et al. [16] developed an interval
type-2 fuzzy logic-based image steganographic system.
Ashraf et al. [25] proposed a non-linear system, IT2 vendor-
managed inventory system, and solve it with EKM with
particle swarm optimization algorithms. IT2 fuzzy neural
networks and grasshopper optimization algorithms were
suggested by Amirkhani et al. [26] for the development of a
vehicle antilock braking system. A robust single fuzzifier IT2
fuzzy C-means clustering method to adopt the interval-valued
numbers for the application of land cover segmentation was
presented by Wu and Gao [27]. Ashraf and shahid [28]
established the multiobjective vender managed model with
IT2FNs for demand and order quantity. Javanmard et al. [29]
demonstrated a fuzzy solution to a linear programming
problem where all coefficients are understood by IT2 FNs.
The closest interval approximation is the foundation of the
suggested approach.

B. RELIABILITY OPTIMIZATION

Finding the best component redundancy distribution while
maximizing reliability is one of the fundamental issues in
reliability theory. The early studies on reliability optimiza-
tion, a dynamic allocation technique [30], and a heuristic
technique [31] were presented to determine the best reliability
allocation. In a landmark study, M. S. Chern [32] showed
that the reliability with redundancies optimization problem
is essentially an NP-hard. It motivated the computational
intelligence community to compare heuristic-based tech-
niques for RRAP to conventional methodologies such as
genetic algorithm (GA) [30] and [33], enhanced GA [34],
particle swarm optimization (PSO) [35], [36], bee colony
algorithm [37], cuckoo search algorithm with GA [38],
imperialist competitive algorithm [39], co-evolutionary dif-
ferential method with harmony search [40], Gradient-based
optimizer [41] and so on.
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To solve MORRAP, Coit et al. [42] combined multi-
objective optimization problems into a single objective
problem. Sheikhalishahi et al. [43] employed a mix of
two algorithms, the GA and PSO methods, to enhance
reliability by decreasing the cost, weight, and volume
under nonlinear constraints. The NSGA strategy was used
by Taboada et al. to solve MORRAP [44]. With the
universal moment generating function approach for reliability
or availability indices, Taboada et al. [45] addressed the
multiple objective multi-state RPAP. Under constraints,
reliability and cost by NSGA-II are the two goals of
Wang et al. [46] reliability optimization model. A multiple-
objective evolutionary method for addressing conditions was
used by Salazar et al. [47] to solve MORRAP. A knowledge-
based simulated annealing approach to solve MORRAP
was published by Zaretalab et al. [48]. Cao et al. created
the decomposition-based technique in [49] to solve the
MORRAP.

To address the issue of uncertain reliability allocation,
Gupta et al. [50] used the interval-valued reliability of the
components. Under many restrictions, Sahoo et al. [51]
solved MORRAP with interval-valued component relia-
bility. An interval-based MORRAP was developed by
Zhang et al. [52] and solved using MOPSO. To model
the MORRAP and provide a solution, Roy et al. [53]
well-thought-out the interval number for the reliability
parameters. A fuzzy MORRAP for series-parallel sys-
tems was developed by Garg and Sharma [6] utilizing
linear and non-linear membership functions, and it was
then solved using PSO. When examining the MORRAP,
Ebrahimipour and Sheikhalishahi [54] considered a triangu-
lar T1FN. Jiansheng et al. [55] addressed MORRAP with
unknown parameters like repair rate, failure rate, and other
related coefficients in the repairable mode of series-parallel
systems.

A fuzzy MORRAP in a type-2 fuzzy environment was
first developed by Ashraf et al. [56]. Ashraf et al. [57]
presented a PSO-based solution method to solve the type-2
fuzzy MORRAP model. Muhuri et al. [21] constructed an
interval type-2 fuzzy reliability of the component-based
model for MORRAP, which was solved using the KM
and NSGA-II methods. Chebouba et al. [58] solve the
multiobjective system reliability of fuzzy quantities using the
non-sorting genetic algorithms (NSGA-III). To describe the
series-parallel and parallel-series systems, Ashraf et al. [59]
presented an IT2 Fuzzy membership function, EKM and
PSO were used to solve the formulated interval type-2 fuzzy
MORRAPs, and the outcomes were compared to GA.

IIl. MATHEMATICAL PRELIMINARIES
This section provides descriptions of the essential fundamen-
tal terms and techniques [9], [13], [15] used in our proposed
problem formulation. B

1) A type-2 fuzzy set (T2 FS) A is distinguished by
the second-ordered grade of belongingness I (x,u) and
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FIGURE 2. IT2FN.

mathematically interpreted as follows.
IZ = {(x, u), s (x,u)|Vx € X,Vu € J, C [0, 1]} (H

Here, x represents the principal component considered from
the discourse of universe X, and u represents the secondary
component function, that is, u € J, < [0, 1]. For
each element xeX, J; describes the primary degree of
belongingness of x and u = (x, u) provides the secondary order
degree of belongingness also called the type-2 membership
function (T2 MF), such that 0 < I (x,u) <1.

2) An interval type-2 fuzzy set (IT2 FS) A, is a T2 ES
with the secondary order degree of belongingness ns (x, u)
is equality and expressed as:

A= {(x, W) s (ow) = 1]¥x € X, Vu € J, € [0, 1]} )

A closed area under IT2 MFs of an IT2 FS j represents the
amount of uncertainty known as the footprint of uncertainty
(FOU) and is defined

Fou () = [

xeX

The inferior and superior of FOU (IZ) are defined as follows.

Wi () = inf {u|u €10, 1], 3 (x. 1) > 0} 3)

5 (x) = sup {u|u € 0. 1], 3 (x. u) > 0} o

Fig. 2 displays the visual illustration of an IT2 FS A.

FoU (&) =[5 (0, ;)] 5)

IV. PROBLEM FORMULATION

This section explains the mathematical framework. The
new IT2FMORRAP will be designed. Additionally, it is
proved that TIFMORRAP, IVMORRAP, and MORRAP
are all particular circumstances of IT2ZFMORRAP. Table 1
exhibits symbols and abbreviations. Muhuri et al. [21],
Kuo et al. [60], Coit and Konak. [42], and Ashraf et al. [57],
describe the formulations for the traditional series parallel
m— stage framework. In [21], Muhuri et al. considered a
structure function x over a n—dimensional space, such that
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X = xX);X = (x1,x2,...,%,). Now, the nature of
(x1,x2, ..., Xx,) decides the nature of structure function (yx),
whether it is crisp numbers, interval-value numbers, T1FNs,
or IT2FNs. For a m—stage series-parallel configuration,
as presented in Fig. 1, the chrematistics of each elements
are assumed to be defined and autonomous. Thus, the total
reliability function Rs corresponding to IT2 fuzzy reliabilities
F1,¥2, ..., Ty, can be constructed by using the structural
function as mentioned above presented in Eq. (6):

R:S:X(};'l,l:”z,...,};'n) (6)

Here, 7; are represented with IT2FNs. An IT2FN has been
represented by a triangular IT2MF (u: ) which is actually
a set value mapping with respect to IT2 fuzzy reliability
R xj) = {l—uft(rlnl)}rl, can be defined as follows:

. up
0, X = T
up
X —7r
left up lo
up rleft =x= Fleft
ry — rleft
lo
X =1 left X =T left lo
—up o , rleﬁfxfrs
Wi x) = Fs =Ty Ts — rleﬁ
lo up
Tright =X  Trighy — X <x< lo
lo >oup o Ts =X rrzght
Tright — s Tright — s
’
r, —X
u lo
_— < X < r
rl; — 7 ’ rlght rzght
up
L 0, X = rright
(7

where rl oft and rnght are left and right extreme points of
the upper membership function (UMF). Similarly, rleft’ and

i;’ 5 are left and right extreme points of lower membership

fgncnon (LMF) (see Fig. 3). So, overall system reliability
Rs (?,n), IT2 fuzzy cost Cs (?,n), IT2 fuzzy volume

Vs (v:v n) and IT2 fuzzy weight and W gﬁ/, n) of m—stage
system configuration [21] is mathematically represented as:

Rs (r n) =11, [1 - (1-2)"")] ®)

Bi
Cs (; ) = Z:n:l o T Erl) (ni + exp(ni/4))
) ©
Vs (r n) = Z:"Zl VovPn? (10)
W (F.n) = D" i n explon/4) an

Thus, IT2FMORRAP may be formulated as:
Maximizeﬁ (?, n) ,
Minimizea (i n) ,
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TABLE 1. List of notations/symbols used in the model.

Notation Description Notation Description

i Index of i—th subsystem m  Number of subsystems
n Number of components @, B; Shaping and scaling factors

t i—th subsystem vt of i—th subsystem
- Component reliability of v Component volume of i—th

t i—th subsystem ! subsystem

Component weight of i—th ~ o

w; subsystem 7, Type-1(T1) fuzzy reliability
= IT2 (interval type-2) fuzzy . Left and right extremists of
n reliability teft! ‘l”grehablhty in MF

up _up Left and right extremists of 1o rlo Left and right extremists of
Uert’ "rignt reliability in Upper MF beft’ "irigheliability in Lower MF

W,  TI fuzzy of weight ﬁ/f IT2 fuzzy weight
w. w, Leftandright extremists of wlLeft and right extremists of
Uert’ “lirigyeight in MF ‘left riweight in Upper MF
lo 1o Left and right extremists of

itese Wirigweight in Lower MF R;  Reliability of the system

Cs Cost of the system V;  Volume of the system
W;  Weight of the system R, TI fuzzy system’s reliability
C, Tl fuzzy system’s cost 7,  TI fuzzy system’s volume
W, Tl fuzzy system’s weight k’f IT2 fuzzy system’s reliability
(i IT2 fuzzy system’s cost Wi IT2 fuzzy system’s weight
]Z IT2 fuzzy system’s volume t  Temperature of the system

Upper limit of the total - .
c system cost W Upper limit of system weight
14 Upper limit of volume

pp(x) 4
1 ______________

To . up >
Tright Tright Trighe

W — 1o )
Tere Tert Terr 7

FIGURE 3. Interval Type-2 Triangular Fuzzy Number.

MlnlmlzeW (i )

Subject to V, (i, n) (12)

In special cases, generalized IT2FMORRAP presented by
Eq. (13) has been reduced to TIFMORRAP, IVMORRAP,
and MORRAP, as discussed in the following cases.

A. CASE 1: TIFMORRAP

When, i, = rf and rlo, = r¥  IT2FMORRAP
condenses to TIFMORRAP, that is, the lest and most bound
equivalent to left support [rleﬁ, rleﬁ] meets to 7.5 as well as
the right support [r” gh[, nght] meets to rngh, (See Fig. 3 and
Fig. 4). If rleﬁ = rleﬁ = rief and rnght n.gh[ = Iright then,
left support and right support converge to point rje; and ryigp
respectively and IT2MF (,u;i) presented in Eq. (7) reduces to
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e

Tieft I Tright X
FIGURE 4. Type-1 Fuzzy Number.
a TIMF (uz,) as follows:
0, X < Tiefr
X — Tleft
———, e <x=ry
T's — Feft
Wi (x) = (13)
rg —X
——, Vs =X = Fright
Tright — T's
Oa X> Fright

Thus, overall T1 fuzzy reliability Rs (7, n), cost Cs (7, n),
weight Ws (W, n) and volume Vs (W, n) can be stated as:

Rs (F,n) = Hil [1—a—71] (14)
m t Bi ;
CS (F,n) = zt:l |:ai <_ln (fi)) . (n,- + exp (nz)):|
(15)
Ws omy = > i (i exp (”Z)) (16)
Vs (o) =" iivin} 17)

Thus, we formulate TIFMORRAP as:

Maximize Ry (r,n)

Minimize Cs (7, 1)

Minimize Wg (w, n)

Subject to Vs (i, n) (18)

B. CASE 2: INTERVAL-VALUED MORRAP
In IT2FMORRAP, the FOU portrait the interval ,I =
[Ile[/,, ILyign] in which I[eﬁandlrl-ght are taken from interval

up _lo
Vlefi rleﬁ] and [r0

rl oft and 7yjgn = rl‘ight = r” ot then IT2FN transforms into
the T1FN and it is distinct from interval I’ = [Fiefr s Trigne]-
Additionally, suppose the membership function values as one
over the interval points of I’ = [7tefr s Tright] therefore, TIFN
will express as an interval-valued number as illustrated in
Fig. 5. Thus, the IVNORRAP model [52] with total interval-
valued reliability [Ryef, Ryigns] can be expressed follows:

m .
[Rigsr. Rrigne] = [ [ [1 = 11 = rigss 1= rig, 1] (19)

Similarly, total interval-valued cost [Cier, Crign], interval-
valued weight [Wie, Wrign:] and interval-valued volume

s 1 respectively. If i = 7t left =

rzght ’ rlght
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4
17 (x) }
1 e o e = ————
Tléft r Triéht X
FIGURE 5. Interval Valued Number.
[Viefr, Vright | are expressed as follows:
m t —t
Cieft » Ci — . , Bi . (n;
[Con G = 2., [“‘[ln(ri o "
+ew ()] 0)
m nj
[Wiert » Wiight | = Zi:l [ Wik ,Wi,igh[] : (ni * eXp <Z))
(21)
m )
I:\/left ’ Vright ] = Zi=1 [Wilefl ’ Wiright ] ’ Vi ni (22)
Thus, the interval-valued MORRAP is:
Maximize [Rleft , Rright]
Minimize [C]eft ,Cri ght]
Minimize [Wiefi, Wright
Subject to [Vleftvvright] (23)

C. CASE 3: CRISP MORRAP

Finally, the TIFMORRAP will present a MORRAP when
Tlefy = Fright = I, as the classical number is shown in Fig. 6
because of the degree of belonging w7, (x) will be present by
the characteristic function ¢, (x) :

0 otherwise

£ () = { by =rs (24)

Therefore, MORRAP [60] is:

m

H[l — (1 =]

i=1

_E - (_ln(r,-))

“(ni + exp(n;/ 4)):|

Maximize R; (r, n) =

Minimize Cs (r, n)

> wilny  exp(ni/4))

=1
m

= Z w,-vl-zni2 (25)
i=1

As per the aforementioned discussion, we finally con-
cluded that the formulation of IT2FMORRAP is a gen-
eralized framework for other MORRAP models, Viz.
TIFMORRAP [6], IVMORRAP [52], MORRAP [60].

Minimize W, (w, n) =

Subject to Vi (w, n)
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FIGURE 6. Classical number.

IT2ZFMORRAP

T1FMORRAP

IVMORRAP

MORRAP

FIGURE 7. The structural connection amongst the IT”2FMORRAP,
TIFMORRAP, IVMORRAP, and MORRAP.

The stated argument comes under the cope with Zadeh’s
detection [10] of the excellent capabilities of fuzzy sets
to generalize mathematical models. It is also genuinely
agreeable with notable judgments [61], [62], which show
crisp sets, interval-valued sets, and type-1 fuzzy sets are
special cases of type-2 fuzzy sets. Fig. 7 shows the
visual hierarchy among the IT2FMORRAP, TIFMORRAP,
IVMORRAP, and crisp MORRAP [21].

V. PROPOSED SOLUTION APPROACH

This section explains the solution approach, which uses
the well-known non-dominated sorting genetic algorithm
(NSGA-II) suggested by Deb et al. [63] and interval type-2
fuzzy system (IT2FS) [9]. Fig. 8 illustrates the nature of our
planned solution strategy. The major processes involved in
the approach are discussed as follows.

A. IT2 FUZZIFICATION

Multiple experts opinions on ambiguous decision-making
variables leads complexity in the process, leaving scope of
IT2 fuzzy systems [15]. IT2 fuzzy systems are employed with
IT2 fuzzification to generate IT2FNs), adopted from [21].
Generally, the estimations of decision-makers are a specified
range or interval (say I) represented via IT2FNs and may
be in any one form i.e. Gaussian, trapezoidal, and triangular
functions. Therefore, it requires some logical reasoning to
choose best suited IT2MF p=. As discussed earlier, reliability
defines the likelihood of an operational device that will
function correctly without any faults, and the time to failure
(t) is the most promising value provided by the experts
[21], [59]. Therefore, the IT2MF of the reliability at this
particular time instance (¢) is equivalent to one. In other
terms, for r(t), the IT2MF (;L;) should only be one with
only one highest value, which also implies that IT2MF
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is normal. And, for any system that will operate over an
endless period is also not feasible. Therefore, an extensive
tail with more non-zero values is insignificant after a
limit. Hence, neither trapezoidal nor Gaussian functions are
suitable choices for modeling IT2FMORRAP. Thus, the
triangular function is the best option to model IT2 fuzzy
reliability, and weight parameters. It may also be possible
that the endpoints of the interval of uncertainty (I), that is,
left endpoint (Iieft) and right endpoint (Iyignt), are uncertain
due the multiple range provided by experts. Then, each Ijef
and Iyjgne will also form the interval with lower bound and
upper bounds. Specifically, for component reliability , r, the
Mz will have 1 = [rlef,Tright] and each endpoint in interval
will have lower and upper bounds, i.e., rjefi= [rilepﬁ, r}gft] and
Tright= [ri‘i’ght, r;?;ht], respectively. The IT2FN of reliability
(;) with the triangular IT2MF is presented in Eq. (7) and
pictorially demonstrated in Fig. 3. A detailed algorithm for
the generation of IT2FN with the parameters can be seen
in [21].

B. IT2 FUZZY TYPE-REDUCTION AND DEFUZZIFICATION
The type-reduction procedure changes the IT2MFs into
T1MFs. TIMFs transform into an output number by using
the procedure of defuzzification. Several methods have been
developed to perform the type-reduction and defuzzification
of IT2 FN. Among them, Enhanced Karnik-Mendel (EKM)
algorithm [13] is one of the most commonly used methods
for the purpose. EKM algorithm is used for the type-
reduction process. The iteration number is kept low to offer
an improvement in initializing and terminating situations.
A centroid C=(x) is the combination of the centroids of all
its embeddedAl“lFSs. That is,

C; (1) = {c, (i) N (/:4)} — ¢ (i) e (A)] (26)

The EKM algorithm is divided into two parts: in the first part,
the computation of the ¢; is performed and in other parts ¢,
is calculated. Eq. (27) and Eq. (28) are used for computing ¢;

and c;.
o) = (Zﬁilx,»e,- / > 9,») @)
al N
cr (R) = (inei / Zizlei) (28)
i=1

The procedure of the EKM algorithm is explained in detail
in [9], [16], and [59]; here, the first part is for the algorithm
to compute ¢; and second one is for evaluating c,.

The defuzzification will provide the ultimate output
number (yg) corresponding to IT2FN and is the average of
the ¢; and ¢, as follows:

citcr
2

Yd = 29)
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Input: Initial data of system components
Output: Pareto front

Initial population / reliability v, € (0,1), redundancies n; € Z* and weight w:

| 1

T1 Fuzzy System IT2 Fuzzy System (IT2FS)

I I Perform IT2 Fuzzification I

I Perform T1 Fuzzification
‘ TI20E m Eq. (1)

‘ // By MF as in Eq. (13)

| Defuzzify the TIFN

// By centroid method * TS =1 22 VAT F)
I Interval Type-2 Defuzzification I

! 1

NSGA-II
I Objectives evaluations I

]

I Non-Dominated sorting I

]

I Calculate crowding distance

v

I Genetic operations I

I | Type Reduction |

I Recombine of population and offspring I

i

Pareto optimal solutions

FIGURE 8. The workflow diagram of our implantations suggested a solution approach for solving IT2FMORRAP, TIFMORRAP,
and MORRAOP.
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Objective 1 Objective 2 Obiective 3
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Mutation
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A 4

Report Final
Population and

Combine Parent &
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Stopping
Criteria

Evaluate Objective

Stop Met? Select N Function
FIGURE 9. Flow chart of NSGA-II.
C. NON-DOMINATED SORTING GENETIC ALGORITHM-II decision-making models with multiple goals. The pictorial
(NSGA-II) representation of NSGA-II is given in Fig. 9. The subsequent
Many scientists widely adopted NSGA-II [63], a multi- sections explain the various sub-procedures of NSGA-II,
objective evolutionary optimization approach to solve various including three goals, namely, (i) maximize the total
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FIGURE 11. Front generated by non-dominate sort.

reliability of the system, (ii) minimize the overall cost of the
system (iii) minimize the total weight of the system, under
fixed volume and limiting constraints.

1) CHROMOSOME STRUCTURE AND OBJECTIVES
EVALUATIONS

A chromosome/genome is an array of genomic sequences
represented by floating-points. A genome is a uniformly
distributed random solution that lies inside a predefined
search space. In IT2ZFMORRAP, components’ reliability (r;),
components’ weight (w;) and the redundant components (7;)
of the i — th subsystem are genes of the chromosome. The
variables parameters r;, w;, and n; are of range [0.5, 0.99999],
[7.0, 12.0], and [1], [5], respectively. A chromosome
structure has been depicted in Fig. 10 to maximize the
reliability (Rg), minimize the costs (Cs) and minimize the
weight (Wg) of the system. The initialization of the initial
population is similar to the original NSGA-II.

2) NON-DOMINATED SORT
The population generated initially has been sorted by
a fast non-domination sorting algorithm introduced by
Dev et al. [63]. In non-dominated sorting, solution X is
supposed to dominate Y if and only if the objectives of X
are no worse than the objective of Y and there must exist at
least one objective of X, which is better than that of ¥ [64].
At first, we consider a set S containing all the N individual
solutions of the population without losing the generality.
The sorting algorithm will then select the non-dominated
solutions from S and assign them to rank-1 and call them
Front-1 of the Pareto-front. Again, the left-out solutions
of § are sorted, and the non-dominating ones are assigned
as rank-2 forming the Front-2. This process repeats until
there is no solution left in § to dominate others, and these
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Y

FIGURE 12. Crowding distance.

solutions will create the kth rank Pareto-front as Front —k.
The Pareto-front for IT2FMORRAP shaped via the non-
dominated sorting process with the three objectives is shown
in Fig. 11. After sorting and assigning the rank to the fronts,
the crowding distance of each front is determined.

3) CROWDING DISTANCE

The difference between individual solutions on the front
is measured by the crowding distance depending on the
objective function values, as shown in Fig. 12. In a Pareto-
Front F;, the crowding distance (Dj,), for each individual
j=2,3,...nj—landm =1, 2, ..., M number of objectives
are arranged in increasing order is calculated as follows:

— (fm(j+1) _.fm(j_ 1))

nrlnax _fr;lnin)

Dijm

J=2,3,...n,—1 (30)

The overall crowding distance of an individual j is D; =

M
2. Djm.
m=1

4) GENETIC OPERATIONS

Selection operation: The tournament selection approach is
used in the selection process. The population’s solutions
are adopted by a crowded-comparison operator [65]. The
comparative operator guides the selection method using ranks
measured in the sorting process and the crowding distance.
For a particular individual, if an individual has a lower or the
equivalent rank and higher crowding distance, it is said that
the comparative operator is more dominant than the other.
Solutions are selected to create a mating pool to perform
the crossover and mutation procedures to generate the new
offspring just after the selection process.
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FIGURE 14. Mutation Operation.

Crossover: Simulated binary crossover strategies generate
child individuals for each parent individual, as shown in
Fig. 13. The binary crossover procedure is as follows.

Step-1: Create a randomly generated number u from a
range between 0 and 1.

Step-2: Find the spread factor p as:

)T,
p = 1
_
[2(1 — w)] D
where, 1 is a probability index also known as crossover
probability.
Step-3: Suppose par | j,par; ; be two parents. Now the two
children are generated as follows:

if u<0.5

, otherwie 31

1
chyj = E[(l — p) xpary;j+ (1 + p) x par, ;] (32)

1
chyj= I+ p)spary;+ (1= p)xpary;l (33)

Mutation: the polynomial mutation procedure is used to
restore unexpected solutions to prevent getting stuck into the
local optimum, resulting in exploration ability and diversity
in the population. as demonstrated in fig. 14, a parent par;
with upper bounds (pa;;‘) and lower bounds (parjl.), child ch
is calculated as:

chj = par; + (par]’-’ - par]l-) * 8 34

1
{@mwwn if <05
5 =

(35)
| —[2(1 — W],  otherwie

in eq. (34), §; is evaluated using eq. (35) where u represents a
random number and 7, is mutation probability.

5) RECOMBINATION

In the recombination procedure, the older population and
newly-generated offspring are mixed to ensure elitism in
the NSGA-II. The current population is then shifted over
to non-domination sorting to form the fronts. Suppose,
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the population size of solutions is more than N number
of individuals on the Pareto-front. Then, individuals are
sorted using the non-dominated sorting and arranged in
decreasing order based on crowding distance to pick the first
N solutions. The same is repeated until the stopping criteria
are met. The typical illustration of the NSGA-II is pictorially
demonstrated in Fig. 15. Finally, NSGA-II effectively estab-
lishes the Pareto-front solutions and offers a comprehensive
knowledge of multiple optimal solutions over the search
space.

The proposed solution model is accomplished by two
procedures, namely IT2FS and NSGA-II. The IT2FS
consist of three sub-procedures, such as, IT2 fuzzi-
fication, type reduction and defuzzification. The time
complexity of these procedures for each system com-
ponents, reliability, cost and weight, are O (n), O (n)
and O (1), respectively. Hence, the combined time com-
plexity of IT2FS=0 (n)4+0m)+0 (1) =~ O (n). Now,
the time complexity of NSGAII is O (m x n x n), for
m objective and n population size. So, the worst-case
time complexity for the proposed solution approach is
O (n) +0(m x n x n) ~ O(mn?).

VI. EXPERIMENTAL SIMULATIONS

To demonstrate the proposed solution for IT2FMORRAP,
we have taken a real application data set of a pharmaceu-
tical factory, presented in Table 2 [6]. The experimental
simulations have been conducted on MATLAB 2015b on a
processor 3.40 GHz Xeon with 16 GB RAM and a Windows
10 operating system. The IT2FMORRAP formulations in
Section IV are mixed-integer MOOPs with nonlinear objec-
tives and constrained functions. Now, the proposed NSGA-II
solution approach is applied to solve the given problem as in
Table 2.

A. PROBLEM STATEMENTS

With the parameters in Table 2, the formulations of the
IT2FMORRAP, TIFMORRAP, and MORRAOP are as given
below:
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TABLE 2. Input Parameter data.

i 10° * a; B; w; v; %4 t
1 0.611360 1.5 9.0 4.0
2 4.032464 1.5 7.0 5.0
3 3.578225 1.5 5.0 3.0
4 3.654303 1.5 9.0 2.0
5 1.163718 1.5 9.0 3.0
6 2.966955 1.5 10.0 4.0 289 1000
7 2.045865 1.5 6.0 1.0
8 2.649522 1.5 5.0 1.0
9 1.982908 1.5 8.0 4.0
10 3.516724 1.5 6.0 4.0

1) IT2FMORRAP FORMULATION

Maximization }?v; (’7, n) = HZI [1 — (1—ﬁ)ni]

Bi
Minimization Cs (7, n) = 2301 o (_110(00))
= n

F= (M. P20 oo 710) 3 7o = [Fitefss Firight ] -

/
g _|,ur  _lo ~ . N ) up
Tileft = [r leftr T left] » TViright = [r right> T right:l
lo up _lo up
Tlefrs rleft s Pright» rright

€ [0.1,0.999991Vio, up € {1, 2,3, ..., 10};
W= (Wi, Wa, ... W10) » Wi = [EWilefrs Wirignt ] -
Wilefi = [Wg}p ngft:l s Wiright = [Wi‘?ght’ Wngm] )
Wiege: Wiefrs Wights Wrtght

€ [0.7,12.0]Vilo,up € {1,2,3,...,10

n; = (ny,ny,...,nyp) and 1< n; < 5.
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2) TIFMORRAP FORMULATION

— 10
Maximization Rg (7, n) :H‘ X [1 — (1—7:')""]
=

— 10 1000 \ %
Minimization Cs (7, n) = Z |:a,-. (——)

=l In (r7)

(m-+exp (g))}

. . . . e ~ 10 -~ n
Minimization Ws (w, n) = Zi: | Wi (”i * eXp (Z ))
. 0 _ 5
Subject to Zi:lwi.vi n; <289
7= (r,1,..

L F10) W = (W1, W2, ..., Wi0)

i = [rileﬂ’ F irighz] Wi = [Wileﬁ’ Wiright] )
i i € 10.1,0.9999991, Wy, . Wi
€ [70, 120] y ni:(nl, n, ..., nlO) , 15”,55

3) CRISP MORRAP FORMULATION

10
Maximization Ry (r, n) =H, 1 [1 — (l—ri)"i]
i=
S 10 1000 \ '
Minimization Cy (r,n)=z_ L ] ")
1= n(r;

-(ni+exp(n;/ 4))}

C e e 10
Minimization Wy (w, n) = Z 1 w;.(n; x exp(n;/4))
=
10
Subject to Zi:l w,-vl-znl2 < 289
05<r;<1-107,1
<n; <5,70<w; <120

ri=r1,r,...,r0), 0 = @1,...,010), i

€R, 1<n;<5.
The problems IT2FMORRAP, TIFMORRAP, and crisp

MORRAP are solved using the proposed approach, as men-
tioned in Fig. 8. Specifically, the IT2FMORRAP will be
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TABLE 3. Objectives solution of Pareto optimal set for MORRAP, TIFMORRAP, and IT2FMORRAP corresponding to 50, 100, 200, 400, 500, and

1000 iterations.

Itr. No. MORRAP T1IFMORRAP IT2FMORRAP
Maximum Minimum Average Maximum Minimum Average Maximum Minimum Average

50 Rg 0.99501 0.16807 0.754987 0.99501 0.16807 0.721284 0.995010 0.168070 0.756789
Cs 701.907 50.30058 290.931 701.907 50.30058 282.3994 701.9070 50.30058 277.4757

Ws 384.0529 36.25508 198.5205 327.149 64.13041 179.8324 428.7591 77.06647 236.9000

100 Rs 0.99501 0.16807 0.753555 0.99501 0.16807 0.71945 0.995010 0.168070 0.735596
Cs 701.907 50.30058 295.1088 701.907 50.30058 278.879 701.9070 50.30058 281.3898

Ws 387.3911 32.35902 195.4638 331.066 61.99837 182.3199 434.5121 70.66489 239.2915

200 Rs 0.99501 0.16807 0.750962 0.99501 0.16807 0.752123 0.995010 0.168070 0.749557
Cs 701.907 50.30058 292.7743 701.907 50.30058 292.2811 701.9070 50.30058 291.6494

78 375.5641 32.10064 194.5633 412.1878 35.95648 200.4407 373.2623 36.47259 204.3371

400 Rg 0.99501 0.16807 0.754442 0.99501 0.16807 0.75589 0.995010 0.168070 0.749588
Cs 701.907 50.30058 295.349 701.907 50.30058 295.0742 701.9070 50.30058 292.6684

Ws 386.6001 32.59213 197.8026 418.0858 32.10064 195.3253 370.1533 32.10064 197.8944

500 Rg 0.99501 0.16807 0.751306 0.99501 0.16807 0.755462 0.995010 0.168070 0.753611
Cs 701.907 50.30058 290.9765 701.907 50.30058 294.4438 701.9070 50.30058 293.2568

W 367.6624 32.10064 196.441 377.9323 32.10064 196.4905 386.6790 32.10064 194.8376

1000 Rg 0.99501 0.16807 0.750622 0.99501 0.16807 0.752036 0.995010 0.168070 0.753611
Cs 701.907 50.30058 295.5739 701.907 50.30058 296.0336 701.9070 50.30058 293.2568

W 384.2954 32.10064 197.1043 392.0788 32.10064 194.1505 386.6790 32.10064 194.8376
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FIGURE 16. Pareto Front at (a) 50 iteration, (b) 100 iteration, (c) 200 iteration, (d) 400 iteration, (e) 500 iteration, and (f) 1000 iteration for

IT2FMORRAP, TIFMORRAP, and Crisp MORRAOP.

solved using the IT2 fuzzy system with the component
parameters, reliability, and weight as IT2FNs. The initial
population passes through the IT2 fuzzy system, and the
IT2 fuzzification, type-reduction, and defuzzification process
take place, after that the NSGA-II procedures are applied
to find the Pareto front for the IT2 fuzzy reliability, IT2
fuzzy cost, and IT2 fuzzy weight objectives. On the other
hand, for solving the TIFMORRAP model, the proposed
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approach will utilize the T1 fuzzy system (T1 fuzzification
and defuzzification process) for the generation of T1FNs
corresponding to the reliability and weight components.
Then, NSGA-II is applied to generate the Pareto front for
the T1 fuzzy reliability, T1 fuzzy cost, and T1 fuzzy weight
objectives. While, for solving the MORPAP model, the
NSGA-II will directly apply as a multi-objective evolutionary
optimization approach because there is no fuzziness involved
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K-mean for the Pareto optimal solution set for IT”2FMORRAP at
iteration 100.

in this scenario. It is mentioned that the reliability, weight, and
number of redundant components are the decision variables
in all three problems. The redundancy of a subsystem must
always be an integer, so, at the time of evaluation, it has to be
converted into the nearest integer value.

B. RESULTS AND DISCUSSION

The results are presented in the form of an optimal
Pareto optimal set for the MORRAP, TIFMORRAP, and
IT2FMORRAP corresponding to the different number of
iterations. We have performed 50 runs for all the various
instances of iterations and presented the suitable optimal
set of solutions. It provides the support to justify the
relative convergence and performances amongst the solution
algorithms. The fitness function evaluation was conducted
approximately 280 times, and the infeasibility for the
individual solutions (for which the feasibility was not
fulfilled). Moreover, with the initial population set to 100,
approximately 200 individuals are created using genetic
operations to form the mating pool. These individuals
were sorted according to non-domination to have 100 final
individuals ultimately.

The optimal Pareto-Fronts corresponding to the three
approaches is shown in Fig. 16 for (a) 50, (b) 100,
(c) 200, (d) 400, (e) 500, and (f) 1000 instances, respectively.
Fig. 16 evidence that the Pareto optimal solutions for models
converge as the iteration rises. From Fig. 16, we see that
as the system’s total reliability goes higher, its total cost
and weight of the system become higher. For example,
in iteration numbers 50 and 100, in Fig. 16 (a) and (b),
respectively, there is a clear trade-off among the non-
dominated outcomes represented by the IT2ZFMORRAP front
than other approaches. So, the proposed IT2FMORRAP
model has higher reliability and lower cost and weight
function values. Further, there are tiny variations among the
fronts when the numbers of iterations are 500 or more; see
Fig. 16 (e) and (f). Thus, the IT2FMORRAP achieves a better
front in a lesser iteration number. It means that the statistics
of the Pareto optimal solutions are precisely noticeable at the
lesser iteration number for IT2FMORRAP.
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Table 3 illustrates the extreme and most minor bound-
aries of the generated optimal set of solutions for the
IT2FMORRAP, TIFMORRAP, and MORRAP models. The
lower (min) and upper (max) ranges of the total reliability,
cost, and weight functions in the approaches are [0.168070,
0.99501], [50.300058, 701.9070], and [32.10064, 386.6790],
respectively. The range and the non-dominated solutions
in all three approaches are acceptable. As mentioned, all
approaches were run 50 times; we have also said the mean
of each objective value of the front in Table 3. From
Table 3, the average of the total reliability function values
of the IT2FMORRAP approach is higher than the other two
approaches, and the cost values are lower for the smaller
iteration number. However, the weight of the system is higher.
Similarly, the IT2FMORRAP values are comparatively better
for the other iteration number. It is to be noted that there
is very little difference between the function values when
the number of iterations is more significant. Therefore, the
IT2MORRAP can be used as a conventional foundation to
distinguish a single run’s performance. We need to reduce the
size of the solution sets to further deeply analyze the Pareto
optimal solution sets for the three approaches. Since the
decision-maker might have their own choices over selecting
a particular individual solution, we have to use the data
clustering approach to prune the optimal solutions. Moreover,
we have used famous comparison metrics and statistical
testing the compare the results.

C. CLUSTERING OF PARETO-FRONTS: K -MEAN
CLUSTERING ALGORITHM

The next step is to prune solution sets after achieving accept-
able Pareto-optimal solutions. One of the many significant
purposes of shrinking the optimal solutions’ size is to select
meaningful solutions by decision-makers. Two strategies
are designed to do the same, i.e., deciding based on the
importance of the objective components with professional
decision-makers and the data clustering technique. The first
strategy is less fruitful than the decision-maker would hardly
anticipate the analytical preference of the system’s goals.
However, the second approach of clustering to classify
solutions in alternative domains and then decide the best
solutions is relevant if there is an emphasis on their
categorization. The use of the data clustering approach for
reducing the size of an optimal set is presented in more detail
in [45] and [66].

The k-mean identifies the best solution region of the
Pareto-front from the three models. It offers excellent
assistance for system designers investigating the variances
between the three models. We used the silhouette plot
strategy to evaluate the optimal number of clusters. This
method calculates the allocation of objects to clusters to
see if the groups are about the same quality (e.g., an equal
number of objects in every collection). For example, Fig. 17
illustrates the clusters of Pareto optimal sets generated
by IT2FMORRAP. There are two methods for identifying
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FIGURE 18. Pareto fronts with cluster center and centroids of the Pareto-Front found for various iterations of IT”2FMORRAP, TIFMORRAP, and MORRAP.

the optimal solution among these five clusters. First, the Pareto solutions for trade-offs between the goals. The knee
cluster center (centroid) is calculated and considered the cluster is composed of the most impressive outcomes of the

best representative solution. Second, the ‘“knee” cluster Pareto fronts, solutions where a minute increase in one goal
is discovered since it includes the significantly superior would direct a considerable decline in at least one other
21588
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TABLE 4. Clustering results of Pareto-fronts obtained for MORRAP, TIFMORRAP, and IT2FMORRAP corresponding to 50, 100, 200, and 400 iterations.

No of No of Reliability Cost Weight
iterations Models Clusters Solutions Min Max Min Max Min Max
50 Cluster 1 19 0.647372 0.881989 138.8348  232.2369 108.0761 191.144
Cluster 2 31 0.168070 0.633636 36.25508  111.2945 50.30058  262.6119
Crisp MORRAP  Cluster 3 17 0.873469 0.964490 178.6094  296.3860  197.3486  365.3174
Cluster 4 14 0.969788 0.990602 329.5251 384.0529  306.8951  504.1913
Cluster 5 19 0.990089 0.995010 169.5137 3589774  492.3325  701.9070
Cluster 1 19 0.988076 0.990100 456.2500 5529070 315.8460  326.9462
Cluster 2 16 0.430568 0.603718 155.8606  257.8946  65.49992  107.1017
T1IFMORRAP Cluster 3 19 0.168070 0.417853 50.30058 147.8366  64.13041  67.23666
Cluster 4 23 0.897661 0.986259 258.3841  430.4762  168.1147  327.1490
Cluster 5 23 0.618140 0.888452 116.4269  261.4892 127.3924  210.7934
Cluster 1 19 0.168070 0.425566 50.30058  152.1719  77.06647  86.41690
Cluster 2 21 0.983958 0.995020 401.8207 5529070  391.5078  428.2486
IT2FMORRAP Cluster 3 15 0.442343 0.596900 163.2062  262.5173  83.86066  121.1776
Cluster 4 23 0.616437 0.893620 99.80544  205.4074  155.6856  309.9325
Cluster 5 22 0.901187 0.981538 236.8216  387.6202  239.3791  428.7591
100 Cluster 1 19 0.643708 0.873987 120.8309  195.9814 100.4277 194.1952
Cluster 2 31 0.168070 0.630833 32.35902 105.3701  50.30058  243.4352
Crisp MORRAP  Cluster 3 13 0.882092 0.948864 1749552 2753443  196.6855  355.4798
Cluster 4 15 0.954339 0.988772 241.6848  387.3911  288.1932  461.0629
Cluster 5 22 0.989539 0.995010 176.8766  372.5829  477.9913  701.9070
Cluster 1 23 0.899806 0.985987 2524763  419.6662  174.8504  331.0660
T1IFMORRAP Cluster 2 19 0.168070 0.412725 50.30058 144.6523 6199837  67.82312
Cluster 3 22 0.987722 0.995010 4474229 5529070  299.5581  325.5449
Cluster 4 17 0.636453 0.891631 91.27971  223.2731 141.2709  239.4774
Cluster 5 15 0.423513 0.618663 151.1107  270.6278 6498785 116.7315
Cluster 1 15 0.430668 0.601601 156.4053  267.2080  81.10574 1259127
Cluster 2 19 0.988796 0.990221 4623199 5529070 361.8377  434.5121
IT2FMORRAP Cluster 3 22 0.916641 0.987946 263.3563  447.7321  230.1616  424.9940
Cluster 4 17 0.168070 0.413398 50.30058  145.6625  70.66489  86.79743
Cluster 5 27 0.615378 0.910405 97.11842  269.7705  141.4955 299.1701
200 Cluster 1 32 0.168070 0.640126 32.10064  110.5197  50.30058  258.3915
Cluster 2 19 0.656110 0.882970 122.2660  223.5671 104.0805 219.8083
Crisp MORRAP  Cluster 3 15 0.975977 0.991778 330.6842 3755641 336.1303  541.5902
Cluster 4 19 0.892463 0.972634 148.6952  334.1131 213.4425 355.3240
Cluster 5 15 0.992038 0.995010 158.7750  354.6400  550.7140  701.9070
Cluster 1 23 0.988333 0.995010 448.9022 5529070 180.6826  351.0042
TIFMORRAP Cluster 2 13 0.438388 0.607832 161.5149  282.8956  47.32428  73.14564
Cluster 3 19 0.168070 0.655750 50.30058  151.3024  35.95648  138.0932
Cluster 4 25 0.896537 0.987558 210.0843  433.8674 181.7252  412.1878
Cluster 5 20 0.623904 0.888100 93.77996  222.6883  89.30922  230.8093
Cluster 1 14 0.435135 0.619548 159.5773  250.2719  56.2314 87.03626
Cluster 2 21 0.989376 0.996010 476.4906  5502.907 216.229 365.1702
IT2FMORRAP Cluster 3 21 0.932641 0.988875 310.7160  466.4728  223.3685  373.2623
Cluster 4 23 0.168070 0.703905 50.30058 148.2601  36.47259  146.1264
Cluster 5 21 0.715473 0.928549 109.6834  300.8601 154.7671  252.3281
400 Cluster 1 14 0.643973 0.839024 102.6929  162.2072  92.44174  181.8273
Cluster 2 31 0.168070 0.625515 32.59213  88.96988  50.30058  253.0849
Crisp MORRAP  Cluster 3 17 0.827310 0.953337 167.1641 265.7131  170.4436  336.7596
Cluster 4 21 0.958941 0.991430 301.0579  386.6001 292.3553  527.7004
Cluster 5 17 0.991699 0.995010 158.9724  379.1187 536.6238  701.9070
Cluster 1 16 0.898324 0.971252 2229646  361.4529 187.2141  345.7779
T1IFMORRAP Cluster 2 15 0.974334 0.991345 316.4671 5254060  329.0985  418.0858
Cluster 3 18 0.991070 0.995010 516.6718 5529070  158.7750  339.9589
Cluster 4 20 0.645962 0.886903 101.4946  226.3942 109.8173  206.8569
Cluster 5 31 0.168070 0.627052 50.30058  258.0575 32.10064  95.44486
Cluster 1 22 0.914843 0.987693 267.0183  437.0619 191.7001  367.7944
IT2FMORRAP Cluster 2 14 0.426835 0.617911 153.4998  262.8927 50.51555  85.85374
Cluster 3 22 0.634086 0.909258 99.16308  278.3343  98.25722  232.7937
Cluster 4 23 0.988497 0.995010 453.0641 5529070  159.9971  370.1533
Cluster 5 19 0.168070 0.669955 50.30058 144.8031 32.10064  138.3264

objective. However, locating the knee area is challenging
due to the unsystematic nature of the Pareto-fronts; hence,
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we have grouped all Pareto-solutions produced via various

iterations.
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TABLE 5. Clustering results of Pareto optimal sets obtained for MORRAP, TIFMORRAP, and IT2FMORRAP corresponding to 500, and 1000 iterations.

No of No of Reliability Cost Weight
iterations Models Clusters Solutions Min Max Min Max Min Max
500 Cluster 1 31 0.168070 0.625233 32.10064  100.6030  50.30058  248.4446
Cluster 2 22 0.637810 0.891678 120.7502  194.7157 100.6624  249.0255
Crisp MORRAP  Cluster 3 16 0.981948 0.992176 324.0709  367.6624  364.2075  553.7988
Cluster 4 18 0.901343 0.980146 211.2367  330.9491  245.7905  360.6048
Cluster 5 13 0.992512 0.995010 158.7750 3473708  567.1795  701.9070
Cluster 1 19 0.903245 0.97812 233.7644  372.7818  203.5062  350.6600
Cluster 2 13 0.980591 0.991822 352.9828  540.9566  330.5843  377.9323
T1IFMORRAP Cluster 3 16 0.992175 0.995010 553.8434 5529070  158.7750  344.9445
Cluster 4 21 0.650924 0.894404 97.03108  241.9577 143.1528  226.9026
Cluster 5 31 0.168070 0.636855 50.30058  263.5075 32.10064  111.5452
Cluster 1 13 0.899063 0.958532 241.6212 366.616 164.6777  260.7254
Cluster 2 19 0.990547 0.995010 501.7964 5529070  158.7750  355.7887
IT2FMORRAP Cluster 3 16 0.962084 0.989883 310.4239  484.8635 303.5941  386.6790
Cluster 4 31 0.168070 0.628905 50.30058  254.7127  32.10064  101.5604
Cluster 5 21 0.64349 0.890519 101.2971  206.4384 122.7636  221.4583
1000 MORRAP Cluster 1 19 0.635003 0.870267 120.9375  207.4461 102.9232  203.6794
Cluster 2 31 0.168070 0.623581 32.10064  110.3548  50.30058  259.5443
Cluster 3 18 0.880590 0.974240 177.4715  358.1153  204.6092  379.6899
Cluster 4 15 0.977495 0.991484 337.2789  384.2954  320.0734  529.4631
Cluster 5 17 0.991751 0.995010 158.7750  378.6018  538.5835 701.907
Cluster 1 13 0.897121 0.961682 229.4778  388.5894  153.7787  277.2986
T1IFMORRAP Cluster 2 14 0.965433 0.989321 2823261  471.5641  322.0845 392.0788
Cluster 3 21 0.989926 0.995010 4859107  553.9070  158.7750  363.3329
Cluster 4 21 0.635765 0.888526 97.38103  214.9567 115.7271  245.2399
Cluster 5 31 0.168070 0.617898 50.30058  262.4468  32.10064  97.09964
Cluster 1 31 0.168070 0.625053 50.30058  258.3743  32.10064  100.3309
IT2FMORRAP Cluster 2 21 0.989872 0.996010 484.1771  550.9070  158.7750  373.9964
Cluster 3 19 0.639759 0.871337 99.75023  201.5004 108.1655 213.2144
Cluster 4 15 0.880547 0.959599 2248769  381.0006 161.3047 246.5654
Cluster 5 14 0.962767 0.989356 297.7722  472.1872  302.0414  399.5519

The cluster in the knee region provides the individuals
responsible for making decisions with a list of recommended
alternatives from which they may choose the most appro-
priate solution. Fig. 18 demonstrates the cluster center, and
centroids of the Pareto-Front found for various iterations (50,
100, 200, 400, 500, and 1000) concerning the IT2ZMORRAP,
TIFMORRAP, and MORRAP. Fig. 18 demonstrates the
clusters point along with the centroids of the Pareto Front
for various iterations; 50, 100, 200, 400, 500, and 1000 for
the IT2MORRAP, TIFMORRAP, and MORRAP. Moreover,
the five representative ranges of solutions (corresponding to
different clusters) are shown in Table 4 and Table 5. From
Table 4 and Table 6, the expert chooses a solution region
and analyzes the extreme objective function values. Once
the clustering is done, we can further investigate the system
objectives from Fig. 18 and Tables 4-5 as follows:

« For iteration number 50, as we can see from Fig. 18,
the knee region solutions are formed by Cluster#4 with
23 numbers of solutions out of 100 for IT”2ZFMORRAP.
These pruned solutions are anticipated as important.
The lower and upper values of the range for the goals
(system reliability, cost, and weight values) of Clus-
ter#4 corresponding to IT2ZFMORRAP are [0.616437,
0.89362], [99.80544, 205.4074], [155.6856, 309.9325]
respectively (from Table 4). Cluster#1 and Cluster#5
are most likely in the knee region, with 19 and
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23 numbers representative solutions for MORRAP and
T1FMORRAP, respectively. The lower and upper values
of the objective functions are [0.647972, 0.881989],
[138.8348, 232.2369], and [1.8.191.144] for MORRAP
and [0.61814, 0.888452], [116.4269, 261.4892], and
[127.3924, 210.7934] for TIFMORRAP.

Similarly, Cluster#5, with 27 representative solutions,
is in the knee region for IT2ZFMORRAP with min-
imum and maximum reliability, cost, and weight
values [0.615378, 0.910405], [97.11842, 269.7705],
[141.4955, 299.1701], for 100 iterations. Also, Clus-
ter#1 and Cluster#4 of MORRAP and TIFMORRAP
are the knee clusters having 19 and 17 solutions
with objective values ranges [0.643708, 0.873987],
[120.8309, 195.9814], and [100.4277, 194.1952] and
[0.636453, 0.891631], [91.27971, 223.2731], and
[141.2709, 239.4774] respectively.

For iteration number 200, the knee region cluster for
IT2FMORRAP is Cluster#5 with 21 optimal solutions
in it and the minimum and maximum reliability, cost,
and weight values [0.715473, 0.928549], [109.6834,
300.8601], and [154.7671, 252.3281], Cluster#2 and
Cluster#5 are the knee clusters having 19 and 20 solu-
tions of MORRAP and TIFMORRAP with objective
function values ranges [0.65611, 0.88297], [122.266,
223.5671], and [104.0805, 219.8083] and [0.623904,
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FIGURE 19. Knee region cluster for 50 iterations. (a) Reliability vs. Cost
(b) Reliability vs. weight.
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FIGURE 20. Knee region cluster for 100 iterations. (a) Reliability vs. Cost
(b) Reliability vs. weight.
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FIGURE 21. Knee region cluster for 200 iterations. (a) Reliability vs. Cost
(b) Reliability vs. weight.

0.8881], [93.77996, 222.6883], and [89.30922, 230.8093]
respectively.

The results mentioned above demonstrate that the designed
IT2FMORRAP formulation archives better knee region
solutions than the TIFMORRAP and MORRAP models
for 50, 100, and 200 instances of iterations. The obtained
amount of solutions of Cluster#4 for 50 instances, Cluster#5
for 100 instances, and Cluster#5 for 200 instances for
IT2FMORRAP consisted of a higher number of solutions
as achieved a more comprehensive range of objective
values in comparison to the other two approaches. For
400, 500, and 1000 iterations, Cluster#3, Cluster#5, and
Cluster#3 for IT2FMORRAP, respectively, are the most
prominent solutions for decision-makers. When the numbers
of instances are 500 or higher than it, the differences
between the three approaches are minimal (see Table 5).
This will again justify our argument that the IT2 fuzzy
modeling of reliability optimization is more realistic and
faster [21].
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FIGURE 22. Knee region cluster for 400 iterations. (a) Reliability vs. Cost
(b) Reliability vs. weight.
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FIGURE 23. Knee region cluster for 500 iterations. (a) Reliability vs. Cost
(b) Reliability vs. weight.
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FIGURE 24. Knee region cluster for 1000 iterations. (a) Reliability vs. Cost
(b) Reliability vs. weight.

Finally, the above results are plotted pairwise (a) reliability
vs. cost and (b) reliability vs. weight objectives for illustration
in Figs. 19-24 for 50, 100, 200, 400, 500, and 1000 iterations.
This interpretation of the optimal solution sets can be useful
to the decision-maker since it would have found suitable
tradeoffs in the knee region.

In Fig. 19(a)-(b) for iteration 50, Clusters#1, Cluster#5,
and Cluster#4 are considered for MORRAP, TIFMORRAP,
and IT2FMORRAP, respectively, because they possess
complete reliability vs. cost and reliability vs. weight of
the system compared to the remaining clusters. Also, the
IT2FMORRAP delivers the lowest values for cost and
weight among the three clusters. Whereas in Fig. 20(a)-(b),
Clusters#1 for MORRAP and Cluster#4 for TIFMORRAP
have high reliability than Cluster#5 of IT2FMORRAP.
However, it is accomplished at a relatively expensive cost
and weight value. As mentioned earlier, in a similar context,
solution clusters at the knee region in Fig. 21 to Fig. 24
reliability vs. cost and reliability vs. weight of the system
compared. It can be easily observed that the IT”2ZFMORRAP
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TABLE 6. Computational results of six performance indicator.

Indicator ~ Model Number of iterations
50 100 200 400 500 1000
NPS MORRAP 95 97 95 97 98 97
TIFMORRAP 97 100 99 99 100 99
IT2FMORRAP 100 100 100 100 100 100
Diversity MORRAP 7544487.614 8324472.177 11124123 12873628 8298307 8290319
T1IFMORRAP 7544487.614 8324472.177 11124123 12873628 8298307 10465564
IT2FMORRAP 8118979.543 11510789.95 12571945 10358413 8846262 10465564
Spacing MORRAP 8.568697896 7.657336906 10.08804 11.99424 13.08825 10.66079
T1IFMORRAP 8.568697896 7.657336906 10.08804 11.99424 13.08825 10.66079
IT2FMORRAP 8.845039703 9.194494962 10.57608 10.84046 11.15203 10.23500
Spread MORRAP 0.526489147 0.441881425 0.472299 0.439115 0.469793 0.468525
T1IFMORRAP 0.456285575 0.443066225 0.44118 0.501395 0.527824 0.478846
IT2FMORRAP 0.464495046 0.464847601 0.475285 0.491037 0.477641 0.456951
HV MORRAP 258254.9458 263315.7421 254788.9 262578.0 248976.6 261211.4
TIFMORRAP 197757.6969 202064.6223 279149.9 286066.7 256530.9 266936.6
IT2FMORRAP 263848.9316 272361.4563 250172.2 250808.9 262964.7 272433.7
NHV MORRAP 0.661998394 0.674308592 0.721008 0.728914 0.73158 0.733504
TIFMORRAP 0.650283527 0.656584574 0.728546 0.736066 0.730198 0.732403
IT2FMORRAP 0.723390087 0.731210022 0.729813 0.730653 0.728491 0.738121
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FIGURE 25. Performance indicators: for formulations (1) Crisp
MORRAP, (2) TIFMORRAP, and (3) IT2FMORRAP.

cluster solutions outperform both TIFMORRAP and
Crisp MORRAOP models by producing better Pareto
solutions.

Although the trade-off solutions in the decision-making
can only be confirmed as the most acceptable solution with
knowing the decision preference, it is undoubtedly fascinat-
ing to point out the apparent and straightforward trade-off
solution to three objectives higher than others and the final
choice. Hence, the selection of one individual depends on
the prospect of the decision-making and understanding of
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the system’s needs, responsibilities, and expectations of the
anticipated customer/users.

D. COMPUTATIONAL ILLUSTRATIONS OF PERFORMANCE
INDICATORS

We have measured the number of Pareto solutions, diversity,
spacing, spread, hyper volume, and normalized hyper volume
performance indices [64] to compare the Pareto-fronts
obtained from our experiments.

1) The number of Pareto solutions (NPS): It states
that algorithm-I is better than algorithm-II; if algo-I
generates P results and algo-II Q, provided P > Q.

2) Diversity indicator (D) : The D measures the diversity
of the solution set:

I

N
D=|>" max|x —yi
i=1

where, x; and y; are the two distinct non-dominated solutions
of the optimal set.

1) Spread indicator: The spread values are calculated as.

Mo, )
Spread = Z (x,ln - x,’n)
m=1

1) Spacing indicator (SP): The SP measures the relative
distance among the consecutive solution points. SP is
calculated using the following.

op_ | iz ]di—d]
n b

- nd;
d = Zi:l In|

VOLUME 11, 2023



Z. Ashraf et al.: Generalized Multiobjective Reliability Redundancy Allocation With Uncertainties

IEEE Access

TABLE 7. Simulation Samples of diversity for IT2FMORRAP, TIFMORRAP, and Crisp MORRAP.

Run DM Run DM
MORRAP TIFMORRAP  IT2FMORRAP MORRAP TIFMORRAP IT2FMORRAP
1 11305147.47  9606194.659 9041814.813 26 12470287.12  8258727.839 8493239.444
2 8858033.705 12213786.63 11952421.39 27 9278097.602 7632372.82 9636659.255
3 9510217.72 10725560.71 9545934.147 28 9111411.548  9711093.746 9132216.728
4 9265633.749  9751659.764 10226692.73 29 9170431.462  9860459.563 8603297.782
5 10589461.59  8446492.725 13295646.46 30 9338021.25 8016100.11 10603810.3
6 9617103.854  7893874.132 9846556.682 31 10791766.52  8048107.486 11549984.84
7 1115172429  8633585.367 9200087.102 32 11175292.17  8570009.375 12347909.3
8 9575088.786  8324613.461 10811957.26 33 8711732481  9871785.079 8471701.697
9 8897797.786  9773876.538 8832689.808 34 8980218.14 8243724.262 9269965.181
10 8808756.876  7533073.672 9731681.146 35  7910324.409  6955307.373 10628549.56
11 9516365.484  7726842.076 8670113.54 36 9285405.039  10991100.79 9675385.612
12 9461043.952  8091352.018 10699980.88 37 10263884.33  7053280.987 12010719.7
13 10198800.44  8183017.688 10827389.73 38 10191881.1 8195563.314 9017471.946
14 11257294.48  9714887.632 11540760.76 39 8765062.57 8167082.824 9861235.292
15 8740534.831  9196433.772 9246720.855 40 11419876.8 9226732.754 10498813.1
16 10952397.31 7412155.787 9766019.527 41 9886376.937  7472143.027 10995109.48
17 11146923.47  7653939.689 9492185.049 42 10260159.4 9373397.451 10803003.24
18  8508859.292 7517667.05 9996595.998 43 9220297.246  8243014.271 9292006.079
19 9797647.478  8752101.643 9211044.118 44 9528713.446  8578530.792 8224931.589
20 13009565.05  9808692.014 8772664.718 45 10612278.49  8542330.059 9584299.306
21 9148241.52 7348340.95 9340794.989 46 9650372.34 11068089.64 9323281.596
22 9177204.879 8518814.71 12220073.74 47 1013523529  7889995.996 9907616.815
23 1083116298  7932101.754 9936299.42 48  9953813.478  8504674.244 11071571.6
24 9166322.28 7567319.149 10346454.15 49 9542918.219  7785131.029 8878564.41
25 1191117534  7468836.022 10404754.79 50 11283671.71 8374384.512 8591671.548

1) Hyper volume indicator (HV): The HV measures the
volume in the objective space covered by the non-
dominated solutions. Mathematically, for individual
solution i, a hypercube v; is calculated with the
reference point, constructed by the worst objective
function values, and defined as follows:

N
HV = volume U Vi
i=1
1) Normalized hyper volume indicator (NHV): The NHV
calculates a normalized HV. It is the ratio of the volume
of hypercube F for the current non-dominated solution
to and the volume of hypercube F* worst solution.
Mathematically, defined as follows:

_ HV(F)
~ HV(F*)
An algorithm with higher NPS, diversity, hypervolume
and normalized hypervolume values (which means more

NHV
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diverse and non-dominated solutions) is better. However,
an algorithm that gives smaller spacing and spread values
solutions is best.

Using the mentioned indicators, we compare the solu-
tions obtained from the three models: (1) IT2ZFMORRAP,
(2) TIFMORRAP, and (3) Crisp MORRAP, at different
instances of iterations. The measures were computed for three
methods over the independent simulation of 50. Table 6 gives
the numeric values of these indicators for 50, 100, 200, 400,
500, and 1000 instances.

Fig. 25 pictorially illustrates the critical observation for
all indicators. It can be inferred from Fig. 25(a) that the
mean of NPS in the established IT2FMORRAP process is
greater than the other two methods, indicating the amount
of non-dominated alternatives for IT2FMORRAP is more
enormous than the MORRAP and TIFMORRAP. The mean
of the diversity measure in the suggested IT2ZFMORRAP
seems to have more relevance to other methods (see
Fig. 25(b)). It implies that the IT2FMORRAP process has
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TABLE 8. Tests of normality test diversity samples.

TABLE 11. Kruskal-Wallis Test for Spacing, Spread, HV, NHV and NPS.

Kolmogorov-Smirnov* Shapiro-Wilk Ranks Test Statistics
Statistic df Sig.  Statistic df Sig. MODEL N Mean  Chi- df Asymp.
MORRAP 0.148 50 0.008  0.946 50 0.023 Square Sig.
TIFMORRAP 0.171 50 0.001 0912 50 0.001 MORRAP 50 94.06 39.940 2 0.000
IT2FMORRAP  0.118 50  0.079 0945 50  0.022 Spacing  TIFMORRAP 50 43.96

TABLE 9. Test of homogeneity test for diversity samples.

Levene dfl df2 Sig.
Statistic
Based on Mean 0.071 2 147 0.931
Based on Median 0.088 2 147 00916
Based on Median

Diversity and with adjusted df 0.088 2 146.079 0.916
Based on trimmed
mean 0.082 2 147 0.921

TABLE 10. Kruskal Wallis Test for Diversity Samples.

Rank Statistics
MODEL N Mean Rank DM
MORRAP 50 91 Chi-Square 40.446
T1IFMORRAP 50 43.6 df 2
IT2FMORRAP 50 91.9 Asymp. Sig. 0.000

Total 150

fewer non-convergences strategies for experimental tests.
The average calculation of the spacing indicator (from
Fig. 25 (c¢)) in the developed model is significantly smaller
than other methods. That implies that the relative difference
between the sequential non-dominated resolutions in the
IT2FMORRAP is small. However, the suggested method’s
mean spread value has a much more significant effect
than the TIFMORRAP and MORRAP (see Fig. 25 (d)).
Fig. 25(e)-(f) shows that IT2FMORRAP produces non-
dominated frameworks with significantly higher amounts
for the hypervolume and normalized hypervolume measure-
ments. Thus, the non-dominated results achieved mostly
by the IT2FMORRAP approach are much more distributed
equally than all those observed by other systems. Hence,
IT2FMORRAP provides better representation in appearances
of the NPS, diversity, spacing, HV, and NHV indicators
compared with TIFMORRAP and crisp MORRAP.

E. STATISTICAL ANALYSIS

The statistical analysis has been given to evaluate the
hypothesis about the results of the experimental investigation
of the Pareto-fronts performance Viz. NPS, diversity, spacing,
spread, HV, and NHV. Foremost, the data samples of
performance metrics were checked to see if they were normal.
After that, we compared the efficacy of IT2FMORRAP,
T1FMORRAP, and Crisp MORRAP by analyzing the models
with a 95% confidence level. Following are the assumptions
considered for the normality, homogeneity, and comparison.
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T2FMORRAP 50 88.48

MORRAP 50 85.36  14.085 2 0.001
Spread  TIFMORRAP 50 56.68

T2FMORRAP 50 84.46

MORRAP 50  110.10 104.220 2 0.000
HV TIFMORRAP 50 25.50

T2FMORRAP 50 90.90

MORRAP 50 106.14 63.227 2 0.000
NHV TIFMORRAP 50 38.06

T2FMORRAP 50 82.30

MORRAP 50 52.45 80.591 2 0.000

NPS TIFMORRAP 50 55.55
T2FMORRAP 50  118.50

« Normality (Hypothesis 1): Sample data is insignificantly
variated and normally distributed.

« Homogeneity (Hypothesis 2): Samples data follows the
identical distribution of points.

o Comparison (Hypothesis 3): No significant difference
in IT2FMORRAP, TIFMORRAP, and MORRAP on X,
where X represents the vector of objectives.

Table 7 shows simulation samples of 50 runs for diversities
of Pareto front generated by IT2FMORRAP, TIFMORRAP,
and MORRAP, respectively. For the diversity data samples
described in Table 7, Table 8 displays the results of a
normality test directed employing the Kolmogorov-Smirnov
and Shapiro-Wilk tests. In this test, we will use a sample size
of 50 for each condition. The values considered significant
(Sig.) are lower than 0.05. As a result, the normality
test hypothesis (Hypothesis 1) is disproved. It denotes the
diversity sample data deviation from the normal distribution.
Table 9 shows the result of the Leven Test, which was used to
test for homogeneity. Significant values, in this case, are more
than 0.05. As a result, Hypothesis 2 is confirmed, pointing
toward the samples being homogenous.

As earlier demonstrated, diverse data samples are typically
not dispersed but relatively homogenous. As a result, the
Kruskal-Wallis test is used to evaluate them. The statistical
results for the Kruskal Wallis test are demonstrated in
Table 11. In Table 12, diversity has a significant (Sig.) value
of 0.000, less than 0.05, at a 5% significance threshold. As a
result, rejecting the hypothesis (Hypothesis 3) demonstrates
that samples vary greatly, showing the improved performance
of the suggested IT2FMORRAP over TIFMORRAP and
MORRAP for diversity.

Table 11 contains the statistical results of the Kruskal-
Wallis test for different performance measures, including
spacing, spread, NPS, HV, and NHV. The pattern mirrors
that of Table 10. Thus, from Table 9 to Table 10, we prove
that the proposed IT2FMORRAP considerably varies from
T1IFMORRAP and MORRAP on the performance metrics
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TABLE 12. Comparison study of the proposed model with the well-known existing state-of-art models.

Authors Structure M]illtl_, Target Uncertain - Modeling Algorithm  Solutions Result
objectives functions Parameters approach
s _ _ Crisp Pareto Ry = 0.9656;
Wang et al. [46] DeterministicTwo Rs, Cs non — o bers NSGA-II Front C, = 2353.
Interval-
Interval 1 . Rs = [0.9914,0.9998];
Roy et al. [53] uncertain Two Rs, Cs R& C valued GA Single Cs = [135.3863,219.0110].
numbers
Interval-
Interval | . Rs = [0.4625,0.5175];
Sahoo et al. [51] uncertain Two Rg, Cs R& C valued GA Single Co = [71.9491,120.6125].
numbers
Interval Interval- Parcto 1S
Zhang et al. [52] uncertain Two Rs, Cs R& C valued MOPSO Front = [0.3162,0.3566],[0.99994403,0.99998972];
numbers Cs = [2325.6,2234.4],[13254,13796].
T1 fuzzy Rs, Cs ) . Rs = 0.774142;
Garg et al. [6] uncertain Two R& C TI1 MFs PSO Single Ce = 261.137251.
Intuitionistic e
Intuitionistic 3 . Rs = (0.9978739,0.9969936 0.9962003);
Garg etal. [71] fuzzy ~— Two R G5 R&C g PSO Single - _ (30145961, 375.41840,367.95281).
uncertain
. T1 fuzzy Rs, Cs & } Pareto  Rs = [0.030148,0.961686];
Muhuri et al. [21] uncertain Two Rs, W r&c TI1FNs NSGA-II Front Cs = [11.2489,551.1229].
. IT2 fuzzy Rg, Cs & KM Pareto Ry = [0.056188,0.99299];
Muhuri etal. [21] o ain TWO Row, &C TT2ENS  \GAl Fromt ¢ = [13.71352,552.9909].
IT2 fuzzy EKM . Rs = 0.867611877;
Ashraf et al. [59] uncertain Two Rs, Cs R& C IT2 MFs _PSO* Single Cs = 437.0751367
Taboada et al. [45] ~ DeterministicThree Ry, Cs,Ws —non — Real numbers NSGA-II E?;f:to Rs = 0.984265; CS = 15; WS = 25.
Parcto 1S
Damghani et al. [69] DeterministicThree  Rg, C5, Ws —non — Real numbers DSAMOPSOFront = [0.999999999999211,0.999999968973551]

Cs = [172,276]; Wy = [101,160].

Pareto Ry = [0.8069,0.9977]; C; = [18,49];

Zhang et al. [70] DeterministicThree  Rg, Cs, Wy —non — Real numbers BBMOPSO Front W, = [33,78].
Pareto Rs = [0.130145,0.9950];
MORRAP DeterministicThree R, Cs, Ws —non — Real numbers NSGA-II Front Cs = [50.301,551.907];
W = [35.96,412.19].
Rs = [0.130145,0.9950];
TIFMORRAP Ezg:;tliiuzzyThree Ro,CoWs roc&w TIENs UM P00 150301,551.907];
W = [35.96,412.19].
Pareto- Ry = [0.16807,0.9950];
Proposed IT2 fuzzy EKM- S )
IT2FMORRAP uncertain Three  Rg,Cs, W 1,c & w IT2 FNs NSGA-II Front Cs = [9.019947,551.9275];

W, = [83.8607,428.25].

-non- represents that no parameters in the optimization model are uncertain.

'The two objectives are combined to make a single objective optimization problem and solved with the interval-valued GA.

The two T1 fuzzy objectives are combined, and the corresponding crisp optimization problem is established to solve.

3The two Intuitionistic fuzzy objectives functions are combined, and the corresponding crisp optimization problem is established to solve.
“The two IT2 fuzzy objectives are combined, and the corresponding crisp optimization problem is established to solve.

considered. The findings of the hypothesis test, which are
described in Table 11, support the validity of the inferences
made from the experimental investigation.

F. CRITICAL ANALYSIS AND DISCUSSION
From the obtained results of the IT2FMORRAP,
TIFMORRAP, and crisp MORRAP in Section VI (B-E),
we found that IT2FMORRAP outperforms TIFMORRAP
and crisp MORRAP in terms of the performance matrices.
However, it is almost impossible to design and implement a
high-performing system in a real-world scenario, as uncer-
tainties are always present. Nowadays, the IT2FN is the most
precise and renowned approach to epistemic uncertainties.
In summary, this work provides practical and indirect
solutions to the decision-makers for finding the best optimal
solution among the trade-off objectives of reliability, cost,
and weight under the most suited environment. The K-mean
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clustering approach provides the best-suited region of the
Pareto optimal set that helps the decision-makers to select
an appropriate solution value of optimal reliability, cost,
and weight according to their requirement. Further, the
performance matrices, such as NPS, diversity, spacing,
spread, HV, and NHYV, express the superiority of the proposed
IT2FMORRAP over the others.

Vil. COMPARISON WITH THE WELL-KNOWN STATE OF
ART MODELS

A comprehensive study of the proposed model with some
well-known states of the art models is done here. The
bibliographic literature on reliability optimization techniques
is rich due to the popularity and applicability of the
reliability issue. The researcher developed several single
objectives and multi-objectives heuristics and meta-heuristics
schemes to solve the problem. Moreover, there are different
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ways of managing the randomness and uncertainties: inter-
val approach, probabilistic distributions, possibility theory,
T1 fuzzy sets, intuitionistic fuzzy sets, and IT2 fuzzy
set theories. Therefore, we have mainly focused on those
related works in which the multiobjective optimization
approaches are presented under the umbrella of uncertain-
ties [3], [67], [68]. Table 12 shows a thorough comparative
study of the proposed model with the well-known state-of-art
models.

Wang et al. [46] addressed the MORRAP aiming the Rg
maximization and Cg minimization with NSGA-II under the
weight constraint concerning the component reliability and
redundancies as crisp numbers. Khalil-Damghani et al. [69]
presented a dynamically tuned multiobjective particle swarm
approach for solving MORRAP with three objectives: Rg
maximization, Cg minimization, and Wg minimization by
finding the best-suited component reliability and redundan-
cies for the series-parallel system. Taboada et al. [45] well-
thought-out objectives, Rg maximization, Cs minimization,
and Ws minimization in MORRAP and Pareto Front studies
with the k-mean techniques. Zhang et al. [70] presented the
barebones-based multiobjective PSO algorithm to address
the three objectives (Rs, Cs, and Wg) MORRAP. Further,
the authors have applied a sensitivity-based clustering
technique to reduce the size of the optimal solution sets.
In [45], [46], [69], and [70] deliberate the MORRAP,
wherever indecision, hesitation, vagueness, and ambiguity
in the featuring decision variables or parameters was not
measured and therefore not appropriate to the practical-life
systems. Sahoo et al. [51] solved IVMORRAP (interval-
valued MORRAP) to maximize interval-valued reliability
and cost functions using an entropy-based region-reducing
GA. Roy et al. [53] considered the interval-valued reliability
[Reeft> Rright], and interval-valued cost [Cpef, Ciighe] and
proposed the IVMORRAP of the series-parallel system, then
solved the proposed model using the GA algorithm.

Zhang et al. [52] formulated an IVMORRAP for the
interval-valued reliability and cost functions. The authors
introduced a multiobjective PSO algorithm to solve a SCADA
system for water resources. Unfortunately, this is far from
being a legitimate basis since considering an entire range
of numbers (also known as an interval) to have equivalent
probability is an uncommon occurrence in the existing
natural system. Garg and Sharma [6] formulated a T1 fuzzy
MORRAP for series-parallel systems using linear and non-
linear membership functions corresponding to the system’s
reliability maximization and cost minimization objectives.
The authors have used a de-fuzzified approach to establish
a crisp model and solved it using a PSO algorithm. In [71],
Garg et al. demonstrated intuitionistic fuzzy programming
to design the reliability and cost functions of the system via
the intuitionistic fuzzy membership functions with triangular
interval data.

Recently, Muhuri et al. [21] presented the higher-order
uncertainty associated with reliability components with IT2
fuzzy numbers and introduced an IT2ZFMORRAP model to
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two objectives: system reliability vs. cost and reliability vs.
weight. The bi-objective IT2FMORRAP models are solved
and compared with the T1 FN representations of parameters.
In another work, Ashraf et al. [59] modeled the system
reliability and cost functions with the interval-type-2 fuzzy
membership functions by using Zadeh’s extension principles
and solving the formulated FMORRAP model using the
EKM with particle swarm optimization algorithm. Therefore,
no work has been considering the system’s reliability, cost,
and weight parameters with IT2 FNs to model the three
objectives of IT”2ZFMORRAP.

Therefore, we brought across our claims of rationales to
prove those component parameters like reliability, cost, and
weight, respectively, are much more practically formed with
IT2 FNs than most other uncertainty designing methods,
including T1 FNs or Interval-valued numbers [61], [62], [72].
Consequently, the work presented in this work is a general
model of the MORRAP; almost all current MORRAP
frameworks will be seen to be the exceptional circumstances
of the presented IT2ZFMORRAP design.

VIil. CONCLUSION AND FUTURE WORKS

In this paper, an interval type-2 fuzzy multiobjective relia-
bility redundancy allocation problem (IT2ZFMORRAP) under
higher-order uncertainties in the system’s reliability, cost,
and weight parameters has been formulated. IT2ZFMORRAP
considers three objectives: reliability, cost, and weight of
a series-parallel system with parameters such as IT2FN.
The underlining situations are established under which the
proposed IT2FMORRAP model reduces to TIFMORRAP,
IVMORRAP, and classical MORRAP. A novel solution
approach is presented using the Enhance Karnik-Mendel
algorithm and NSGA-II. Experimental simulations have
been conducted using the pharmaceutical plant dataset to
produce Pareto Fronts for all the considered models. The
simulation reveals that the Pareto Fronts generated by
IT2FMORRAP are superior to TIFMORRAP and crisp
MORRAP. A k-mean clustering approach is employed
to demonstrate the cluster center and centroids of the
Pareto-Front found for various iterations 50, 100, 200, 400,
500, and 1000. Also, the five representative ranges of
solutions corresponding to different clusters are shown. The
most suited knee region cluster for IT2FMORRAP with
21 optimal solutions having the minimum and maximum
reliability, cost, and weight values [0.715473, 0.928549],
[109.6834, 300.8601], and [154.7671, 252.3281]. Similarly,
the knee clusters having 19 and 20 solutions of MORRAP
and TIFMORRAP with objective function values ranges
[0.65611, 0.88297], [122.266, 223.5671], and [104.0805,
219.8083] and [0.623904, 0.8881], [93.77996, 222.6883],
and [89.30922, 230.8093] respectively. The clusters at the
knee region of the Pareto-front for two objectives (reliability
vs. cost and reliability vs. weight) and three (reliability vs.
cost vs. weight) are better for the proposed model compared
to the other models for the all-considered iteration set with
faster convergence for NSGA-IL.
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Moreover, the performance indicators Viz. the number of
Pareto solutions, diversity, spacing, spread, hypervolume, and
normalized hypervolume, indicate that the IT2ZFMORRAP
model surpasses both considered models. Statistical analysis
has also been conducted to compare the samples from
the different runs of performance matrices. Kruskal Walli’s
test is used to confirm the hypothesis established in the
experimental study. A simulation study and comparative
performance analysis with other state-of-the-art methods
from the literature have been conducted to find a suitable
place for the proposed work in the domain.

As a limitation, we can observe that it is almost impossible
to design and implement an exact optimal system in
a real-world scenario with uncertainties. Therefore, for
any solution model, continuous improvement is needed.
Moreover, the characterization of both the epistemic and
aleatory uncertainties simultaneously is still computationally
challenging the researcher in practical applications.

The future direction will be considered as the use of
General type-2 fuzzy number, Intuitionistic fuzzy number,
and Interval type-2 Intuitionistic fuzzy number to represent
the reliability, cost, and weight parameters of the MORRAP
system. Further, some recent multi-objective meta-heuristics
optimization algorithms may be used to solve the formulated
model.
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