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ABSTRACT This work presents a distributed in-line strategy to manage an isolated microgrid by optimizing
active and reactive power dispatch. The proposed objective function leads tominimize the operation costs and
addresses some technical requirements such as diminishing power losses and voltage deviation. Additionally,
the strategy deals with temporal multi-scale goals, i.e., robustness to demand disturbances and variation
of renewable resources (a short-term objective), and preservation of the health of battery-based storage
systems (a long-term objective). The technique uses alternating directions method of multipliers (ADMM),
accelerated consensus, and a novel battery degradation model (Quadratic AH-Throughput model). We test
the proposed solution in a case study that includes renewable resources and lead-acid and lithium batteries.
To obtain the results of the case study, we employ a co-simulation scheme that uses Matlab and DIgSILENT.
Finally, the performance of the method is compared with a centralized optimization technique.

INDEX TERMS Alternating direction method of multipliers, battery loss capacity, consensus, distributed
optimization, optimal power flow, tertiary control.

I. INTRODUCTION
Microgrids are widely used to integrate renewable energy
resources and energy storage systems operating in a hier-
archical scheme. The primary and secondary levels of the
control hierarchy provide system stability through active and
reactive power management [1]. For this purpose, the use
of locally controlled power converters is common. On the
other hand, the tertiary level establishes optimal operating
points according to certain technical and economic conditions
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(e.g., reduction of operating costs or provision of ancillary
services) [2]. Tertiary controllers are in charge of high-
level decisions, which implies that they generally have to
lead/execute several tasks [3]. Just to name a few, high-
level control is in charge of increasing the efficiency and
robustness of the microgrid, facilitating the integration and
management of storage systems, increasing the quality of
service, and reducing the control effort of the lower levels
of the hierarchy [4]. This large number of tasks could be
performed efficiently by a distributed strategy. In fact, the
design of centralized strategies implies a high computational
effort and the need to implement complex communication
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networks, increasing the deployment cost [5]. Additionally,
from the network perspective, the robustness of centralized
strategies is reduced because all the control effort is assumed
by a single central node. Thus, if this node fails, the entire
network fails [6], [7].

In contrast, distributed control strategies solve many of the
aforementioned challenges. First, these strategies share the
computational load among several controllers that operate
with local information. Thus, they require communication
networks with fewer links. Second, distributed strategies
improve the resilience of the system to failures because these
schemes do not depend on a single central authority [8].
Furthermore, they favor plug-and-play operation [6] and
facilitate the integration of distributed energy resources such
as renewable units. Distributed methods have been effective
to solve the dispatch problem in microgrids using differ-
ent approaches such as gradient descent [9], [10], consen-
sus algorithms [11], [12], [13], and the alternating direction
method of multipliers (ADMM) [14]. However, there are lim-
itations that have not been fully addressed. Most of the meth-
ods reported in the literature do not consider relevant aspects
of real scenarios such as the joint dispatch of active and reac-
tive power, the optimal management of batteries, or the provi-
sion of ancillary services. For instance, [15] and [16] propose
fast-converging distributed algorithms based on ADMM and
the distributed gradient descent method to solve the economic
dispatch problem, responding properly to demand distur-
bances [17]. Nevertheless, the algorithms do not take into
account the management of energy storage devices, which
are exposed to a high number of charging and discharging
events. Consequently, these methods can significantly reduce
the batteries’ lifetime. In addition, the optimization does not
consider the reactive power management of the microgrid.
This fact reduces the capability of the strategy to mitigate
voltage deviation and power losses.

Other distributed approaches address the problem of the
imbalance between supply and demand caused by variations
of demand profile and the inherent intermittency of renewable
generators [18], [19]. Strategies based on a sliding hori-
zon such as distributed model predictive control (DMPC)
have shown to be a promising alternative to mitigate the
imbalance. Some authors have complemented these strate-
gies with machine learning tools to manage uncertainty.
For example, [19] predicts irradiance using neural networks,
with reduction of unsupplied energy for most of the ana-
lyzed cases. Although the proposed strategy has a distributed
nature, it requires a high processing capacity for large pre-
diction horizons, especially when it is necessary to consider
small time intervals to cope disturbances of demand or irradi-
ance. There are also some distributed strategies that consider
the participation of storage systems to provide stability by
facing variations in demand and generation. These strategies
ensure that the state of charge of the batteries is within appro-
priate ranges at any time. For instance, the authors in [14]
and [20] manage storage systems to meet technical and eco-
nomic goals over a long-term horizon. The main drawback of

long-term planning for battery management is that the ability
to deal with short-term disturbances is seriously affected.
Planning strategies with long horizons generally employ low
time-resolution to avoid computational overload, but this fact
reduces the strategy ability to cope with rapid changes in
supply/demand.

In addition to the described challenges related to storage
systems, having an appropriate battery-degradation model is
another problem to solve. This model is essential to design
efficient policies that take care of the health status of batteries
to increase their lifespan [4]. Although there are models to
estimate the degradation of batteries of several technologies,
many of the ones reported in the literature are not designed
to be efficiently integrated into management algorithms [21].
On the one hand, there are models with a high degree of
detail that, due to their complexity, are inadequate for making
predictions in real time. On the other hand, the simplest mod-
els (e.g., control-oriented models) are not accurate enough to
estimate the batteries lifespan [22], [23].

This work tackles the challenge of developing a compre-
hensive optimization problem and a solution method for a
tertiary-level control of microgrids. Most of the optimization
problems reported in the literature about tertiary control of
microgrids are not extensive. Generally, they do not consider
some relevant aspects such as joint dispatch of active and
reactive power, provision of ancillary services (losses min-
imization, voltage deviation reduction), inclusion of a strat-
egy for battery health care, consideration of uncertainty, and
planning of a distributed operation. In this article, we formu-
late a tertiary-level optimization strategy considering all the
aforementioned issues. Furthermore, we propose a distributed
algorithm (based on ADMM and consensus) for solving the
optimization problem. The algorithm allows us to perform an
in-line operation due to its computational efficiency, which
is guaranteed by dividing the scheduling horizon into two
periods. This process speeds up the search for a solution by
considering a long period horizon to schedule the batteries
and a short horizon to respond to demand or electricity gen-
eration disturbances.

On the other hand, we have developed a novel bat-
tery degradation model (Quadratic AH-Throughput model)
that can be included in the formulation of receding hori-
zon strategies without losing the differentiability of the
cost function. This characteristic allows us to use efficient
algorithms ( [24], [25]) to solve the underlying optimization
problem at each step of the receding horizon scheme. In addi-
tion, it is worth noting that the proposed battery degradation
model can be adapted to lithium and lead-acid technologies
and combines two influential variables (DOD and cycles) to
achieve an accurate state of health estimation. Unfortunately,
these desirable features are not included in many models
reported in the literature. Summarizing, the main contribu-
tions of this paper are:

1) A comprehensive model for the tertiary control level
of microgrids, which includes the implementation of a
distributed strategy based on ADMM and consensus.
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This strategy can operate in-line and includes multiple
programming horizons allowing to deal with both bat-
tery management and system disturbances with a low
computational burden.

2) A novel quadratic battery degradation model that can
be easily integrated into optimization-based manage-
ment strategies. This model can be applied to both
lead-acid and lithium-ion batteries.

The remainder of this paper is organized as follows:
Section II describes the active power dispatch problem
considering the long-term management of storage systems.
Section III presents the complete power flowmodel consider-
ing reactive power, as well as themagnitude and angle of volt-
ages, and the inclusion of ancillary services. The degradation
model is presented in Section IV, where the tuning process
of the model’s parameters (which depends on the storage
system technology) is also shown. In addition, Section IV
describes the integration of the degradation model to the
formulation of the active power dispatch problem. Section V
presents the OPF algorithm based on ADMM and consensus,
and Section VI shows the simulation scenario and the case
studies, where a co-simulation scheme between Matlab and
DIgSILENT is used to validate the performance of the algo-
rithm and obtain numerical results. Finally, conclusions are
drawn in Section VII.

II. ACTIVE POWER DISPATCH CONSIDERING STORAGE
SYSTEMS
A. PRELIMINARIES
1) MICROGRIDS AS GRAPHS
A microgrid has buses (i.e., physical connection points for
generators, loads, and transformers) interconnected by dis-
tribution lines. Thus, a microgrid can be modelled by an
undirected graph G = (N ,L), where N = 1, . . . ,N is the
set of nodes (buses) and L ∈ N × N is the set of arcs (lines),
such as, if buses i and j are linked by a distribution line,
then (i, j) ∈ L.
The nodes have some associated variables. For instance,

all nodes have a voltage magnitude Vi (where i is the node
index) and an angle θi. Moreover, if a node has a generator,
it has active and reactive power generation, denoted by PGi
and QGi , respectively. Finally, if an electrical load is con-
nected to a node, it has active consumption PLi and reactive
consumption QLi .

2) POWER FLOW
The power flow (PF) is a feasible solution to the problem
of satisfying the power demands of the electrical loads using
generators through active and reactive power injections. The
power flow in a polar form is defined as

Pi(V , θ) = PGi − PLi ,∀i ∈ N ,

Qi(V , θ) = QGi − QLi ,∀i ∈ N ,

where Pi(V , θ) and Qi(V , θ) are active and reactive injec-
tions [26]. If flow is positive the node is providing power,

else it is consuming. These variables are expressed in terms
of magnitude and angle of voltage as

Pi(V , θ) = Vi
∑
j∈Ni

Vj(Gij cos θij + Bij sin θij), (1)

Qi(V , θ) = Vi
∑
j∈Ni

Vj(Gij sin θij − Bij cos θij), (2)

for all i ∈ N , and where Gij and Bij are elements of the
admittance matrix related with conductance and susceptance
of line (i, j). The variable θij represents the difference between
angles θi and θj, and the notation Ni represents the set of
nodes connected to the ith node, including i.
The approximations for the energy constraints in a grid

presented in (1) and (2) are often combined with an objective
cost function establishing the optimal power flow (OPF) in
microgrids [27], [28]. Next, we propose two joint optimiza-
tion problems to deal with technical and economic objectives,
providing, in addition, some ancillary services and a strategy
for storage management.

B. ACTIVE-POWER DISPATCH PROBLEM CONSIDERING
BATTERY ENERGY-STORAGE SYSTEMS
Microgrids integrate battery energy storage systems (BESS)
to support intermittent generation units, coordinated jointly
with conventional generators by operation schemes such as
the economic dispatch (ED), active power dispatch, or other
variants. BESSs are modeled by accumulation dynamics
that require multi-temporal management, adding a significant
computational cost depending on the programming horizon.

The active power dispatch with BESSs determines the gen-
eration of each unit, including storage systems, to minimize
the operating cost. It is mandatory to satisfy the restriction of
supplying the aggregate demand and the constraints related
to the generation limits. Besides, BESSs require the manage-
ment of charge/discharge actions to keep the state of charge
(SOC) of batteries within operational limits.

Consider a microgrid with a set of buses N , containing a
set of generators NG = {1, 2, . . . ,NG}, and a set of BESSs
NB = {NG + 1,NG,+2, . . . ,NG + NB}. For the generation
unit i ∈ NG ∪ NB (battery or generator), the active power
profile is given by the vector PGi = [P1Gi ,P

2
Gi , . . . ,P

K
Gi ]

during a multi-time period K = {1, 2, . . . ,K }. In this period,
generators and BESSs seek to coordinate the active dispatch
and charging/discharging actions to solve

min
PGi

F =
∑

i∈NG∪NB

Fi(PGi )

subject to ∑
i∈NG∪NB

PkGi = PkL , (3)

PGimin ≤ P
k
Gi ≤ PGimax , ∀i ∈ NG ∪NB, (4)

Sk+1j = Skj + P
k
Gj , ∀j ∈ NB, (5)

Sjmin ≤ Skj ≤ Sjmax , ∀j ∈ NB, (6)
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for all k ∈ K, where F is a cost function that captures
the generation and storage cost, PkL is the aggregate power
demand at time k , PGimin, PGimax , Sjmin, Sjmax are the opera-
tional limits associated with the generators units and BESSs,
and Skj represents the SOC of BESS j ∈ NB at time k , defining
S1j and S

K+1
j as the initial and final states of charge. We have

not considered startup/shutdown and ramp rate constraints
because our model assumes that both generators and batteries
have fast responses [29], [30]. Nevertheless, we recommend
considering startup/shutdown and ramp rate constraints for
large-scale microgrids whose generators have slow dynam-
ics [31], [32].

The cost function F considers generation cost and battery
degradation cost by

F =
∑
i∈NG

Fi(PGi )+
∑
j∈NB

F̂j(PGj ), (7)

where Fi(PGi ) is a quadratic cost function of ith generator or
BESS defined by

∑
k∈K(ai+ biP

k
Gi + ci(P

k
Gi )

2) with ai, bi, ci
cost coefficients. The function F̂j(·) is the cost of degradation
of the jth BESS described by Bc,j

∑
δ∈1 fc(C

δ
j )fd (D

δ
j ) where:

Bc,j is the battery cost, fc(Cδ
j ) and fd (D

δ
j ) are capacity-loss

functions due to the number of cycles Cδ
j and DODs Dδ

j
that occurs in the programming horizon, more details are
provided by (20) in Section IV. We assume that F is convex
to guarantee a global minimum in the problem. Moreover, for
each BESS j ∈ NB in (5), a positive value ofPkGj indicates that
the battery is charging with a power equal to PkGj , whereas a
negative value indicates discharge.

III. OPF AND ANCILLARY SERVICES
Optimal power flow mixes PF equations with an objective
function to set an optimization problem to improve the per-
formance of the power system or different technical require-
ments [33]. We establish an optimization problem based on
OPF to adjust the reactive powers and voltage profiles, so that
the objectives of reducing losses in distribution lines and
maintaining voltages close to 1 p.u. are met. These ancillary
services enhance the level of stability and improve the effi-
ciency of the microgrid.

Voltages and power losses are sensitive to active and reac-
tive power injections. These relations are well-established by
the PF in (1), (2) and the power losses are given

Ploss =
∑

(i,j)∈L
Gij(V 2

i + V
2
j − 2ViVj cos θij). (8)

Notice that voltages and power losses depend on the power
flows through the lines and are calculated according to the
parameters of the distribution lines (resistance, reactance,
conductance, and susceptance). Additionally, voltage magni-
tude and angle are not absolutely decoupled. These variables
are related by quadratic functions that make the classical
PF nonlinear, complex, and low-efficient [34]. In order to
formulate an optimization problem considering a complete

PF model, we use a linear PF with decoupled variables, high
accuracy, and computational efficiency.

A. LINEARIZED PF
We use a linearized and decoupled PF introduced in [35].
The approximation is based on the fact that the differences
between the phase angle do not exceed 20 degrees and voltage
magnitudes are 1 p.u. approximately, for most small-scale
power systems. In addition, the lengths of the lines are smaller
than the ones in large-scale systems (transmission systems),
so shunt susceptance or line capacitance can be neglected.

According to the notation of the PF linearization process
presented in the Appendix A, the active power flow in (1)
can be expressed as

Pi(V , θ) =
∑
j∈Ni

GijVj −
∑
j∈Ni

Bijθj, (9)

where Ni is the set of neighbors of the node ith. In a similar
manner, the reactive power flow in (2) can be established as

Qi(V , θ) = −
∑
j∈Ni

BijVj −
∑
j∈Ni

Gijθj. (10)

The PF model in (9) and (10) is completely linear and
decoupled, with the advantage that it does not require an
iterative process to find a solution. This relaxation allows
the problem to integrate the PF in the constraints of the
optimization, mantaining the desirable relationship between
voltages and active and reactive power flows. In addition,
this model can be used in radial, and meshed distribution
systems conserving the accuracy and improving computation
efficiency [34].

B. ANCILLARY SERVICES
Distributed generation can enable ancillary services
(AS) such as voltage regulation, congestion relief, self-
consumption, and energy displacement. These ASs help to
face several common issues of distribution systems to main-
tain the integrity, stability, and power quality [4]. For instance,
voltage variations on distribution levels can cause stability
issues. When demand in a microgrid is too high, voltage pro-
files may drop below desirable limits, while overproduction
of renewable generators produces over-voltages. In the same
way, higher consumption leads to higher power losses and
peak power demands, increasing electricity energy costs.

Providing AS in a microgrid with distributed energy
resources (DERs) is challenging due to uncertainties associ-
ated with intermittent distributed generators (DGs), bidirec-
tional flow, and limited reserves. BESSs show great potential
to engage AS, stabilizing intermittent generation and increas-
ing flexibility in balancing supply and demand. In addition,
power electronic interfaces (inverters and converters) are
enhancing their P-Q capabilities to provide AS by reactive
power injections [36]. Although power electronic interfaces
do not have the robust capacity curves of the synchronous
generators, they can generate active and reactive power oper-
ating points in a range within a smaller P-Q curve.

31482 VOLUME 11, 2023



J. Barco-Jiménez et al.: In-Line Distributed Dispatch of Active and Reactive Power

Voltage regulation can be performed with BESSs and gen-
erators using an appropriate reactive power interface. Anal-
ogously, power losses can be reduced by reactive power
injections, which adjust voltage-node profiles and reduce the
total power losses. These services can be provided by an opti-
mization strategy, in which, distribution losses and voltage
deviation can be considered into the objective function as

min
Vi,QGi

H = wlPloss + wv
∑
i∈N

(1− Vi)2 (11)

subject to

Linearized PF Equations (9) and (10), ∀i ∈ N ,

QGimin ≤ QGi ≤ QGimax , ∀i ∈ NG ∪NB, (12)

Vimin ≤ Vi ≤ Vimax , ∀i ∈ N , (13)

θimin ≤ θi ≤ θimax , ∀i ∈ N , (14)

where the objective function H is composed of two terms;
the first one refers to the distribution losses (8), and the
second term is a summation of penalties for voltage devi-
ations in the nodes. Each form is weighted by parameters
wl and wv. The decision variables are the voltages (Vi) and
reactive powers of the generators and batteries (QGi ). The
voltages define an optimum operation point to minimize the
objective function that can be reached through reactive power
variation in generators. The PF equations (9) and (10) define
the relationship between reactive power and the magnitude
and angle of the voltages at each node. In (9), the active
power is not a decision variable since it can be considered
a fixed value, which is the solution of the economic dispatch.
The constraints (12) - (14) are related to the reactive power
restrictions of the generators, BESSs, and the magnitudes and
angles of the voltages. These limits can be set up according
to each region’s electrical standards and regulatory aspects.

From a practical point of view, most of renewable gen-
erators and BESSs have no rotational inertia, but some
power interfaces enable them to maintain the voltage and
frequency stability in isolated microgrids [37]. For example,
some inverters can establish active and reactive power flows
through power factor. The constraints in the operation point
are respresented by a capability curve, which is given by [38]

8 = cos−1 (PF),

|Q(t)| = P(t) tan (8), (15)

where PF is the power factor of the power interface, 8

is the power angle, and P(t) and Q(t) are the active and
reactive powers at the instant t . Notice that the maximum and
minimum reactive powers are conditioned to the active power
flow and depend on the PF.

IV. BATTERY DEGRADATION MODEL
Batteries enable the integration of PV systems in micro-
grids, increasing safety, flexibility, reliability, and quality
by performing ancillary services. Energy management mod-
els allow performing ancillary services with batteries, like
voltage regulation, frequency regulation, peak shaving, and

flexibility in balancing supply and demand [4]. However,
most of these models consider only basic ancillary services
and only a few consider a battery degradation model. Then,
current models lead to an incomplete overview of ancillary
services enabled with batteries.

Most of the energy management systems of batteries are
based on policies if-then, which do not provide an optimal
result. Consequently, batteries are charged when generation
is high and discharged when generation is low, generating an
overuse of BESSs. On the other hand, recent studies consider
aging models as part of the energy management model to
obtain the scheduling of charge/discharge batteries. Results
show that including the effects of degradation reduces the cost
of operation (15% approx.). Furthermore, charge/discharge
actions are significantly affected, reducing the number of
cycles performed per day but maintaining the amount of
energy exchanged [39].

A promising research field includes proposing strategies
to mitigate the battery degradation while undertaking other
issues such as time-consuming, in-line execution, providing
ancillary services, and testing different optimization algo-
rithms [22], [40]. However, little attention has been paid to
the reliability and accuracy of the battery degradation model,
which leads to batteries to work in non-optimal operating
points. Moreover, many degradation models are not validated
in practice or are only based on battery datasheet curves
like the cycle-vs-DOD (depth of discharge) charts, which
are obtained under controlled testing conditions instead of
real scenarios. Although a few studies validate the battery
degradation models, most of them are too complex to be
integrated into some optimization problems [41] because they
include discrete variables, discontinuities, or highly nonlinear
terms.

We propose a new battery degradation model so-called
Quadratic Ah-throughput, a quadratic model to estimate
battery degradation for lead-acid and lithium-ion batteries.
Besides, the model can be easily integrated into the opti-
mization formulation to obtain fast solutions. Remarkably,
the Quadratic Ah-throughput model is based on a structure
validated in real scenarios with high accuracy on estimation.
Furthermore, the proposed model allows the management
system to assess the influence of battery aging in perform-
ing ancillary services, such as reducing voltage deviation,
distribution power losses, and balancing supply and demand.
In this case, the battery degradation model is incorporated in
the tertiary control level, specifically in the cost function (7)
as a penalizing term of aging.

A. QUADRATIC AH-THROUGHPUT MODEL
The proposed model is a quadratic version of the Schiffer
model, described in [42], that maintains a high estimation
accuracy. In numbers, the weighted Ah-throughput model of
Schiffer had an error of 6% on assessment whereas other
models (e.g. models based on cycles, DOD and energy
exchanged) had the error above 60% [21] and [22]. Besides,
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given that Schiffer model is highly complex, we extract only
the main features and variables to build a reliable scheme.

The quadratic Ah-throughput (QAh) is a differential model
to calculate the total degradation (Qt (k̄)) or the remaining
battery capacity up to instant k̄ . The total degradation is
calculated in terms of the past instant and the change of
degradation (Qt (k̄ − 1), 1Q(k̄)) at the instant k̄ . The change
of degradation is defined by two losses functions: fc(·) and
fd (·), so-called cycle-loss function and DOD-loss function,
respectively. The QAh model is described by

Qt (k̄) = Qt (k̄ − 1)−1Q(k̄), (16)

1Q(k̄) = fc(C(k̄))fd (D(k̄)). (17)

The cycle-loss function is an exponential function in terms
of the number of accumulated cycles C(k̄) up to instant k̄ .
Similarly, the DOD-loss function is quadratic on DOD D(k̄)
at instant k . Due to the number of cycles and the DOD are
slow-changing variables, k̄ is a considerable large period to
capture the variation of C(·) and D(·). In this sense, k̄ can be
a period of several hours or days (one day is a typical value).

The loss functions are defined by

fc(C(k̄)) = α1C(k̄)eβ1C(k̄), (18)

fd (D(k̄)) = α2D(k̄)2 + β2D(k̄)+ γ2, (19)

where both functions are fitted by coefficients (α1, β1) and
(α2, β2, γ2). These coefficients are calculated by an opti-
mization algorithm to maintain the estimation accuracy. The
process requires a real value of battery degradation (Qr (t)),
provided according to the Schiffer model ( [42]) for lead-acid
batteries. For lithium-ion batteries, the real degradation value
can be provided by experimental data. To observe the validity
of the proposed model, the real value is compared to the
estimated value of battery degradation calculated by the QAh
model in (16) and (17). Both degradation models, Schiffer
and (16), are mapped for a range of values of DOD (Dm) and
number of cycles (Cn) conforming a 3D function, whereas
the solution of the optimization problem calculates the coef-
ficients (α, β, γ ). The optimization process is described by

min
α,β,γ

ê =
N∑
n=1

M∑
m=1

(
Qr (Cn,Dm)− Qt (Cn,Dm)

)2
Subject toα, β, γ ∈ R,

where the objective function corresponds to the quadratic
error (ê) between real and estimated degradation values. The
concavity of the problem eases the search of the optimal
value, which can be found with any optimization tool.
The QAh model extracts only the main features of battery

degradation. Although some models are described by many
variables such as temperature, battery voltage, discharge cur-
rent, number of cycles, and SOC (state of charge), only a few
variables considerably influence the degradation. This simpli-
fication can be observed in similar models which use only one
or two variables, mainly SOC, DOD, and cycles [21]. In this
case, the QAh model uses DOD that captures the minimum

value of SOC and represents the corrosion and degradation
effect. Whereas, the number of cycles directly represents the
effect of degradation. Moreover, the product of both loss
functions (17) allows us to represent the lost capacity for a
specific DOD according to the number of accumulated cycles
at an instant k̄ . This approach is similar to the Throughput
models of [21] but represented in a quadratic form (19).
Other models described by one o two variables are inexact

because they are only based on battery datasheet curves.
Hence, they are tuned according to test cycles performed
by the manufacturer. So, these models do not consider
other degradation boosting factors such as voltage levels
and discharging currents. Despite of the QAh model is a
two-variables model, it is tuned according to the Schiffer
model for lead-acid batteries, regarding all degradation fac-
tors obtained under real operational scenarios.
The QAhmodel is integrated into the active power dispatch

problem in the degradation cost function F̂j(PGj ) in (7). The
corresponding SOC for each battery profile PGj is calculated
according to (5). Next, the battery SOC is used for calculating
the number of cycles and the DODs occurring during a period
K + 1 as shown the Figure 1. These variables are collected in
a vector of cycles Cj = [C1

j ,C
2
j , . . . ,C

1
j ], and its related

vector of DODs Dj = [D1
j ,D

2
j , . . . ,D

1
j ], where 1 is the

vector length. Using the results from (18) and (19), F̂j(·) is
defined as

F̂j(PGj ) = Bc,j
∑
δ∈1

fc(Cδ
j )fd (D

δ
j ). (20)

FIGURE 1. Representation of cycles and DODs that occurs during a
programming horizon.

Then, F̂j(·) is the summation of the capacity losses reached
during the programming period {1, . . . ,K + 1}multiplied by
the battery cost Bc,j. It must be highlighted that the cycle is
an accumulative variable that must be stored and updated in
each optimization process, which is particularly important in
a receding-horizon method.

V. DISTRIBUTED OPERATION BASED ON ADMM AND
CONSENSUS DYNAMICS
A. PRELIMINARIES
1) ALTERNATING DIRECTIONS METHOD OF MULTIPLIERS
Alternating directions method of multipliers (ADMM) is an
optimization technique that splits the global problem into
subproblems that are individually solved. In addition, individ-
ual solutions interact in a coordinated way to find a solution
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to the global optimization problem [43]. From a technical
perspective, this method can be understood as a mix that
takes advantage of the benefits of dual decomposition and the
augmented Lagrangian method to improve convergence.

To explain te general method, consider the following opti-
mization problem with a separable objective function f (x)

min
x1,x2,...,xN

f (x) =
∑
i∈N

fi(xi),

Subject to
∑
i∈N

Axi = c, (21)

where x = [x1, x2, . . . , xN ], and xi ∈ Rn are subvectors of
x, A ∈ Rm×n and c ∈ Rm. Moreover, fi(·) are assumed to
be convex, which is necessary to guarantee convergence. The
augmented Lagrangian of (21) can be written as

Lρ(x, y) =
∑
i∈N

Lρi (xi, y)

=

∑
i∈N

(
f (xi)+ y⊤ (Axi − c)+

ρ

2
∥Axi − c∥22

)
,

where y ∈ Rm is the vector of dual variables and ρ > 0 is
a penalty parameter. Besides, the last term in the summation
is a regularization term that improves the robustness and the
convergence rate of the algorithm.

ADMM iteratively solves the N -agents problem in (21)
with

xk+1i := argmin
xi

Lρi (xi, y
k ) (22)

yk+1 := yk + ρ(Axk+1i − c), (23)

where the penalty term ρ is also the step size. Notice that
the ADMM algorithm has one minimization step (22), and
one updating step of the Lagrange multipliers (23). Then, the
augmented Lagrangian is sequentially minimized in a process
where (22) directs the solution towards the optimum in the
x1-direction, then it repeats the process directing the solution
in the x2-direction, and so on, until it reaches xN -direction.
The procedure is repeated until convergence. This process
leads the search for a global solution through alternating
directions. The convergence of the method is guaranteed due
to the convexity of the objective function (7) and the linearity
of the constraints (3)-(6). Hence, we can obtain a Lagrangian
function whose saddle point is the optimal point over the
domain of the primal variables and the multipliers. This point
satisfies the Karush-Kuhn-Tucker (KKT) necessary condi-
tions, which are also sufficient since the objective function( ∑

i∈NG
Fi(PGi )+

∑
j∈NB

F̂j(PGj )
)
is convex.

It is worth noting that the global term in (23) requires a
central aggregator to broadcast this information to the other
N individual processors. The algorithm is not fully distributed
because y is a global variable that is shared by all agents. The
next section uses consensus protocols to distribute the global
information.

2) ACCELERATED CONSENSUS PROTOCOL
Consensus protocols are iterative algorithms whose goal is
reaching the same value in the nodes of the graph (generally,
the average of the nodes’ initial conditions), using only local
information at each updating step. Given an undirected graph
G = (V ,E) consisting of a set of nodes V = 1, . . . ,N and a
set of edges E ⊂ V ×V , with initial conditions λ0 ∈ RN , the
consensus protocol reaches the state (1/N )1⊤λ0.

This section describes two consensus protocols: the widely
used linear consensus protocol and an accelerated version of
it [44]. The linear consensus protocol achieves average state
following the updating rule

λl+1i = λli +
∑
j∈Ni

wij(λlj − λli), (24)

for each node i ∈ V , where λli is the i
th entry of the vector λl

andwij = wji is the weight associated with the edge (i, j) ∈ E .
If we let W be the weighting adjacency matrix1 of G, and
defining W ∈ RN×N as the matrix whose entries satisfies
[W]ij = [W ]ji if i ̸= j, and [W]ii = 1−

∑
j∈Ni

Wij; then the
consensus protocol in (24) can be expressed in the compact
form

λl+1 =Wλl .

The accelerated consensus protocol (ACP) is a two-step algo-
rithm where each node i ∈ V updates two variables λli, µ

l
i at

each iteration l. The update rule is given by

µl+1
= Wλl,

λl+1 = µl+1
+
l + 1
l + 3

(µl+1
− µl), (25)

where µl
= [µ1, . . . , µN ]⊤ and µ0

=Wλ0.
The accelerated consensus protocol has a linear conver-

gence rate, which is highly convenient to face multi-temporal
problems as scheduling of batteries. More details of the accel-
erated consensus protocol can be found in [44].

B. ADMM AND ACP FOR SOLVING THE ACTIVE-POWER
DISPATCH WITH BESSS
Our purpose is to use ADMM and ACP to obtain an optimal
solution for the problem in (3)-(7) in a fully distributed way
without a central connector node.

First, we define the augmented Lagrangian of (7) as
Lρ(PG,Y ,E) =

∑
i∈NG∪NB

Lρi (PGi ,Y ,E)

=

∑
i∈NG∪NB

(
Fi(PGi )+ Y⊤E +

ρ

2
EE⊤

)
,

(26)

where Fi is the objective function of the ith generation
unit (generator or BESS), Y is the Lagrange-multipliers
vector, and E is a vector of power balance constraints

1The entries ofW are as follows: [W ]ij = wij if (i, j) ∈ E , and [W ]ij = 0
otherwise.
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(which need global information) given by

E =



∑
i∈NG

P1Gi +
∑
j∈NB

P1Gj − P
1
L∑

i∈NG

P2Gi +
∑
j∈NB

P2Gj − P
2
L

...∑
i∈NG

PKGi +
∑
j∈NB

PKGj − P
K
L


. (27)

Indeed, the elements of E correspond to the power balance in
(3) for all K timeslots.
The Lagrangian in (26) can be conveniently expressed to

distribute its calculation as

Lρ(PG,Y ,E) =
∑

i∈NG∪NB

Lρi (PGi ,Yi,Ei)

=

∑
i∈NG∪NB

(
Fi(PGi )+ Y⊤i Ei +

ρ

2
EiE⊤i

)
(28)

where Y and E can be calculated and distributed by a central
agent. However, the exchange of information with neighbor-
ing agents allows the calculation of Y and E to be distributed
by a consensus protocol, generating the correspondingly Ei,
Yi vectors for each agent.

Algorithm 1 describes the fully distributed method based
on ADMM and ACP. Iterations are denoted by superscript t
and the stopping criteria is reached when the 2-norm of the
vector E ti is less than the threshold error ϵ = 1× 10−3.

Algorithm 1ADMM for Active Power DispatchWith BESSs

1: Pt+1Gi ←− argmin
PGi

Lρi (PGi ,Y
t
i ,E

t
i ), ∀i ∈ NG ∪NB

2: λi ←− λLi , ∀i ∈ NG ∪ NB, where λLi is the solution
of the distributed algorithm (25) at time L, with initial
conditions λ0i =

[
Pt+1G1

, . . . ,Pt+1GNG+NB

]
,

3: E t+1i ←− Nλi, ∀i ∈ NG ∪NB

4: Y t+1i ←− Y ti + ρE t+1i , ∀i ∈ NG ∪NB

where L is the number of iterations at consensus is reached,
which is tuned experimentally.

Notice that themajor issue in distributing the ADMM is the
aggregated load profile PL in the vector E in (27), which is
a global variable. Nonetheless, ACP generates an individual
vector Ei with local information, making it available for all
agents of the microgrid.

The algorithm starts obtaining the optimal power profile
for the ith generator or battery minimizing its corresponding
augmented Lagrangian. In case of batteries, the power pro-
file is an optimal charging/discharging actions profile. It is
remarkable that in Line 1, each agent (a generator or a battery)
proposes an optimal solution to minimize its corresponding
local function sequentially and individually.

Line 2 shows how to share global information in a dis-
tributed way. First, the consensus protocol’s initial conditions

are loaded in λ0i for each agent and one of the agentsmust load
the aggregated load profilePL . For instance, the last agent can
load its initial condition as λ0N ←− Pt+1GN − PL . In any case,
the aggregated load profile PL is only known by one agent.
Conveniently, the proposed selection of the initial conditions
leads the consensus to converge to the average of their initial
states, which is precisely the vector Ei divided by the number
of agents N .
Note that the accelerated consensus in (25) returns an aver-

age state λi, which corresponds to the average power balance
for all time slots. Therefore, in Line 3, each average state
is multiplied by N to obtain an estimated value Ei. Finally,
Line 4 shows the updating equation of the Lagrange multi-
pliers for each agent. The optimal values P∗Gi := Pt+1Gi ∀i ∈
NG∪NB are reached according to the stopping criteria, where
the Lagrange multipliers tend to be constant.

C. ADMM FOR SOLVING THE REACTIVE-POWER DISPATCH
ENABLING ANCILLARY SERVICES
Similar to the previous section, the augmented Lagrangian
is defined according to the objective function and the cor-
responding constraints, and finally, the solving algorithm is
presented.

First, the H function in (11) is written conveniently to
express as a sum of single functions

H =
∑

i∈NG∪NB

Hi(Vi)

= wl
∑

i∈NG∪NB

1
2

∑
j∈Ni

Gij(V 2
i + V

2
j − 2ViVj cos θij)


+wv

∑
i∈NG∪NB

(1− Vi)2.

So, the augmented Lagrangian of (11) is defined as

Lq(QG,V ,Z ,U ) =
∑

i∈NG∪NB

Lqi (QGi ,Vi,Zi,Ui)

=

∑
i∈NG∪NB

(
Hi + Z⊤i Ui + UiU

⊤
i

)
,

(29)

where Hi, Zi, Ui are the objective function, dual variables
and constraint vectors of the ith agent, respectively. The vector
Ui is given by

Ui =


∑
j∈Ni

GijVj −
∑
j∈Ni

Bijθj − (P1Gi )
∗
+ PLi

−

∑
j∈Ni

BijVj −
∑
j∈Ni

Gijθj − QGi + QLi


∀i ∈ NG ∪NB. The first term of Ui is the constraint of active
power flow in (9), which includes optimum in the first instant
of the active-power dispatch (P1Gi )

∗ found by the Algorithm 1.
The second term is the constraint of reactive power flow
in (10). Each constraint in the vector Ui requires only local
information since all constraints of Ui are calculated over the
set of neighbors Ni.
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Algorithm 2 describes the proposed method to obtain the
reactive power dispatch based on the ADMM. It works simi-
larly to Algorithm 1, but it calculates the optimal profile of
reactive power for generators and batteries by minimizing
the augmented Lagrangian Lq in (29). It is worth remarking
that Algorithm 2 is completely distributed and does not need
consensus.

Algorithm 2 ADMM for Reactive Power Dispatch
1: for t = 1 to Tmax do
2: Qt+1Gi := argmin

QGi

Lqi (QGi ,Z ti ,U
t
i ), ∀i ∈ NG ∪NB

3: Z t+1i = Z ti + qU
t
i , ∀i ∈ NG ∪NB

4: end for

Algorithm 2 starts finding the reactive power profiles for
generators and batteries. Then, the Lagrange multipliers are
calculated according to constraints Ui with a q as step size.
The optimal reactive power profiles Q∗Gi = QTmaxGi ,∀i ∈
NG ∪ NB are reached at the maximum iteration Tmax when
the Lagrange multipliers tend to be constant.

D. IN-LINE OPERATION APPROACH
The energy managing strategies of a microgrid must have
the ability to respond to disturbances. The robustness feature
is motivated due to some inputs to the algorithms are con-
stantly changing, such as the load profile, solar irradiance,
and wind speed, among others variables that have an aleatory
nature. Although the low-level control hierarchy of a micro-
grid allows the system to respond to disturbances, it is crucial
to deal with disturbances from upper levels to minimize the
control effort at lowers levels.

The proposed approach to manage disturbances is based
on feedback by measuring disturbances and updating con-
trol signals. The in-line operation relies on the ability of
the algorithm to process all operations in a maximum time
equal to the updating time. Figure 2 shows a scheme of the
local monitoring system that allows each agent to measure
local variables (power limits, voltages, active and reactive
power, and disturbances) to perform the distributed process-
ing. Then, the control signals are updated (active and reactive
power setpoints) and the cycle is repeated continuously.

FIGURE 2. Scheme of the in-line operation of the energy-management
system in the microgrid.

To avoid the computational complexity, we use a control
scheme that splits the programming period into two segments:

short-term and long-term periods (see Figure 3). Based on
the multi-horizon model predictive control (MPC) scheme
in [45], we define a short-term period with ks time intervals of
width 1ks. A long-term period with K time intervals is also
used with an interval width1K . Specifically, we propose that
the measurements must be updated in the first interval of the
short-term period.

FIGURE 3. In-line signals chart.

This multi-horizon scheme allows the management system
to set a short sampling time 1ks to deal with disturbances.
At the same time, it maintains a large horizon of program-
ming, to preserve a reasonable computational cost. Notice
that this combination enables a short sampling time with a
low computational complexity because the long-term period
uses fewer decision variables. It should be mentioned that
this strategy reduces the computational complexity in return
for an increase in the number of estimations. Although the
horizon is divided by reducing the number of variables, the
estimations must also be increased to the same extent. Then,
the number of signal estimators must forecast the measured
signals every short sampling time to obtain the estimated
signals to run the algorithm along the programming horizons.

Figure 3 illustrates the combination of short and large peri-
ods. Specifically, we use a long-term period of 24 hours with
time intervals of 1 hour, typically used in dispatch problems.
Besides, we use a short-term period of 1 hour of 5-minutes
time intervals.

The concept of a two-period programming horizon is
implemented to use the advantages of the short-term and
long-term periods in the formulation of a new active dispatch
problem as

min
PGi ,P̄Gi

∑
i∈NG∪NB

(
Fi(PGi )+ F̄i(P̄Gi )

)
. (30)

The objective function in (30) gathers the generation costs
for the long-term period (Fi) and short-term period (F̄i).
The active power profile for the short-term period is given
by P̄Gi = [P̄1Gi , P̄

2
Gi , . . . , P̄

Ks
Gi ], during a short-time interval

Ks = {1, 2, . . . ,Ks} with time intervals equal to 1ks. Sim-
ilarly to (7), the cost function (F̄) is a cost function that
captures the generation and storage cost during the short-time
period.
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In adittion to long-term constraints (3)-(6), the constraints
related to the short-term period are∑

i∈NG∪NB

P̄ksGi = P̄ksL , (31)

PGimin ≤ P̄
ks
Gi ≤ PGimax , ∀i ∈ NG ∪NB, (32)

S̄ks+1j = S̄ksj + P̄
ks
Gj , ∀j ∈ NB, (33)

S̄jmin ≤ S̄
ks
j ≤ S̄jmax , ∀j ∈ NB, (34)

∀ks ∈ Ks. Similarly to constraints for the long-term period,
equations in (31)-(34) represent the power balance, power
limits, the SOC dynamics, and SOC limits, for the short-term.

VI. SIMULATIONS AND RESULTS
To show the implementation of the proposed method, first we
present the presented the fitting of QAh-Throughput model
for lead-acid and lithium batteries to be incorporated in the
optimization model. Secondly, the case study to test the
optimization strategy is described with all technical details
about the microgrid. Next, the results of the active dispatch
are presented, and a comparison of the distributed methods
with a centralized one is performed in terms of the algorithm
velocity and the optimal value. Furthermore, an analysis of
the influence of the degradation model is presented consider-
ing three scenarios: i) without a degradation model; ii) con-
sidering only battery costs; and iii) with degradation model.
The interaction of the lead-acid and lithium technologies and
the lifetime extension achieved with the degradation model
for both technologies is remarkable. Next, the ancillary ser-
vices by the injection of reactive power are included with
a quantitative comparison of the power losses and voltage
deviation. Finally, disturbances management by the in-line
operation is presented, whose benefits are quantified in terms
of the reduction of computational effort and the error between
demand and generation.

A. TUNNING OF DEGRADATION MODELS FOR BESS
To incorporate the degradation models in the planning of
charge/discharge actions for BESSs, we have tailored the
proposed model according to experimental data in [46] and
the empirical weightedAh-Throughputmodel in [21]. Specif-
ically, the Ah-Throughput model can be fitted for lead-acid
and lithium-ion batteries from curves of capacity vs. cycles
with other DODs, aging experiments, or manufacturer infor-
mation. Besides, the proposed solution method can get a fast
solution because it is convex on DOD.

1) LEAD-ACID BESS
We tune the model according to the weighted model [21],
which is accurate in estimating the capacity loss of lead-acid
batteries. However, it is not suitable for real-time optimiza-
tion due to its complexity.

In order to obtain the coefficients of the QAh-Throughput
model in (16) and (17), a fitting process is carried out
regarding the data from the experimental Ah-Throughput

model (See Figure 4). The obtained coefficients are
α1 = 0.4585, β1 = 3.321, α2 = 3.529, β2 = −0.5762,
γ2 = 0.0283.

FIGURE 4. Comparison of the weighted Ah-Throughput model and
QAh-Throughput model.

The top of the Figure 4 shows the typical DOD vs cycle
curve, where the error to predict the cycles for a specific
value of DOD is about 7%. The bottom of the Figure 4
shows the remaining capacity for different values of DOD.
The absolute error of the QAh-Throughput model is ±0.04,
which corresponds to a percentage error of 1.1%.

2) LITHIUM-ION BESS
The fitting process of the QAh-Throughput model for
lithium-ion batteries is carried out with real data from [46].
The model fitting is divided into zone a from 0 to 600 cycles
and zone b from 601 cycles to 10000. Zones a and b show
different behaviors that a unique QAh-Throughput model
cannot represent. Zone a shows a nonlinear and significant
decrease in capacity for the first cycles. In contrast, zone b
describes a linear reduction of capacity with a low rate (see
actual data in Figure 5).

TABLE 1. QAh-Throughput coefficients for Lithium Batteries.

Table 1 shows the fitting coefficients of the QAh-
Throughtput model according to the experimental data of
lithium-ion batteries for zone a and b. The comparison of the
fitting and experimental data is shown in Figure 5. Themodel
represents the capacity behavior for both a and b zones with
an absolute error of ±0.0087, representing an 1.6%.

B. CASE STUDY
The microgrid simulated is based on the test feeder IEEE
13 bus system with voltage level of 4.16 kV (see Figure 6).
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FIGURE 5. Comparison of actual data from [46] and QAh-Throughput
model for a lithium-ion battery.

In order to analyze the interaction between renewable energy
and storage resources in an isolated mode, we include a diesel
generator (G1), a photovoltaic generator (G2), a wind turbine
(G3), a lead-acid battery system (B1), and a lithium-ion bat-
tery system (B2). The diesel unit is the slack generator that
provides the voltage and frequency references. It is worth
mentioning that the location and size of generation units
are established according [47], to minimize generation costs,
power losses, and voltage deviations.

FIGURE 6. Adapted IEEE 13 nodes feeder for the study case.

The electrical lines between nodes are solid, while the
communications channels between agents are dashed lines.
Table 2 details the capacities and costs for generators and
storage systems. The maximum limits of reactive power are
calculated according to the generation unit’s power factor
in (15), according to the active power available at a specific
instant.

Figure 7 shows the aggregated load profiles of the active
and reactive power, which correspond to actual data of
one-week power consumption of a university campus in
the Southwest Colombia. The individual load profiles for
each node are obtained by dividing the aggregated profiles
according to the nominal capacity of each load in Table 3.
The solar irradiance and wind speed profiles are shown in
Figure 8, which are 7-days real measurements obtained in

TABLE 2. Characteristics of the generators and the storage systems.

FIGURE 7. Aggregated load profiles for the microgrid.

FIGURE 8. Renewable resources profiles for PV and wind generators.

TABLE 3. Nominal capacity of loads.

June of 2021 with a meteorological station located in Pasto -
Colombia.

C. ACTIVE DISPATCH WITH BESS
Figure 9 shows the active power dispatch obtained with
ADMM-ACP (ADMMwith accelerated consensus protocol).
Clearly, the cheap solar and wind generators (G1 and G3) are
dispatched to their maximum capacity, while the batteries are
charged and preserved to provide cheap energy in the rush
hours. The expensive diesel generator (G1) completes the rest
of the power to supply the aggregate demand in the system.
Besides, all active power profiles are within the limits and the
power balance is accomplished properly. The performance
of the ADMM-ACP is compared with a centralized method
(sequential quadratic programming - SQP), the ADMM with
aggregator, and the ADMM with consensus (ADMM-C),
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FIGURE 9. Active dispatch profiles with BESSs.

TABLE 4. Performance of the methods.

without substantial differences between power profiles as it
is shown in Table 4. This fact is particularly important since
the centralized algorithm relies on complete information to
reach the result, while the distributed algorithms uses only
local information to achieve the same optimal value. Figure 6
depicts in dotted lines the links of communication between
neighbors to perform the distributed techniques.

To guarantee the same effort in the optimization process,
we define as stopping criteria the error of the power balance
lower or equal to 1 × 10−3 for the distributed methods.
Table 4 also shows that the optimal cost values are the
same for all methods with a slight difference for ADMM-
C. However, the centralized process is less time-consuming
than the distributed ones since ADMM updates variables one
by one, whereas the centralized method updates all variables
simultaneously.

On the other hand, there are essential differences between
the convergence time of distributed methods. The ADMM-C
and the ADMM-ACP are faster than the classic ADMM
with the aggregator. Besides, notice that the ADMM-ACP
and the ADMM-C need the same iterations to converge, but
the first one uses less time. This difference occurs because
ADMM-ACP only needs 20k iterations to reach the consen-
sus, while ADMM-C needs three times more iterations (60k).
This reduction of the consensus iterations could be partic-
ularly significant in an actual implementation, where the
communication delays play an essential role.

D. EFFECTS OF THE DEGRADATION MODEL IN THE
SCHEDULING OF BATTERIES
Three test scenarios are defined to compare the degradation-
model effect on the optimization process. Scenario 1 is the

base case and it considers the batteries as free-of-charge units,
i.e., the costs of energy discharged by the batteries are not
considered in the optimization function. Then, both units
are treated as equals in the optimization process. Scenario 2
regards a price by energy discharged of the batteries with the
costs presented in Table 2. In economic terms, the batteries
are treated as generators, and their energy costs are consid-
ered in the optimization function. Finally, Scenario 3 regards
only degradation as a penalization term in the optimization
function. The batteries’ energy costs are not considered.

FIGURE 10. Loss of capacity for batteries in each scenario.

Figure 10 shows the evolution of batteries’ capacity for
the three scenarios. From the overall view, the differences
between loss-of-capacity curves of lithium-ion and lead-
acid battery technologies are evident. As expected, the loss
of capacity of the lithium-ion battery decreases slowly in
comparison with lead-acid technology. In contrast, lead-acid
battery capacity decays rapidly and must be replaced several
times for Scenario 1 during the time horizon.

Table 5 shows the weeks to end-of-life (EOL) for the
three scenarios for each technology. Furthermore, taking as
reference the end-of-life of the lithium-ion battery, the table
shows the number of replacements of lead-acid batteries per
scenario.

TABLE 5. Comparison of duration of batteries.

Clearly, the optimization results in Scenario 3 show that the
degradation model significantly expands the batteries’ lifes-
pan. According to Table 5, the EOL of the lithium-ion battery
increases a 38% and a 72% concerning scenarios 1 and 2,
respectively. Likewise, the EOL of the lead-acid battery
increases a 158% and a 72% in comparison to scenarios 1
and 2. Moreover, the number of replacements of the lead-acid
battery required in Scenario 3 are reduced to the half com-
pared with the base case (Scenario 1). This important increase
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in the lifespan of the batteries can be explained by the charg-
ing/discharging pattern of the batteries.

FIGURE 11. Number of cycles and DOD for each scenario.

Figure 11 shows, in Scenario 1, that both batteries are
discharged to similar DOD levels without considering a
difference in technologies. This discharging levesl lead to
rapid degradation of the lead-acid battery compared to the
lithium-ion technology as it is presented in Figure 10. In con-
trast, Scenario 2 reduces the DOD of lead-acid technology as
a result of the economic power dispatch, which expands the
lifespan of both battery technologies in comparison with the
base case. However, a significant increment in the batteries’
life is obtained regarding themodel degradation in Scenario 3.
To reach this increase, the degradation model reduces the
DODs of both batteries and increases the number of cycles,
as it is shown in bar graph of Scenario 3 in Figure 11.
Furthermore, at the same time, the load’s energy requirements
are fulfilled.

FIGURE 12. Changes of the SOC of batteries in Scenario 3.

Besides, it is worth highlighting that the degradation model
adjusts the DOD according to the state of degradation of the
battery along the time, as it is shown in Figure 12. At the
start of the battery life (in the first week) lead-acid battery has
a deeper degradation rate than lithium-ion technology. As a
result, the lead-acid has a higher DOD than the lithium-ion
battery in the first weeks. On the contrary, at the EOL of
batteries (at weeks 750 and 240) the DOD is higher for
lithium-ion batteries than lead-acid ones. This effect occurs
because the lead-acid battery has a higher rate of degradation
than lithium-ion technology at EOL.

E. REACTIVE DISPATCH AND ANCILLARY SERVICES
Algorithms 1 and 2 perform jointly the optimal power flow
of the IEEE 13-nodes microgrid in a distributed fashion,
guaranteeing that the main variables are within the proper
ranges. Figure 13 shows the reactive power of each generation
unit with their respective power limits in dashed lines. Notice
that reactive power limits of each generator are calculated
according the active power available by (15). Specifically, the
power factor of each power interface defines the ability to
absorb or generate reactive power. This feature is known as
the capability curve. Moreover, the last graph of Figure 13
shows the comparison of total reactive generation and the
aggregated reactive demand, whose balance is fulfilled.

FIGURE 13. Reactive dispatch.

FIGURE 14. Comparison of voltage deviation.

In this case, the reactive dispatch enables the ancillary
services of reducing power losses and voltage deviation,
by using the optimization function (11). Figure 14 shows
the influence of reactive dispatch in reducing the voltage
deviation (VD). The continuous line shows the VD using
only the slack generator (G1) to fulfill the reactive power
demand. Whereas the dashed line shows the VD when the

VOLUME 11, 2023 31491



J. Barco-Jiménez et al.: In-Line Distributed Dispatch of Active and Reactive Power

other generation units are enabled to adjust the reactive point
operation. Notice that the improving of VD is remarkable. For
example, the VD in nodes 611, 652, 671 and 680 are 47.9%,
47.1%, 43.1%, 43.1%, respectively, and a 26% in average for
all nodes.

On the other hand, Figure 15 shows that power losses are
also reduced by reactive power dispatch. In numbers, the
power losses are reduced 22.9% by the reactive injections of
renewable generators and batteries, which are limited by their
capability curve.

FIGURE 15. Comparison of power losses.

F. IN-LINE OPERATION
The proposed in-line scheme is based on a receding horizon
strategy capable to update the active and reactive power dis-
patch to response to disturbances. The programming horizon
is split in two programming periods: the long-term is 24 hours
with hourly slots, and the short-term is 5 minutes with one
slot. Users could tune these features according to the available
computational capacity and the size of the microgrid. The
in-line scheme is suitable to solve the active dispatch with
batteries because the long-term period allows the system
to anticipate the battery scheduling. Similarly, a long-term
period enables batteries to displace energy from valley hours
to rush hours and eases the measurement of the batteries’
degradation. At the same time, the short-term period allows
the management to response to disturbances by changes in
the load and resource profiles.

To test the in-line scheme, we define a load disturbance
adding noise to the load profile (Figure 16). The noise is
obtained from a normal distribution with variance equal

FIGURE 16. Variation of the active power demand and estimation using
long-term and short-term horizons.

to 10% of the maximum value of the load profile. Similarly,
the disturbances of wind speed and irradiance are obtained
following the same criterium. Notice that Figure 16 shows
two estimated profiles: hourly and 5-minutes curves, which
are estimations of the actual power demand curve. The system
can use sophisticated forecasting tools to obtain more exact
predictions [48]; but in any case, both curves are used to
build the two-level programming horizon as it is shown in
the bottom of the Figure 3.
In-line operation requires additional steps to solve the OPF

problem over a receding horizon. Firstly, power demand,
wind speed, and irradiation profiles are loaded to make the
corresponding estimations according to the programming
horizon. Second, the first instants of the profiles are updated
by real-time measured data in the short-term and long-term
periods. Next, Algorithm 1 solves the active power dispatch
problem in (3)-(7) obtaining the generation units’ power pro-
files for the programming horizon. Then, Algorithm 2 solves
the reactive power dispatch problem in (11)-(14). At this
point, the OPF is solved, and the first setpoints of the active
and reactive power profiles are sent to secondary and primary
controllers to be used as references. Finally, the program-
ming horizon is displaced to the next instant, the SOCs of
batteries are updated, and the process starts again in the first
step. In summary, Algorithms 1 and 2 run every short-term
period, the active and reactive profiles are updated according
the programming horizon, batteries’ SOCs are updated, the
programming horizon is displaced, and the cycle is repeated.

FIGURE 17. Active power dispatch with in-line scheme.

Figure 17 shows the results with in-line scheme. Notice
that all generation units modify their dispatches to satisfy the
new power demand. The dotted lines represent the variation
of the dispatch profiles during the running of the in-line
scheme. Variations are proportional to the noise added to the
power demand curve, wind speed profile, and irradiation pro-
file. Similarly, this variation causes G2 not to be dispatched
to the maximum power because of the estimation error.

Figure 18 shows the power balance error between gener-
ation and power demand. The graph in the top shows the
error for the day-ahead dispatch, and the one in the bottom
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FIGURE 18. Error between active power demand and generation.

shows the error obtained with the in-line scheme. The error
is reduced because the in-line method corrects the genera-
tion units’ dispatch, although it does not disappear entirely
because the in-line scheme takes a while to get the results.
Specifically, graph in the bottom shows the error while the
in-line algorithm is processing; during this short time, the
power balance error still exists. In numbers, the average errors
without and with the in-line scheme are ±83.05 kW and
±0.346 kW , respectively. In any case, these errors are zeroed
by the secondary and primary controllers of the microgrid
hierarchy, but the control effort is significantly minor with
the in-line scheme.

Another worth-mentioning benefit is the computational
complexity reduction. In this case, a conventional receding
horizon strategy (as MPC) uses a whole programming hori-
zon of 24 hours with time slots of five minutes, i.e., 288 vari-
ables per generation unit. Under the same conditions, the
in-line scheme requires 24 variables for the long-term period
and one additional variable for the short-term period per
generation unit. Running both strategies in a computer with
a processor Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz,
we obtain that the MPC takes 52.53 seconds per iteration,
whereas the in-line scheme takes 4.72 seconds.

VII. CONCLUSION
A distributed algorithm based on ADMM and consensus is
presented to obtain an OPF of microgrids with distributed
resources. The algorithm provides ancillary services with
batteries and renewable sources. The reduction of voltage
deviation and power losses by reactive dispatch are tested by
simulation. Finally, the algorithm incorporates degradation
models for two battery technologies to extend their lifetime
and an in-line scheme to deal with inputs disturbances.

The ADMM-ACP is a strategy to solve the OPF of a
microgrid with a performance comparable to conventional
ADMM but without an aggregator to share global informa-
tion. ADMM-ACP is a fully distributed optimization scheme
that relies on local information converging to a global opti-
mum. These optimization schemes are suitable in scenarios
with multiple agents where it is valuable to limit the sharing

of information, manage the bandwidth communication net-
work of a microgrid, reduce the centralized processing, and
perform plug-and-play features, among others.

On the other hand, we present a degradation model that,
using experimental data or datasheets, can be adapted to both
lead-acid and lithium-ion technologies with a short estima-
tion error. Battery capacity loss is a feature sensitive to DOD
and charge/discharge actions and knowing this condition
could be significant to preserve the battery life by proper
scheduling.

Finally, the in-line operation reduces the computation com-
plexity of batteries’ active-power-dispatch problem. At the
same time, this time division allows the algorithm to deal with
disturbances in a short-time horizon and to schedule batteries
for the long term by a multi-horizon strategy.

APPENDIX A
PF LINEARIZATION
Considering some approximations such as Vi,Vj ≈ 1,
sin(θ ) ≈ θ, cos(θ ) ≈ 1. The Equation (1) can be rewritten
as

Pi(V , θ) =
∑
j∈Ni

GijViVj cos θij +
∑
j∈Ni

BijViVj sin θij. (35)

Assuming the angle differences between neighboring
buses are small, the approximations in Equation (35) are

Pi(V , θ) =
∑
j∈Ni

GijViVj +
∑
j∈Ni

BijViVjθij. (36)

Now, we define an admittance matrix Yij = Gij + jBij with
the following structure

Yij =

{
−yij j ̸= i
yii +

∑
j∈Ni

yij j = i,
(37)

where yij = gij + jbij is the admittance of line (i, j), and
yii = gii + jbii is the shunt admittance at bus ith.

Then, using Equation (37) and expressing V as 1.0+1V ,
the first term of Equation (36) becomes

≈

∑
j∈Ni,j̸=i

gijVi(Vi − Vj)+ giiV 2
i ,

≈

∑
j∈Ni,j̸=i

gij(1+1Vi)(1Vi −1Vj)+ gii(1+ 21Vi),

≈

∑
j∈Ni,j̸=i

gij(Vi − Vj)+ giiVi. (38)

Note that 1Vi is smaller than Vi, so 1V 2
i and 1Vi1Vj can be

neglected in the approximation process. Using the admittance
matrix, Equation (38) is compacted as∑

j∈Ni,j̸=i

gij(Vi − Vj)+ giiVi =
∑
j∈Ni

GijVj. (39)
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Following a similar process, we can approximate the sec-
ond term of Equation (36) as

≈ −

∑
j∈Ni,j̸=i

bijVi(Vi − Vj)θ ij+ biiV 2
i θii

≈ −

∑
j∈Ni,j̸=i

bij(θi − θj)

−

∑
j∈Ni,j̸=i

bij(θi − θj) = −
∑
j∈Ni

Bijθj (40)

To accomplish a successfully variable decoupling and lin-
earization of power flow, we prioresse the influence of angles
over voltages in Equation (40). So, using the approximations
in (39) and (40) the active power flow in (35) is expressed in
a linear fashion as

Pi(V , θ) =
∑
j∈Ni

GijVj −
∑
j∈i

Bijθj.

In a similar way, the reactive power flow in Equation (2) can
be established as

Qi(V , θ) = −
∑
j∈Ni

BijVj −
∑
j∈i

Gijθj.
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