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ABSTRACT According to its various features, the solar photovoltaics (PV) system is realized as a significant
promising energy source to cope with energy shortcomings and environmental impacts like contamination.
Therefore, it is mandatory to estimate and predict the output power for prediction intervals to avoid any
power outage or urgent disturbances in the utility grid. These are challenging tasks as the solar PV output
power depends on the weather variables data such as temperature and solar radiation. In this article, the
estimation and forecast of solar PV output power are investigated with an upscaling method using three
different types of artificial neural networks (ANNs) in order to reduce the estimation errors in current types
of ANNSs. The multilayer feedforward neural network (MLFFNN), recurrent neural network (RNN), and
nonlinear autoregressive exogenous (NARX) model neural network (NARXNN) are applied to estimate and
forecast the total output power of four real solar PV substations in Egypt. Hence both the surface temperature
and the solar radiation of each PV substation are applied as the inputs of each designed NN, whereas the
total output power of the four PV substations is its output. For the training and effectiveness investigation
procedures of each applied ANNs, the data of two months (60 days) are attained and collected from these
four PV substations. Here, the data of the first 45 days are applied to train the three designed NNs, while the
data from the remaining 15 days, which are not applied for the training, are used to check the effectiveness
and the generalization capability of the trained NNs. Hence, the estimation process is considered a prior
step for the forecast of the output power. Therefore, an upscaling method is utilized for assessing and
forecasting a regional solar PV output power because of the limited number of monitored plants and applied
data. The results provide evidence that the trained NNs are running very well and efficiently to estimate
the power correctly. The performance of the MLFFNN is the best compared with the other NNs, whereas
the NARXNN’s performance is the lowest one. The MLFFNN achieves the lowest mean squared error
(MSE) of 0.27533 and the lowest absolute approximation error of 0.2099 MWh. Finally, the assessment and
comparison among the three trained NNs and other techniques in recently published articles are highlighted
and presented which reveal the performance superiority of the three trained NNs compared to other ANNSs.

INDEX TERMS Power prediction, multilayer feedforward NN (MLFFNN), solar PV power station,
recurrent neural network (RNN), nonlinear autoregressive exogenous model neural network (NARXNN),
NN effectiveness and generalization ability.
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I. INTRODUCTION

Recently, the witnessed growth of the penetration of renew-
able energy sources (RESs) to support the global electrical
energy demand and eradicate the urgent drawbacks of fossil
fuels, becomes a promising research trend to develop new
industrial technologies to cope with their various obstacles
and challenges [1], [2]. Among the available sorts of RESs,
Solar Photovoltaic (PV) systems are widely utilized accord-
ing to their various features such as being environmentally
friendly and long-lasting [3], [4], [5]. However, the power
generation and system reliability and performance directly
depend on atmospheric conditions like solar irradiation air
temperature, and humidity which are also crucial for the grid
operator’s control to optimize the penetration of electrical
power into the grid, allocate the solar PV substations, and to
predict the complications and energy necessities into the near
future. Depending on the variations of the weather conditions
and the sudden disturbances of RESs in grid-connected or
islanded modes, various studies implement two choices in
order to sustain the performance indices of the utility grid
within acceptable limits. Firstly, employing high-capacity
energy storage systems like batteries increased the initial
implementation cost and causes some bad impacts on the
power quality of the utility grid. Secondly, developing accu-
rate models for energy production forecasting based on cli-
mate conditions is a vital solution to wipe out the utilization
of new energy storage components [6].

To come over the bad influences of weather conditions on
solar PV generation power, several artificial neural networks
(ANNs) are implemented to estimate, forecast, analyze and
model the weather circumstances for reducing the generation
drawbacks and predicting the output power in order to esti-
mate the maximum hosting capacity of the grid during the
penetrations of RESs, especially solar PV systems, to main-
tain the performance indices of the utility grid within accept-
able limitations, [6]. So, the high-accuracy implemented
output power prediction algorithms will lead to significant
enhancement in the utility grid energy management which in
turn decreases the energy cost, supporting the grid reliability,
besides plummeting the bad environmental impacts [6], [7],
[8], [9]. Hence, the prediction horizon of the solar PV output
power can be classified as short-term, medium-term, or long-
term periods depending on the duration time [10]. Hence,
several articles elaborated on long-term Machine Learning
(ML) techniques [11], [12], [13], [14], [15]. So, it is essen-
tial to specify the forecast horizon which contributes to the
judgment-creating actions, based on the designers’ assump-
tions and usages, in the smart grids, selecting the suitable
strategy for the prediction of solar PV output power [16].
To reduce the prediction errors, the estimation process has
a prominent role as considered a prior step for the fore-
cast [17], [18]. Moreover, ML techniques are used to specify
and estimate the performance ratio of a solar PV system
as one of the reliability indicators. This helps the system
operators to make urgent plans to maintain or replace solar PV
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systems besides predicting solar PV power generation [19].
In [20], the day-ahead solar PV output power was monitored
and estimated using the data available in time series by ML
techniques; however, its estimation application is still in the
early stage. Then the solar PV output power estimation or
forecast can be accomplished using deterministic [21], [22]
or data-driven models based on ML or probabilistic methods
[23], [24], [25].

Looking specifically at the solar PV power forecasting
approaches, they are classified into model-based and data-
driven [26]. In model-based methodologies, physics-based
models that involve weather variables, e.g., solar radiations,
are applied for solar PV power predictions [27]. Although
the accurate power forecasting, the operator assumptions, and
adopted simplifications cause uncertainties that influence the
practical utilization [28], [29], [30]. While the data-driven
methods, based on ML techniques, depend on the available
solar PV parameters data to investigate the precise association
among variables as inputs and the solar PV output power
without requiring any physics-based models [16]. In Ref [31],
the support vector regression (SVR) was used for solar PV
power prediction and compared to a physical modelling
method via extensive measurements, numerical weather pre-
diction (NWP), and cloud motion vector (CMV) data. Here,
the root means squared error (RMSE) and the mean bias error
(MBE) were applied to assess the model performance on
the solar PV output power predictions. By using the various
solar radiation parameters and cell temperature, which were
analytically estimated, as the predication model inputs, the
authors in [32] investigated the prediction accuracy of three
ML models (support vector machine (SVM), ANNs, and
weighted k-NN) depending on the historical weather periods
data. Hence, the prediction accuracy significantly increased
depending on the weather variables acquired from solar PV
physical models.

Several articles studied the effect of the weather variables
data of the pre-processing algorithms on the prediction
accuracy of the data-driven methods. In [33], wavelet
decomposition (WD) and principal component analysis
(PCA), as preprocessing techniques, were merged to sepa-
rate the atmospheric input data. A group least square SVM
(GLS-SVM) technique was applied for short-term solar PV
power predictions and its results emphasize the vital role
of PCA-WD preprocessing technique usage in the predic-
tion process. In [34], a hybrid prediction model was investi-
gated using combined algorithms namely, wavelet-transform
(WT), particle swarm optimization (PSO), and SVM, for
short-term solar PV power prediction depending on the actual
PV power measurements and NWP for solar radiation, and
other weather variables data. Using the mean-absolute per-
centage error (MAPE) and normalized mean absolute error
(NMAE) indices, the prediction results confirmed the supe-
riority of the Hybrid WT-PSO-SVM model compared to
other prediction models. Dual-stage prediction model using
three different ANN algorithms, generalized regression NN
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(GRNN), Extreme Learning Machine NN (ELMNN), and
Elman-NN, with the aid of genetic algorithms optimized back
propagation (GA-BP) algorithm, was proposed in [35] which
stated the robust relationship between the variations of the
solar radiation and solar PV power generation. Other arti-
cles’ studies proposed prediction models based on the ELM
technique merged with the maximum power point tracking
(MPPT) techniques and various PSO algorithms to enhance
the prediction accuracy [27], [36]. To validate the perfor-
mance of 68 ML techniques, a fair comparative study was
established in terms of ‘“‘three sky conditions, seven locations,
and five different climate regions” [37]. This emphasized the
effectiveness of tree-based algorithms for long-term predic-
tion only, so it was required to combine other algorithms to
boost the merits and minimize the demerits of the usage of
the sole algorithm.

Based on the NN algorithms, solar PV power forecasting
can be attained because of the NN’s ability to generaliza-
tion under altered circumstances [38], [39]. Kumar et al. [6]
established three NNs (Elman NN, feed-forward (FF)NN,
and GRNN to predict the solar PV output power in rela-
tionships among weather variables data and solar radiation.
Hence, the results confirmed that the NN yields a precise
forecast with an RMSE of 0.25 in ELMAN NN and 0.30 in
FFNN, and 0.426 in GRNN. However, the effectiveness
of the generalization ability of these NNs was not exam-
ined and evaluated under changed circumstances. In [40],
a multi-layer perception-based ANN model was proposed for
short-term power prediction. Another model in [41], used two
learning algorithms, namely Levenberg-Marquardt (LM) and
Bayesian Regularizations (BR), with various weather vari-
ables and their results stated that the BR algorithm is better
than the LM algorithm (RMSE = 0.0706 and 0.0753, respec-
tively). While in [42],10 different learning algorithms under
different training datasets (23 different combinations of the
time stamp of the year) were investigated which confirmed
the effectiveness of combined NN algorithms in significantly
increasing the prediction accuracy. Other NNs established
to predict solar PV power in [41], [43], and [44], however
the NN valuation during nature conditions variation needs
extensive studies.

Upscaling methods can be utilized for estimating, assess-
ing, and forecasting a regional solar PV output power because
of the limited number of monitored plants and applied
data. Moreover, the less historical data available to train the
ML techniques is the main drawback in some cases [25].
In [45], various four upscaling methods were investigated
with diverse solar PV substations’ information and data
availability scenarios. Other upscaling methods were applied
based on the chosen subsets of solar PV stations with single
output power that was determined as representative of the
total solar PV output power from several solar PV stations
in terms of subsets capacity for regional forecast [21], [45],
[46], [47]. A hybrid upscaling strategy was applied based
on power measurements, NWP, and ‘“‘cloud motion vector
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TABLE 1. Location identification, specifications, and performance metrics
of the solar PV station.

Location and Station Identification

Location ASWAN, EGYPT
Latitude 23.97°N
Longitude 32.78°E
Elevation 194 m

Solar PV System Specifications

DC System Size for four stations 50 MW

Module Type Standard

Array Type Fixed (open rack)
Array Tilt 20°

Array Azimuth 180°

System Losses 14.08%

Invert Efficiency 96%

DC to AC Size Ratio: 1.2

Performance Metrics

Capacity Factor 21%

forecast datasets” using the SVR technique [31]. In [25]
and [48], new upscaling methods for estimation and forecast
were proposed based on ANNS for estimating and day-ahead
forecasting of the regional solar PV power.

As above discussed, the prediction accuracy is essentially
dependent on the weather variables data, time stamps, and
solar radiation which can be boosted using combined types
of ML techniques in terms of the training error, the size of
the input layer, and the generalization ability of the ML tech-
niques, especially NN systems, under various circumstances.
Therefore, the main studied points of this article rely on:

o Assessment, validation, and comparison of various
ANNSs types under different training datasets.

« Investigation of the estimation and prediction accuracy
of the different ANN types in terms of the weather vari-
ables data, time stamps, and solar radiation by validating
historical solar PV power as their inputs.

In order to accomplish the main objectives, the contribution
and the novelty of this article can be summarized as follows:

o The total output power of four real solar PV substa-
tions in Egypt is estimated under different weather vari-
ables data, time stamps, and solar radiation using three
types of NNs: the multilayer feedforward neural network
(MLFFENN), recurrent neural network (RNN), and non-
linear autoregressive exogenous (NARX) model neural
network (NARXNN).

o The three ANNs types’ training is verified, and the
training process is carried out using real collected data of

19281



IEEE Access

A.-N. Sharkawy et al.: Solar PV Power Estimation and Upscaling Forecast

TABLE 2. The properties of the three used types of NNs in forecasting the

output power of solar PV.

NN Type Advantages Disadvantages

MLFFNN - It has a very simple structure - It requires a large
compared with other types of number of pairs of
artificial neural networks [38], [51], input and target for
[58]. the training process
- It can be easily, successfully, and [69], [70], but this
efficiently —applied in various disadvantage is
problem domains [S2H{55], [S9]- considered in the
[62]. In addition, its accuracy is high.  current work.
- It has the properties of adaptively,
parallelism, and generalization that it
presents as well as it can be linear or
nonlinear, [63]-{65].
- It is preferred for function
approximation problems as a general
model for surfaces without regular
peaks and valleys [66].
- It can get better classification
results when it is applied to
classification problems [66], [67].

RNN - It is a dynamic neural network [38], - It is difficult,
[69]. practically, to
- It is computationally powerful and  properly train [73].
can be used in many processing In addition, the
models and applications [53], [70]. problems of the
- It can decrease the input dimension  vanishing gradient
of the NN, and therefore, the and the exploding
required time for the training [69]. gradient are
- It possesses the so-called universal — discussed in [74].
approximation property [71], that is, - The stability of
they are capable of approximating the network is often
nonlinear dynamical systems by difficult to ascertain
realizing complex mappings from [69].
input sequences to output sequences
[74].

NARXNN - TItis a recurrent dynamic NN, and it - Same problems of

has feedback connections which
enclose several layers of the network,
[75],[76].

- The model of this NN is the
nonlinear generalization of the well-
known ARX models.

- This NN is predicting the time
series very well [77], [78], and is
widely used with nonlinear dynamic
systems [79], [80].

the RNN.

45 days (1.5 months) from four real solar PV substations

in Egypt.

o To assess the training process of the three ANN types,
the mean-squared-error (MSE) and the training-error
(TE) indices are applied.

« To evaluate the generalization ability and the prediction
accuracy of the three trained ANN algorithms, other
different data (15 days) are used which are different
from the data used for the training process. The results
emphasize that three ANN algorithms are trained very
well, and the MSE and the TE are very low. In addition,
they can generalize under different conditions and data.
Consequently, the three trained ANN algorithms can
accurately estimate the solar PV output power different
weather variables data, time stamps, and solar radiation.
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o The errors in the estimation and forecast of solar PV
output power are investigated with an upscaling method.
Hence, the data-driven upscaling method was trained
and tested on the real four solar PV substations using
specific series of ANN algorithms.

o A comparative study is highlighted among the obtained
results of the three trained ANN types and other tech-
niques in recently published articles.

The article organization can be presented as follows:
section I offers a mathematical analysis for analytically
calculating the output power of the solar PV substation.
In section III, the proposed model structure and the problem
statement are investigated. In sections IV and V, the design,
the training, and the testing of the three ANN algorithms
for predicting the power are exhibited in detail. Section VI
highlights and compares the effectiveness and validation of
the three trained ANN algorithms using data from the 15 days
which are not used for the training. Moreover, discussing
the applied data-driven upscaling method and its results.
Section VII establishes a comprehensive comparison and dis-
cussions among the applied NNs, and other current published
articles followed by the conclusion and future work.

Il. ANALYSIS OF SOLAR PV OUTPUT POWER
CALCULATION

To calculate analytically the electrical power obtained from
the solar PV module, the following equation are studied in
[49] and [50]:

P= nsfgasRA (1 — us(Ts — T;)] (D

where,

ns : the reference efficiency of the solar PV cells

7o : the glass transmissivity

o, : the solar cell absorptivity

R : the solar radiation (W /m?)

A : the total area of the solar cell (m?)

s : the thermal coefficient of solar PV cell
efficiency (%/°C)

T, : the solar cell temperature (°C)

T, : the reference temperature (°C)

The detailed specifications of solar PV stations are elabo-
rated on and presented in Table 1.

To calculate the output power from equation (1), many
parameters for the solar PV station must be known accurately
such as the reference efficiency of the solar PV cells, the glass
transmissivity, the solar cell absorptivity, the solar radiation,
the total area of the solar cell, the thermal coefficient of
solar PV cell efficiency, the solar cell temperature, and the
reference temperature. The main aim of our proposed work
is to calculate the electrical power easier, efficiently, and
depending only on two parameters which are the surface tem-
perature and the solar radiation. Therefore, the three ANNs
types are proposed and implemented for this purpose. The
results that are presented later in this paper prove this issue.
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FIGURE 1. The proposed model methodology.

Iil. THE PROPOSED MODEL METHODOLOGY
In this section, the proposed method is discussed briefly.
NN is efficient to approximate any function, whether linear or
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nonlinear, [38], [39], [51]. In addition, it can be generalized
under different conditions, [52], [53], [54], [55], [56], [57].
In the current work, three designed and trained ANN types
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FIGURE 2. Flow chart of the studied solar PV systems.

are employed to forecast the output power of the solar PV
subsystem. These types are MLFFNN, RNN, and NARXNN.
The properties of these types of NNs are presented in Table 2.
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Here, the proposed model strategy is designed and imple-
mented using the three proposed NNs algorithms as depicted
in Fig. 1, which can be divided into four stages:

1) Attaining the original solar PV time series data such
as the surface/solar cell temperature and solar radiation
from four solar PV substations in Egypt.

2) The data preprocessing technique is applied to organize
the data and initialize the missing parameters.

3) ANN algorithms (MLFFNN, RNN, and NARXNN)
process strategy involves a training and testing process,
and an effective process.

4) Visualizing results.

MATLAB is used in executing the last three stages and using
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz processor.

For accurate presentation, the flow chart of the proposed
model methodology and the summarized article contribution
is shown in Figure 2.

IV. NN DESIGN FOR PV OUTPUT POWER PREDICTION

In this section, the design of the three proposed NNs types
is discussed. The main criteria during the NN design are
obtaining high performance which is the very low MSE
and TE (close to zero). The main inputs of any type of the
designed NNs that achieve this high performance are the
surface temperature, Ty, and the solar radiation, R, of each
substation of the four PV substations. Therefore, the number
of user inputs is eight (2 x 4=8). The collected input data
are presented in Figure 3. The output of the designed NN is
the total power of the four PV substations. As known, the
NN with three layers (input layer, hidden layer, and output
layer) can solve many complex problems. Therefore, all three
types are composed of three layers: the input layer, hidden
layer, and output layer. The comparison between the design
of the three NN types is presented in Table 3 and their
structures are shown in Figure 4. The actual total power P
from the real four PV power stations is used for training
the designed NNs and it is compared with the estimated
total power P’ from the designed NN. The equations of the
feedforward part of these designed NNs are presented as
follows.

A. THE EQUATIONS OF THE FEEDFORWARD PART OF
THE MLLFFNN

The output of the hidden neuron j which is in the NN’s hidden
layer is given as

vi=9i(h) =g (Zj_o Wjixi) 2

where, x; are the inputs to the NN. xg = 1,x; = T1,x2 = Ry,
x3 = T2, x4 = Ro and so on. wj; is the weight between the
input i and the hidden neuron j.

The activation function of the hidden layer is given by

¢j (hj) = tanh (hy) 3)
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FIGURE 3. The inputs of the designed NNs. This figure represents the collected data that is used for the NN training. This
data is from the first PV station.

TABLE 3. The components of the three designed NNs.

The Designed No. of Layers Inputs Activation Function for Activation Outputs
NN Hidden Layer Function for
Output Layer
MLFFNN Three layers (Input, 1) Surface temperature, Non-linear (hyperbolic Linear The estimated total
hidden, and output) 2) Radiation tangent, tanh) power P’
RNN Three layers (Input, 1) Surface temperature, Non-linear (hyperbolic Non-linear The estimated total
hidden, and output) 2) Radiation tangent, tanh) (hyperbolic power P’
tangent, tanh)
NARXNN Three layers (Input, 1) Surface temperature, Non-linear (hyperbolic Non-linear The estimated total
hidden, and output) 2) Radiation tangent, tanh) (hyperbolic power P’

tangent, tanh)
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FIGURE 4. The structure of the designed NNs.

The estimated total power by the MLFENN, P, is given by,

P =t =i (X bum) = (2 b)) @

where, by; is the weight between the hidden neuron j and the

output of the MLFFNN.

B. THE EQUATIONS OF THE FEEDFORWARD PART OF
THE RNN

The output of the hidden neuron j which is in the NN’s hidden

layer is given as

8 n
i = ¢j (l’l]) = @j (Zi=0 wijixi + Zn=1 Cinyn (k — 1)) Q)

where, x; are the inputs to the NN. xo = 1,x; = T, x0 = Ry,
x3 = Ty, x4 = Ry and so on. wj; is the weight between the
input 7 and the hidden neuron j and cj, is the weight between

the input y, (k — 1) and the hidden neuron j.
The activation function of the hidden layer is given by,

¢j (hj) = tanh (hy) (6)

The estimated power by the RNN, P/, is given by,

P = Y (0) = W (Z;:o bljyj) = tanh (Z:ZO bljyj)

(N
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TABLE 4. The following steps during the processes of training, testing,
and generalization ability investigation of the designed MLFFNN, RNN,
and NARXNN.

Step Action

Step 1 Import the collected data from the real four PV substations.

Step2  Initialize the parameters of the designed NN and select the
suitable number of hidden neurons.

Step 3 Start training the designed NN.

Step4  After the training is finished and completed, check the NN’s
performance by investigating the resulting MSE.

Step 5 If the resulting MSE is a high value and is not satisfactory, go
again to step 2 and repeat the previous steps.

Step 6 If the resulting MSE is very small and close to zero
(satisfactory), test the trained NN by using the same data that
was used for training and check the training/approximation
error.

1) If this training/approximation error is low and satisfactory,
go to step 7.

2) If this training/approximation error is high and not
satisfactory, go again to step 2 and repeat all the previous steps.

Step 7 Investigate the generalization ability/effectiveness of the trained
NN by using different data than the training data.

Step8  The trained NN is ready for predicting the total power of the
four real PV substations.

where, by; is the weight between the hidden neuron j and the
output of the RNN.

C. THE EQUATIONS OF THE FEEDFORWARD PART OF

THE NARXNN
The output of the hidden neuron j which is in the NN’s hidden
layer is given as

8
vi = @i (hj) = ¢; ((Z,-_o w,-ixi) + (P (k — 1)) ®)

where, x; are the inputs to the NN. xg = 1, x; = Ty, xp =
Ri, x3 = Ty, x4 = Ry and so on. P’ (k — 1) represents the
previous value of the estimated power by NARXNN. wj; is
the weight between the input i and the hidden neuron j and
cj1 is the weight between the input P’ (k — 1) and the hidden
neuron j.

The activation function of the hidden layer is given by,

¢j (hj) = tanh (hy) ©9)

The estimated power by the NARXNN, P, is given by,

P =y (0) = Y (Z;lzo bljyj) = tanh (ZILO bljyj)

(10)

where, by; is the weight between the hidden neuron j and the
output of the NARXNN.

The training error resulting from each designed NN should

be very small and close to zero as possible and is calculated
from the following equation:

et)=P—P (11)

The training process of the designed NN is discussed in detail
in the next section.
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FIGURE 5. The resulted in MSE from the training of the designed NNs.
(a) The MLFFNN, (b) The RNN, (c) The NARXNN.

V. NN TRAINING AND TESTING FOR PV OUTPUT
POWER PREDICTION
In this section, the training, and the testing of the designed
NNs (MLFFNN, RNN, and NARXNN) are presented in
detail. The following steps during these processes are pre-
sented in Table 4.

The training of the designed NNs (MLFFNN, RNN, and
NARXNN) are presented using Levenberg Marquardt (LM)
algorithm. LM algorithm has the following properties:
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1) This algorithm can easily process the data in a fast
way, [52], [53], [54], [55].

2) Itis atype of second-order optimization technique that
has a strong theoretical basis and provides significantly
fast convergence, and it is considered an approximation
to Newton’s Method [81], [82].

3) Compared to other learning algorithms, LM learning
has the trade-off between the fast learning speed of the
classical Newton’s method and the guaranteed conver-
gence of the gradient descent [81], [83].

4) This learning is suitable for larger datasets as well as
converges in fewer iterations and in a shorter time than
the other training methods.

The data that was used for training the three designed NNs
types are obtained from four connected PV power stations
in Egypt. These data are generated based on equation (1).
In other meaning, the real PV station calculates the electrical
output power depending on equation (1). The collected data
are for two months (58 days). The data of one month and
a half (44 days) are used for the training process of the
designed NN, and the rest of the data which is a half month
(15 days) is used for investigating the effectiveness and the
generalization of the trained NN. In this section, the training
process is illustrated. The total number of input-output pairs
of the training data is 12672. In training each type of the NN,
85 % of these data are used for training, 10% for testing, and
the rest 5% for the validation method. Using trial and error
methodology and after an investigation of many different
initializations of the weights and number of hidden neurons,
the best parameters of the three designed NNs that achieve
high performance are presented and compared in Table 5.
It should be noted that the training time is not very important
because the training is occurring offline. In addition, the main
purpose is to have a very trained NN that can predict the PV
power correctly and in an efficient way.

The MSE resulting from the training of the designed NNs
is shown in Figure 5. As clear from Figure 5 and Table 5, the
resulting MSE from training the designed MLFFNN is better
and lower compared with the other NN structures. This means
that the convergence and the approximation in the case of
using the MLFFNN are better. In addition, the training time is
also lower compared with the other architectures. This means
that the MLFFNN is faster in convergence. However, the
result in MSE from the designed RNN and NARXNN is also
satisfactory and low. It should be noted that the “Best” that
is found in Figure 5 means the best validation performance.
The best performance of the NN which is the lowest MSE is
always taken from the epoch with the lowest validation error,
as clear from the figure.

Once the training is finished and completed, the same data
that was used for the training process is used for doing the test
of the three trained NNs. The approximation error between
the estimated total power by the three trained NNs and the
actual total power from the real PV is presented in Figure 6.
As shown in Figure 6, the approximation error is low whether
using the MLFFNN, RNN, or NARXNN. This means that the
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TABLE 5. The parameters that achieve the high performance of the three designed NNs.

Parameter MLFFNN RNN NARXNN
Number of hidden neurons 50 25 70
Epochs or Iterations 42 13 50
Training time 16 seconds 49 seconds 9 minutes and 47 seconds
The obtained MSE 0.27533 0.6125 0.88733
Other Properties Epoch: o [ 4siterations | 1000 Epoch: 0 19 iterations 1000 Epoch: ol 56 iterations 1000
Time: 0:00:16 Time: 0:00:49 Time: 0:09:47
Performance: 148e+04 [EE0819F T | 0.00 Performance: 681 [ 06060 ] | 0.00 Performance: 266 [L03540 0] | 000

Gradient: 331e+04 [0 16850 ] | 1.00e-07 Gradient:

Mu: 0.00100 0.00100 1.00e+10 Mu:
Validation Checks: 0 6 6

Validation Checks: 0 6 6

331e+03 0.343 1.00e-07 Gradient: 4.42e+03 1.00e-07
000100 00100 1.00e+10 Mu: 000100 0.00100 1.00e+10
Validation Checks: 0 6 6

TABLE 6. The average, std., maximum, and minimum of the absolute value of the approximation error using the trained MLFFNN, RNN, and NARXNN.

Parameter MLFFNN RNN NARXNN
Average of absolute error (MWh) 0.2099 0.2600 0.3652
Std. of absolute error 0.5418 0.6512 0.7203
Maximum of absolute error (MWh) 7.0016 7.9478 8.3361
Minimum of absolute error (MWh) 2.6082e-06 6.4096e-05 1.6859¢-04

NN is trained very well and able to estimate the PV output
power efficiently and correctly. It is clear also from Fig. 6 that
the approximation error in the case of using the MLFFNN is
lower and better compared with using the other types of NNs.
The approximation error is the case of using the NARXNN as
the higher one. For more illustrations, the average, maximum,
minimum, and standard deviation (std.) of the absolute value
of this approximation error using the three trained NNs are
presented in Table 6.

For more illustrations, the convergence, and the compar-
ison between the actual total power from PV and the esti-
mated total power by the three trained NNs, are presented
in Figure 7. As shown in Figure 7, the convergence and
the approximation between them are good and satisfactory.
These results support the ones presented in Figure 6. The
generalization ability and the effectiveness of the trained NNs
are presented in the next section.

VI. NN GENERALIZATION AND UPSCALING TECHNIQUE

FOR PV OUTPUT POWER PREDICTION
In this section, the generalization ability, and the effectiveness

of the three trained NNs are presented using different data
from the training ones. The rest of the available/collected data
which is the data of the half month (15 days) is used for this
purpose. The inputs of the NN (temperature and radiation) in
this case are shown in Figure 8.

The comparison and the error between the actual total
power from PV and the estimated total power from the three
trained NNs (MLFFNN, RNN, NARXNN) are shown in Fig.9
and Fig.10. In addition, the average, std., maximum, and min-
imum of the absolute error between the two total powers are
presented in Table 7. As shown by Figs. (9,10) and Table 7
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that the approximation between the actual total power and the
estimated one by the NN is very good, and the error between
them is low. This means that the three NNs are trained well,
and they can estimate the PV output power correctly and
efficiently, under different data and conditions. This proves
the effectiveness and the generalization of each of the trained
NNs. The results show also that the trained MLFFNN has a
better performance compared with the other trained NNs. The
error in the case of using the trained MLFFNN is lower and
better compared with using the trained RNN and NARXNN.
The performance of the trained NARXNN is the lowest one
and its resulting error is the highest compared with the other
trained NNs.

The upscaling technique is implemented for estimating and
forecasting the distributed generation of the four PV models.
Indeed, the main goal of the upscaling technique is to scale the
output power of the subset to obtain the output power of the
complete set, [17], [21], [84]. For developing the upscaling
technique two steps should be followed. Firstly, the subset
must be chosen in such a way that its behavior, regarding
power output, is representative of the behavior of the com-
plete PV total station. Then, models based on MLFFNN are
developed for the prediction of the total station output power.
In this technique, one of the four PV models is selected as
a subset randomly. Therefore, the proposed MLFFNN uses
the inputs of this subset system to predict the overall output
power of the complete set, as shown in Figure 11.

The result of upscaling shows an improvement in the accu-
racy of regional power estimation and forecast with respect to
the previous value. It reduces the resulted MSE of power esti-
mation by 4.2% and the RMSE by 20%, as shown in Fig. 12.
Furthermore, the error between the MLFFNN upscaling
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FIGURE 6. The approximation error between the actual power from PV and the estimated power by the trained NN (MLFFNN, RNN,

and NARXNN).

predicted power and the actual output power for the complete
PV system is indicated in Figure 13, which is very small
and close to zero. The average, maximum, minimum, and
standard deviation values of the absolute error are determined
and are 0.0720, 5.2702, 0.0, and 0.2299 respectively.

To ensure the effectiveness of the upscaling prediction
method, its generalization ability is checked. Simply, two
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weeks’ data from the selected subset inputs, solar radiation,
and surface temperature, are used for verification of this
method. The approximation error in the case of using the
generalization ability is low, as clear in Figure 14. To be exact,
the average, maximum, minimum, and standard deviation
(std.) of the absolute value of this approximation error using
upscaling MLFFNN forecasting are presented in Table 8.
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FIGURE 7. The approximation and the convergence between the actual power from PV and the estimated power by the trained NN

(MLFFNN, RNN, and NARXNN).

VIl. COMPARATIVE STUDY

The proposed NNs types are compared with other previ-
ous related approaches which were presented in ref. [11],
[12], [13], [14], and [15]. This comparison is developed in
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terms of the developed method, the number of user inputs,
the resulting MSE, the result in RMSE, the regression, and
the investigation of the generalization ability under differ-
ent conditions. In addition, the number of hidden neurons,
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FIGURE 8. The inputs of the trained NN. This figure represents the data for the 14 days (4032 min.) that are used to check
the effectiveness and the generalization ability of the three trained NNs. These data are from the first PV substation.

TABLE 7. The average, std., maximum, and minimum of the absolute value of the error using the trained MLFFNN, RNN, and NARXNN, in case of using

different data from the training ones.

Parameter MLFFNN RNN NARXNN
Average of absolute error (MWh) 0.1694 0.2091 0.3105
Std. of absolute error 0.2556 0.2820 0.2840
Maximum of absolute error (MWh) 2.5278 2.7610 3.3782
Minimum of absolute error (MWh) 2.6082¢-06 1.6859¢-04 1.7059¢-04

hidden layers, epochs, and activation function, if the method
uses the NN’s principle. This comparison is presented in
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Table 9. It should be noted that the regression equation is
different for each developed system or method based on the
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FIGURE 9. The error between the actual power from PV and the estimated power by the trained NN (MLFFNN,
RNN, and NARXNN), in case of using different data from the training ones (The generalization ability stage). Part
of all available data is presented in this figure to be clearer for the reader.
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FIGURE 10. The approximation and the convergence between the actual power from PV and the estimated power
by the trained NN (MLFFNN, RNN, and NARXNN), in case of using different data from the training ones (The
generalization ability stage).

structure of this system. Therefore, there is no need to put the correlation between the estimated power by the developed
the regression equation in Table 9. The regression measures method and the actual power obtained from the solar PV
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FIGURE 11. The concept of upscaling technique.
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FIGURE 12. The observed MSE of the upscaling technique.

station. The main important point about the regression is that
its value should be very close to 1.0 to obtain a very good
convergence/approximation between the estimated and actual
powers.

As presented in Table 9, our proposed MLFFNN, the devel-
oped methods by Kazem et al. [14], MFFNN-MVO [11], and
the random forest regression [12], record the lowest results
from MSE compared with other previous approaches. This
means that these methods are more accurate in predicting
solar PV output power. The resulting regression with our

VOLUME 11, 2023

proposed structures (MLFFNN, RNN, and NARXNN) is the
highest one compared with other approaches. This means that
the approximation and the convergence between the actual
power and the estimated one are better using our proposed
structures. In addition, the used inputs in our case and the case
of Kazem et al. are only two compared with other approaches,
which used more than two inputs. This means that the com-
plexity of our proposed methods is less than the others. The
generalization ability under different cases and conditions
is checked only with our proposed approach, whereas it is
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FIGURE 13. The approximation error between Forecasted vs. observed power for the upscaling technique,
using the same training data.
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FIGURE 14. The error between Forecasted vs. observed power for the upscaling technique, in the generalization ability stage.

TABLE 8. The average, std., maximum, and minimum of the absolute value of the error in the training and generalization ability stages.

Stages Average of absolute error Std. of absolute error Maximum of absolute error Minimum of absolute error
(MWh) (MWh) (MWh)
Training Results 0.0720 0.2299 5.2702 0.00
Generalization 03388 1.4138 5711 3.1277¢-09
Ability Results : : : Aelie
not stated and investigated with others. From this compari- efficient in predicting solar PV output power correctly and

son, we conclude that our proposed approach is reliable and under different conditions. However, further investigation and
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TABLE 9. The comparison between the proposed approach and the other previously published ones for predicting solar PV power.

Ref. Year

Model

Activation
Function

Variables

Hidden
layer

Hidden
neurons

Epochs

MSE

RMSE  Regression

Generalization

check

The
current
proposed
Work

2022

MLFFNN

Hyperbolic
tangent

Two inputs:
(Temperature,
Solar
irradiation)

1

50

42

0.2753

0.524

0.9996

Yes

RNN

Hyperbolic
tangent

Two inputs:
(Temperature,
Solar
irradiation)

25

13

0.6125

0.782

0.9993

NARXNN

Hyperbolic
tangent

Two inputs:
(Temperature,
Solar
irradiation)

70

50

0.8873

0.941

0.9990

Kazemet 2022
al.
(2022),

[14]

FRNN

TanhAxon

Two inputs:
(Temperature,
Solar
irradiation)

1,2,3
Best (1)

Not
stated

100,
500,
1000
Best
(1000)

0.1778

0.422

0.7471

PCA

TanhAxon

Two inputs:
(Temperature,
Solar
irradiation)

1,2,3
Best (1)

Not
stated

100,
500,
1000
Best
(1000)

0.0780

0.279

0.7533

Sharma et 2022

(2022),
[15]

LSTM

with a

Nadam
optimizer

Hyperbolic
tangent

Four inputs:
(Temperature,
Relative
humidity,
Solar
radiance, and
Wind speed)

50

0.7413

0.861

Not stated

No

ARIMA

Four inputs:
(Temperature,
Relative
humidity,
Solar
radiance, and
Wind speed)

1.540

1.241

Not stated

SARIMA

Four inputs:
(Temperature,
Relative
humidity,
Solar
radiance, and
Wind speed)

2.693

1.641

Not stated

Talaatet 2021
al.
(2021),

[11]

MFFNN-
GA

Not stated

Three inputs:
(Temperature,
Solar
irradiance,
and Wind
speed)

10 for
Ist, 9 for
2nd

1000

0.565

0.036

0.9913

MFFNN-
MVO

Not stated

Three inputs:
(Temperature,
Solar
irradiance,
and Wind
speed)

8 for Ist,
9 for 2nd

1000

0.033

0.028

0.9992

Chahboun
and
Maarouf
(2021),
[12]

2021

Random
forest
regression

Four inputs:
(Temperature,
Pressure,
Humidity,
and Wind
speed)

0.02045

0.143

0.9953

Support
vector
regression

Four inputs:
(Temperature,
Pressure,
Humidity,
and Wind
speed)

0.2510

0.501

0.9436
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TABLE 9. (Continued.) The comparison between the proposed approach and the other previously published ones for predicting solar PV power.

Elastic net ~ ------—---- Four inputs: 0.4761 0.690 0.8933 No
regression (Temperature,
Pressure,
Humidity,
and Wind
speed)
Wanget 2016  Apartial = ----------—- Four inputs: 0.348 0.590  Not stated No
al. functional (Pressure,
(2016), linear relative
[13] regression humidity,
model temperature,
wind speed)

study are required in future work for our proposed NNs types
considering the minimization of the resulting MSE and the
training/approximation error. In addition, more data (e.g.,
6 months) can be also taken into consideration.

VIIl. CONCLUSION AND FUTURE WORK

It is essential to boost the prediction accuracy of the NNs for
estimating and forecasting the solar PV output power to over-
come the power outage and disturbances in the utility grid
due to variations in environmental conditions. In this article,
three trained ANN types (MLFFNN, RNN, and NARXNN)
are proposed to estimate the total power of four solar PV
power substations. Hence, the surface temperature and solar
radiation are used as the inputs of these NN, and the total PV
power is the output. The data of 60 days (2 months) are gained
from four real solar PV power substations in Egypt. From this,
the data of the first 45 days are applied to the training process
which is occurred using the LM learning Algorithm. The rest
of the data which are for 15 days (half a month) are used for
checking the effectiveness and the generalization ability of
the trained NNs. The results from the training process show
that the designed NNs achieve good and satisfactory per-
formance (very low MSE and training/approximation error).
This means that the NN can estimate the PV output total
power efficiently and correctly. These results show also that
the MLFFNN has the best performance compared with RNN
and NARXNN. The MSE and the approximation error in
the case of using the designed NARXNN are the highest
compared with the other NNs. The results from investigating
the generalization ability of the trained NNs by the use of
different data than the training ones support the results from
the training process. All the trained NNs can work under dif-
ferent conditions and data. In addition, the trained MLFFNN
has the best performance compared with the other NN,
whereas the trained NARXNN achieve the lowest perfor-
mance. After the estimation process validation is considered,
the upscaling method is utilized for assessing and forecasting
the regional solar PV output power of the dour solar PV
stations. A comparison is developed between our proposed
method and other previously related published work. From
this comparison, we deduce that the proposed method has low
MSE, and complexity compared with others. In addition, the
generalization ability is checked and investigated only with
the proposed method.
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In future work, deep learning algorithms can be considered
and compared. In addition, collected data from six months or
one year can be used. Predicting the power of other renewable
energy sources such as the energy of wind can also be applied.

APPENDIX
See Table 9.
NOMENCLATURE
ANNs Artificial Neural Networks.
BR Bayesian Regularizations.
CMV Cloud Motion Vector.
ELMNN Extreme Learning Machine NN.
FFNN Feed-Forward NN.
GA-BP Genetic Algorithms Optimized Back
Propagation.
GLS-SVM  Group Least Square SVM.
GRNN Generalized regression NN.
LM Levenberg-Marquardt.
MAPE Mean-Absolute Percentage Error.
MBE Mean Bias Error.

ML Machine Learning.

MLFFNN  Multi-Layer FFNN.

MPPT Maximum Power Point Tracking.
MSE Mean Squared Error.

NARX Nonlinear Autoregressive Exogenous.
NARXNN NARX Model Neural Network.

NN Neural Network.

NMAE Normalized Mean Absolute Error.
NWP Numerical Weather Prediction.
PCA Principal Component Analysis.
PSO Particle Swarm Optimization.
PV Photovoltaic.

RESs Renewable energy sources.
RNN Recurrent Neural Network.
RMSE Root Mean Squared Error.
SVM Support Vector Machine.

SVR Support Vector Regression.

TE Training Error.

WD Wavelet-Decomposition.

WT Wavelet-Transform.

SUPPLEMENTARY MATERIALS
Not Applicable.
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o The lowest mean squared error (MSE) and training error
are attained.

o The better performance and effectiveness of the pro-
posed model are proven for solar PV power estimation
and upscaling forecast.
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