
Received 9 February 2023, accepted 22 February 2023, date of publication 24 February 2023, date of current version 1 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3249100

Fast Computation of RFD-Like Descriptors
in Four Orientations
ANTON V. TRUSOV 1,2,3, (Member, IEEE), ELENA E. LIMONOVA 2,3, (Member, IEEE),
AND VLADIMIR V. ARLAZAROV 2,3, (Member, IEEE)
1Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
2Smart Engines Service LLC, 117312 Moscow, Russia
3Federal Research Center Computer Science and Control, Russian Academy of Sciences, 119333 Moscow, Russia

Corresponding author: Anton V. Trusov (trusov.av@smartengines.com)

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, Internal number 00600/2020/51896
(21.04.2022), under Agreement 075-15-2022-319.

ABSTRACT RFD-like binary descriptors have been designed to be fast and demonstrate good quality in
image-matching tasks. One of those descriptors, RFDoc, produces state-of-the art results when applied to
document localization systems. However, the computational efficiency of such descriptors strongly depends
on their implementation. In this study, we consider the computation of RFD-like descriptors for an 8-bit
single-channel image; provide a detailed implementation of the baseline algorithm; demonstrate its weak
points; and propose four modifications. In those modifications, we investigate two ways to accelerate
the descriptor computations: 1) compute common operations globally for the entire input image instead
of computing them locally for every patch; or 2) use lookup tables to replace the most computationally
demanding operations and minimize the number of conversions between integer and floating point types.
Experiments on the document identification and localization task on theMIDV-2020 dataset have shown that
the modifications with lookup tables are noticeably faster than the baseline, achieving a 2-2.6 times accel-
eration on ×86 and ARM CPUs. Based on experimental results, modifications with global operations may
outperform the baseline algorithm if there are many intersecting patches that require descriptor computation.
We also demonstrated that one can use any of the proposed algorithmswithout loss of image-matching quality
and without necessity to retrain the parameters of RFD-like descriptors. Finally, we propose an efficient way
to compute the descriptors for four orientations of a patch, which is a important for document location
systems. The proposed method reduces a common computation part for four orientations to a single run;
thus, four descriptors are computed 3 times faster than the direct computation of the descriptors for four
patches, as shown experimentally.

INDEX TERMS Approximation, binary descriptors, RFD, RFDoc, efficient computations, local feature
descriptors.

I. INTRODUCTION
Local feature descriptors in computer vision are compact
vector representations of small parts of images (patches). The
distance between descriptors of similar patches is small but is
large for dissimilar patches.

Local feature descriptors are widely used in image match-
ing algorithms to align two or more images of a scene or an
object taken from different viewpoints. Such algorithms are

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdel-Hamid Soliman .

used in structure-from-motion (SfM) and multiview-stereo
(MVS) estimations [1], object tracking [2], ID document
localization [3] [4], and other practical tasks. The image
matching algorithms that use local-feature descriptors are
called feature-based image matching [5].

One of the most well-known local feature descriptors in
the literature is SIFT (Scale Invariant Feature Transform) [6].
SIFT computes orientation histograms of weighted gradients
in 4 regions around the center of the patch stores than in a
vector, normalizes this vector and uses the result as a descrip-
tor. Bay et al. proposed a more computationally efficient

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 19725

https://orcid.org/0000-0003-4084-4614
https://orcid.org/0000-0001-7673-9109
https://orcid.org/0000-0003-3260-9104
https://orcid.org/0000-0001-7382-1107

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

descriptor called SURF (Speed-Up Robust Features) [7],
which used histograms of Haar wavelet responses instead of
orientation gradients.

SIFT, SURF and many other descriptor computing
algorithms (e.g., LBP [8], DAISY [9], LIOP [10])
produce real-valued vectors. The similarity of those descrip-
tors is measured by the l2 norm, which is computation-
ally expensive. To address this drawback binary descriptors
(e.g., BRIEF [11] and its rotation-invariant modification
ORB [12]) have been proposed. An advantage of binary
descriptors is that the distance between them is the Hamming
distance, which is easy to compute. The Hamming distance
also allows for fast descriptor matching using multi-index
hashing [13].

All of these descriptors are based on the algorithms
that the authors proposed based on their expertise in
the field of image matching. Such descriptors are called
handcrafted conversely to learning-based descriptors [14],
which are constructed with regard to training set patches
(or a set of pairs of matching and mismatching patches).
There are many examples of such algorithms, from simple
PCA-SIFT [15] to complex deep learning-based descriptors
such as TFeat [16] andHardNet [17], which use convolutional
neural networks.

However, neural networks require a long computation
time. According to the experimental measurements on mod-
ern computing devices [18], such descriptors are hundreds
of times slower than simple descriptors that rely on inten-
sity comparison (ORB [12], BEBLID [19], BAD [18]) and
tens of times slower than descriptors based on gradient
computation (SIFT [6], BinBoost [20]). Therefore, they are
not appropriate for real-time on-device applications; thus
binary learning-based descriptors such as BGM (Boosted
Gradient Maps) [21], BinBoost [20] and RFD (Receptive
Fields Descriptors) [22] are of interest in this field of study.
These descriptors can combine fast binary vector matching
matching with the quality of the learning-based descrip-
tors. Recently RFDoc descriptor [23] was proposed. That
descriptor computation is similar to classic RFD and achieves
accurate results in ID document location and classification
tasks. The highest quality in the considered task, poten-
tial for fast feature-matching, and simple inference, suit-
able for real-time on-device computation, are why we have
chosen RFD and RFDoc descriptors as the focus of this
study.

The computation of an RFD-like descriptor for an image
patch is a complex process that consists of several stages.
First, the patch is blurred. Then the discrete gradient for each
pixel is estimated and its magnitude is soft-assigned to one of
the eight images called the gradient maps. Then, the response
over predetermined regions of the gradient maps is integrated.
Finally, this integrated response is binarized by comparison
to a threshold value [22], [23]. The speed of the descriptor
computation markedly depends on the implementation of
each of those stages. However, in those studies, the authors of
both RFD and RFDoc paid more attention to the theoretical

aspects and training algorithms of their descriptors than to the
implementation.

In this paper, we describe the process of RFD-like descrip-
tor computation in detail. We determine the most computa-
tionally demanding operations function and propose ways to
remove them by precomputing and approximation. We also
note that patches may overlap and that some operations,
which are performed patchwise in straightforward implemen-
tation, may be more efficient if performed globally for the
entire image. Overall, we consider five versions of RFD,
including straightforward baseline implementation. We com-
pare them in terms of their computational efficiency and
quality of image matching on photos of identity documents
from the MIDV-2020 [24] dataset.

Then, we propose a fast method to compute RFD-like
descriptors in four orientations. Using several orientations for
descriptors is an important approach in document location
systems. For example, in [3], the descriptors for an image
rotated by 0, 90, 180, and 270 degrees are computed to
find the correct orientation of a rectangular ID document.
Surprisingly, this trick is not widely used in other image
matching tasks.

Straightforward implementation of RFD/RFDoc in four
orientations increases computation time fourfold, which may
be a problem of this approach for real-time tasks. How-
ever, due to the nature of RFD-like descriptors, it is easy to
compute four descriptors for four orientations of the patch
using the same gradient maps. In this study, we propose a
fast algorithm for computing RFD-like descriptors for four
orientations and experimentally evaluate its computational
efficiency.

To sum it all up, the main contributions of our work are as
follows:
• We consider RFD computation in detail and describe
five variants: baseline; the one with global blur; the one
with global gradient maps; the one with approximate
arctangent; and the one with precomputing of features
for all values of the gradient.

• Wemeasure the running time of the proposed algorithms
on the MIDV-2020 dataset and derive application areas
for them. We also show that regardless of their dif-
ferences, the proposed algorithms produce comparable
quality on matching tasks.

• We also present the fast algorithm for computing
RFD-like descriptors for four orientations of an image
and measure its computational efficiency on the same
dataset.

The remainder of this paper is organized as follows.
In Section II we describe different methods and data struc-
tures in literature that are used to accelerate local fea-
ture descriptor computing. Then, we discuss an algorithm
for RFD-like descriptor computing and introduce its base-
line implementation in Section III. In Section IV, we pro-
pose four modifications of that algorithm and discuss their
strong sides and shortcomings. In Section V, we introduce
a method for fast computation of the RFD-like descriptor in

19726 VOLUME 11, 2023

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

four orientations. Section VI describes the experimental mea-
surements of running time and quality of the proposed imple-
mentations. In Section VII, we discuss the experimental
results and limitations of the considered implementations.
Finally, Section VIII concludes this article.

II. RELATED WORK
Increasing the computational efficiency of local feature
descriptors while preserving their quality has always been a
concern for developers.

For example, the SIFT [6] algorithm relied on a scale
pyramid to provide scale invariance of its detector-descriptor
pair. The scale pyramid [25] is a data structure that is widely
used in the areas of image processing and computer graphics,
and consists of the input image and its downscaled copies.
However, the computation and processing of such a pyramid
required a significant amount of time, which is why SURF [7]
was proposed. SURF has a scale invariant detector based on a
box filter and a descriptor based on Haar wavelet responses.
Box filter and Haar wavelets require sums over rectangular
image regions. Such sums can be computed quickly with the
help of an integral image [26], which is a 2D generalization of
the prefix sum. Integral images are also used in RFD [22] and
RFDoc [23] descriptors to compute sums over rectangular
pooling regions and in covariance-based descriptor [27] for
fast covariance computation.

In efficient implementations of CARD (compact and
real-time descriptors) [28] and Zernike moments-based
descriptors [29], the authors demonstrated another approach
to accelerate computations that used lookup tables (LUTs).
LUT is an array of precomputed values that are used to
replace complex computations with a simple indexing oper-
ation. A classic example of applying LUTs is the method of
Four Russians [30]. However, LUTs can be used anywhere
where computationally expensive functions can be repre-
sented with their values at a finite number of points without
loss of quality.

There is always a trade-off between computational effi-
ciency and quality. For example, the best quality in
image matching tacks is usually demonstrated by deep
learning-based descriptors such as HardNet [17] and
DOAP [31]. To accelerate such algorithms, it is possible
to use the quantization approach to replace floating-point
operations in neural networks with integer operations [32].
However, it is unlikely to make them suitable for real-time
applications because deep learning-based descriptors are
slower than the simple ones by several orders of magnitude,
as demonstrated by the developers of BAD (Box Average
Difference) descriptor [18].

Conversely, fast and simple descriptors usually produce
markedly lower quality. One of the fastest descriptors known
in the literature is BRIEF [11], which is not robust even
to small rotations. This drawback is fixed in the ORB [12]
algorithm, which combines the BRIEF descriptor with
the FAST [33] keypoint detector, which compensates for
rotation. That algorithm computes quickly, particularly its

modification for single instruction multiple data (SIMD)
architecture, which is supported by most modern CPUs [34].
However, in terms of quality, it noticeably falls behind other
binary descriptors such as BEBLID [19] or RFDoc [23],
which are only marginally more complex in terms of
computation.

In this study, we consider fast computation of RFD-like
(RFD [22] and RFDoc [23]) descriptors because they bal-
ance relative simplicity and high matching quality. Therefore,
computationally efficient implementation is required to meet
the real-time requirements of practical applications. We aim
to provide such an implementation.

To achieve this goal, we use the techniques and data struc-
tures described above as follows:
• Scale pyramid: This technique may be used to provide
scale invariance by computing the local feature descrip-
tor at the scale corresponding to its keypoint and is used
in the SIFT descriptor. The scale pyramid additional
memory to store the downscaled images.

• Integral images: These components are useful when
fast computation of many sums over rectangles is
required, as is the case for RFD and RFDoc descriptors.
Inegral images also require memory and take time to be
computed.

• Lookup table: This component is a widely used data
structure that replaces computationally expensive opera-
tions with indexing over precomputed arrays. In descrip-
tor computing, a lookup table is used in CARD and
Zernike moments descriptors. However, the array must
be stored in memory, which limits the applicability of
large LUTs.

• Quatization: This technique allows for replacement of
floating-point operations with integer operations, which
are more memory- and computationally efficient. Quati-
zation is popular in neural network computing but intro-
duces some level of error because it is an approximation.

III. RFD-LIKE DESCRIPTOR COMPUTATION
Before considering specific aspects of RFD-like descriptor
computation, we provide a brief overview of the entire pro-
cess. The purpose of the considered process is to present
the areas around each keypoint on the image as a binary
vector of fixed length n. Given the input image I , the list of
coordinates of n pooling regions γ1, γ2, . . . , γn, the list of n
thresholds t1, t2, . . . , tn, and the coordinates of keypoint k ,
the computation of the descriptor consists of the following
stages:
• Patch extraction: The region of fixed size around the
keypoint k is extracted from the image I and is referred
to as patch. The patch size s is the hyperparameter of the
descriptor computation algorithm.

• Patch smoothing: The patch is blurred to reduce the
noise, and the smoothing parameter σ is another hyper-
parameter.

• Gradient computation: The discrete gradient of the
patch is computed.

VOLUME 11, 2023 19727

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

• Gradient maps computation: The patch gradient is
mapped into eight images according to its orientation.
The gradient magnitude for each pixel is mapped by
bilinear soft assignment to the two nearest bins with
orientations 0, π/4, 2π/4, . . . , 7π/4.

• Feature pooling: For each receptive field γi, the values
of one of the gradient maps are integrated over the
specified receptive area. The result is called a response
over the receptive field, and the response is then normal-
ized by the sum of the corresponding responses over all
receptive fields.

• Binarization: The normalized responses are binarized
using corresponding thresholds ti.

These computations are shown in Figure 1 and illustrated
in Figure 2, and produce an n-bit binary vector, which is
the local feature descriptor. This vector can be used later to
estimate the similarity of keypoints in the image-matching
algorithm.

The considered algorithm is general for all RFD-like
descriptors. However, it lacks many important implementa-
tion details, such as data types, used on each step of com-
putation, exact process of gradient orientation computation,
shape of receptive fields, etc. We now describe each step in
detail. In this study, we consider an 8-bit single channel image
as an input because it is one of the most widely used formats
in practical applications. However, the algorithm with other
input datatypes can be implemented by replacing the types of
intermediate variables so that they do not overflow.

A. PATCH EXTRACTION
During patch extraction, a rectangular patch of fixed size
s× s pixels around a given keypoint k is extracted.
To understand this stage better, we consider a keypoint

from the local feature descriptor perspective. Keypoints are
selected by a keypoint extraction algorithm prior to descrip-
tor computation. The descriptor receives the coordinates of
the keypoint (xp, yp), the scale sp, which determines the
upscale or downscale rate for the area around the keypoint,
and the orientation θ , which determines the rotation of the
patch [6], [7]. Another optional characteristic of a keypoint is
its score, which is a value that shows the algorithm’s ‘‘confi-
dence’’ that the point is indeed a keypoint [35]. Score may be
used to limit the maximum number of keypoints to process if
there were too many detections on the source image.

Given the coordinates (xp, yp) of the keypoint, its scale sp,
and rotation angle θ , the coordinates of the patch image (u, v)
are mapped to the coordinates of the source image (x, y) via
affine transformation (combination of scale transformation,
rotation and translation):

x = sp
((
u−

s
2

)
cos θ −

(
v−

s
2

)
sin θ

)
+ xp,

y = sp
((
u−

s
2

)
sin θ +

(
v−

s
2

)
cos θ

)
+ yp. (1)

Calculating the affine transformation (1) for each pixel of
the patch is computationally demanding. However, if sc = 1

FIGURE 1. Computation of the n-bit RFD-like descriptor for a single patch
of an image.

and θ = 0, we have a simple translation instead:

x = u−
s
2
+ xp,

y = v−
s
2
+ yp. (2)

In this case, we simply copy a region of the source image
that appears significantly faster than (1) because there is no
additional computation.

Fortunately, we can use a simple scheme (2) instead of
a complex scheme (1). To use unit scale sc = 1 we apply
a scale pyramid [25]. We construct it before the keypoint

19728 VOLUME 11, 2023

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

FIGURE 2. Descriptor computation for feature-based image matching. The top row shows image prepossessing and keypoint extraction,
and the bottom row shows the steps of RFD-like descriptor computation. The image is a photo of an ID from the MIDV-2020 dataset.

extraction and reuse it for descriptor computation. Then, for
each keypoint, we select the nearest layer of this pyramid
in terms of scale sc to copy the patch from it. To address
keypoint orientations and set θ to 0, we use keypoints without
orientations. For example, in the method proposed in [3], the
global rotation of the image is estimated based on straight line
segments and compensated before orientation-less feature-
based matching of the input document image to a document
template.

Thus, we consider the following problem:
1) 8-bit single-channel image pyramid as the input for

patch extraction;
2) Keypoints do not have orientations (θ is set to 0);
3) Keypoint scales specify the layer of the scale image

pyramid for patch extraction; this layer will be referred
to as the source image in this work.

Therefore, the patch extraction is a simple copy of the s × s
region from the source image.

B. PATCH SMOOTHING
Because RFD relies on the directions of gradients, noise of the
input patchmay produce large errors in the partial derivatives,
which is why we introduce a patch smoothing stage before
gradient computation. The blur reduces the impact of noise
on the gradient.

Another way to estimate gradients with lower noise-caused
errors is to use Sobel, derivative-of-Gaussian, or other similar
operators.

However, these operators would require two convolutions
with such filters (for horizontal and vertical partial deriva-
tives). Considering efficiency, it is better to compute a single
convolution with a separable blurring filter (e.g., Gaussian
filter) and then use a simple difference scheme twice to find
partial derivatives [36].

In this study, we consider that smoothing is performed by
a Gaussian filter, and its parameter σ is a hyperparameter of
the descriptor computing algorithm. The output of this filter
is also an 8-bit image as an input.

In the original RFD [22] and RFDoc [23] papers, the
smoothing stage is omitted, but the authors do not describe
specifically how the gradient is computed.

C. GRADIENT COMPUTATION
This stage takes the blurred patch as an input and computes
vertical and horizontal partial derivatives. This operation can
be performed using the simple difference scheme:

∂

∂n
f (n) = (f (n+ 1)− f (n− 1))/2, (3)

where f (n) is a function of a discrete argument n.
However, if we directly apply (3) to an 8-bit integer patch,

the result would either be floating-point or inaccurate when
integer division with rounding toward zero is used. Conver-
sion to floating-point data type is time-consuming and unnec-
essary; instead, we double the value of partial derivatives of

VOLUME 11, 2023 19729

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

integer patch P(x, y):

∂

∂x
P(x, y) ≈ P(x + 1, y)− P(x − 1, y),

∂

∂y
P(x, y) ≈ P(x, y+ 1)− P(x, y− 1). (4)

Although the gradient doubles, its orientation is preserved,
and the orientation is essential for RFD-like descriptors.

Because the difference of two unsigned 8-bit integers may
overflow the 8-bit type, the result should be stored in the
signed 16-bit integer type. We propose to convert blurred
patches to the signed 16-bit type and then compute the partial
derivatives as the difference of two signed 16-bit integers
according to (4).

D. GRADIENT MAPS COMPUTATION
Gradient maps are images of the patch that represent the
intensity of the gradient in a given direction.

Given partial derivatives of the patch Px(x, y) (for the
horizontal direction) and Py(x, y) (for the vertical direction),
the orientation 2(x, y) is defined as:

2(x, y) = atan2(Px(x, y),Py(x, y)), (5)

where −π ≤ atan2(x, y) ≤ π is a two-argument arctan-
gent function. The function atan2(x, y) measures the angle
between the (x, y) vector and the positive direction of the
x-axis.

To compute gradient maps, we also need gradient intensity.
In the original RFD paper, there are no specific formulae
or instructions. However, the intensity (or magnitude) of the
gradientM (x, y) is typically calculated as the l2 norm:

M (x, y) =
√
Px(x, y)2 + Py(x, y)2. (6)

The authors of the RFDoc descriptor suggested using the
l1-norm instead and claim that it makes the descriptor more
robust and quick to compute:

M (x, y) = |Px(x, y)| + |Py(x, y)|. (7)

Now, we have the orientation 2(x, y) and magnitude
M (x, y). Then, eight gradient maps F0(x, y), . . . ,F7(x, y) are
computed:

φ =
4(2(x, y)+ π)

π
,

w1 = φ − ⌊φ⌋,

n0 = ⌊φ⌋ mod 8,

n1 = (n0 + 1) mod 8,

Fn1 (x, y) = [w1M (x, y)],

Fn0 (x, y) = M (x, y)− Fn1 (x, y),

Fi;i∈{0,...,7}\{n0,n1} = 0, (8)

where ⌊·⌋ denotes rounding down, and [·] denotes rounding
to the nearest integer. That operation selects two nearest
orientation bins (Fn0 and Fn1) for a given pixel and uses
bilinear soft assignment to map the gradient magnitude to
them.

The computation of gradient maps is a pixelwise oper-
ation with integer inputs (Px and Py) and integer outputs
(F0, . . . ,F7). Therefore, to prevent unnecessary memory
allocation, it may be implemented as a separate subprogram.
That subprogram is presented in Algorithm 1. norm denotes
the vector norm, which is either l2 (6) or l1 (7), floor is
rounding down and round is rounding to the nearest integer.
The subprogram requires s2 norm operations and up to s2

atan2 operations per s × s patch. Because atan2 and
l2-norm computation ismarkedlymore computationally com-
plex than simple additions and multiplications, the gradient
map computation is potentially time-consuming.

Algorithm 1 Gradient Map Computation
Input: Px , Py are partial derivatives of the patch, s× s

signed 16-bit images
Output: F0, . . . ,F7,M are gradient maps and gradient

magnitude, s× s unsigned 16-bit images
// zero initializing of the result
for i from 0 to 7 do

Fi← 0
end
M ← 0
// sector size for one bucket
q← 4.0/π
for y from 0 to s− 1 do

for x from 0 to s− 1 do
m← norm(Px(x, y),Py(x, y))
if m > 0 then

φ← q ∗ (atan2(Px(x, y),Py(x, y))+ π)
ψ ← floor(φ)
w1← φ − ψ

n0← ψ mod 8
n1← (n0 + 1) mod 8
Fn1 (x, y)← round(m ∗ w1)
Fn0 (x, y)← m− Fn1 (x, y)

end
end

end

In the proposed implementation, the gradient maps are
unsigned 16-bit images. We also propose storing the magni-
tude on the gradient as an unsigned 16-bit image that will be
used later during pooling and binarization.

E. FEATURE POOLING
During the feature pooling stage, the responses over rectan-
gular receptive fields are computed. The authors of RFD also
propose Gaussian pooling regions, but their experiments have
shown that they do not produce descriptors with noticeably
higher quality [22]. They also favored rectangular pooling
regions because sums over rectangles can be efficiently com-
puted with the help of integral image [26]. In this study,
we consider rectangular receptive fields only.

19730 VOLUME 11, 2023

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

The position of the pooling region γ is determined by
five integer variables (x0, y0,w, h, c), where (x0, y0) is the
position of the top-left corner of the rectangle, w is its width,
h is its height, and 0 ≤ c < 8 is the number of gradient maps.
The rectangle lies within the s× s patch.
The response to the pooling region γ = (R(x0, y0,w, h), c)

is:

g(γ) =

∑
x,y∈R Fc(x, y)∑7

i=0
∑

x,y∈R Fc(x, y)
, (9)

where R denotes rectangle (x0, y0,w, h). This response equa-
tion is common for RFD and RFDoc descriptors.

We now consider an integral image S for image F :

S(x, y) =

{∑y−1
i=0

∑x−1
j=0 F(j, i) , x, y > 0,

0 , otherwise.
(10)

The integral image can be easily computed dynamically
because S(x, y) = S(x− 1, y)+ S(x, y− 1)+F(x− 1, y− 1)
for positive x and y. This image has size (s+ 1)× (s+ 1) and
allows for simple computation of sums over rectangles on F :

y1−1∑
y=y0

x1−1∑
x=x0

F(x, y) = S(x1, y1)− S(x0, y1)

− S(x1, y0)+ S(x0, y0) (11)

Because gradient maps are constructed according to (8),
the sum of all gradient maps in each pixel is the magnitude of
the gradient. Therefore, Equation (9) can be simplified:

g(γ) =

∑
x,y∈R Fc(x, y)∑
x,y∈RM (x, y)

. (12)

All the sums in (12) can be computed using integral images
for gradient maps and magnitude. We propose computing
those once per s×s patch and storing them in (s+1)× (s+1)
unsigned 16-bit images.

F. BINARIZATION
In RFD-like descriptors for each receptive field γi, there is
a corresponding threshold value ti. Binarization is a simple
procedure that determines the value of the i-th bit of the
descriptor:

bi =

{
0, g(γi) < ti,
1, g(γi) ≥ ti.

(13)

To avoid time-consuming floating-point division, we can
combine response computation (12) with binarization (13):

bi =

{
0,

∑
x,y∈Ri Fci (x, y) < ti

∑
x,y∈Ri M (x, y),

1, otherwise.
,

(14)

where Ri and ci are the rectangle and the gradient map index
of the receptive field γi.
Each bit of the descriptor is calculated by (14) using the

integral images of the gradient maps and the gradient mag-
nitude as an input. Now the process of computation of the

binary RFD-like descriptor an for 8-bit single channel patch
is finished.

It is worth mentioning that receptive fields γ and cor-
responding thresholds t are parameters of the RFD-like
descriptor. They are determined by training on a task-specific
dataset [22], [23].

G. DESCRIPTION COMPUTATION: SUMMARY
All steps of the proposed implementation of RFD-like
descriptor computation are shown in Algorithm 2 and in
Table 1, which represents the data flow in the considered
implementation from the s × s unsigned 8-bit patch to the
n-bit descriptor.

The considered algorithm is applied patchwise. For each
s × s patch all the stages up to integral image computation
require O(s2) operations. Then, the responses over receptive
fields are computed according to Equation (11); thus, exactly
6n integer additions and subtractions, n floating-point mul-
tiplications and n comparisons are required to compute the
n− bit descriptor.

TABLE 1. Data flow in n-bit RFD computation algorithm for s × s patch.

Because the original implementations of the RFD and
RFDoc descriptors are not available, we use the proposed
algorithm as a baseline in the experiments of this study.

Table 1 shows that in the proposed implementation, all
the data are stored as 8- or 16-bit integers in the interme-
diate steps of computation. Thus, the proposed algorithm is
memory-efficient. However, there are still time-consuming
floating-point operations in the gradient map computation
step. Additionally, this algorithm processes all the patches
separately and does not consider that in the image-matching
task, all those patches are extracted from the same image.
In the following section, we propose four modifications of
Algorithm 2 to address these two drawbacks.

IV. ALGORITHM MODIFICATIONS
We will refer to Algorithm 2 as a baseline or Base. As men-
tioned above, that algorithm has two weak points: 1) it
requires many computationally expensive operations (for
example, atan2 in the gradient orientation computation),
and 2) it processes each patch separately. The latter may not
seem to be a drawback, but if there are many intersections
between patches, it leads to redundant computations. Addi-
tionally, it may be faster to perform a single operation over
the entire image than to perform it over multiple patches.

VOLUME 11, 2023 19731

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

Algorithm 2 Detailed RFD Computation Algorithm
Input: I – Image or pyramid of scaled images
K – list of keypoint coordinates on I
σ – Smoothing parameter for Gaussian blur
γ – list of n pooling regions for descriptor
t – list of n thresholds for each region
Output: D – list of descriptors for each keypoint
for each keypoint k in K do

Select patch P according to k;
// Blur patch image
Ps← GaussianBlure(P, σ);
// Convert patch to 16-bit image to avoid overflow
P16← Cast8_16(Ps)
// Compute discrete gradient as 2 16-bit images
Px ,Py← Gradient(P16)
// Compute gradient maps Fi and gradient magnitude
M as unsigned 16-bit images
F0, . . . ,F7,M ← GradientMap(Px , Py)
for i from 0 to 7 do

Si← Integrate(Fi)
end
S ← Integrate(M)
// Set up empty n-bit descriptor
d ← 0
for j = 0; j < n; j← j+ 1 do

// Compute the response over γj = (R, i)
f ← Sum(Si, R)
// Compute the response overM
m← Sum(S, R)
if f > m ∗ tj then

// Set j-bit of descriptor
dj← 1

end
end
Pass d to D as a descriptor for k

end

A. GS: GLOBAL SMOOTHING
The first step in baseline implementation is smoothing, which
is performed by convolution of the patch image with a Gaus-
sian filter. That filter is separable; thus, the convolution can
be performed in two steps: convolution with horizontal and
vertical filters. In that case, convolution is performed row-
by-row over the input image.

In practice, the rows of an image are usually stored con-
sequently in memory. Therefore, the separable convolution
is a cache-friendly operation: CPU cache and preloading
provide faster access to values from memory if they are
loaded sequentially, which is why a single application of
Gaussian blur to the entire image may be faster than several
applications to patches if the number of patches is high.
Thus, we propose a modification of the baseline algorithm
with global smoothing (GS). In that case, Gaussian blur with
parameter σ is applied to the input image (or all the layers of

the scale pyramid in the case of multiscale keypoints) prior to
the patch extraction stage.

B. GM: GLOBAL GRADIENT MAPS AND MAGNITUDE
We can go even further and compute all the steps up to the
gradient maps andmagnitude computation for the entire input
image. In that case, wewould have eight images with gradient
maps and one with a magnitude of the same size as the
input image. Then, we extract patches from them to perform
feature pooling and binarization, and thus finish descriptor
computation, which is what we propose in a modification of
the baseline algorithm with global gradient maps (GM). The
primary advantage of that algorithm is that it does not com-
pute the same parts of gradient maps in the patch intersection.
Additionally, the same considerations about the efficient use
of CPU caches as in the GS algorithm are applicable in this
study. The primary disadvantage is that it computes the gra-
dient maps outside of patches, and those values are not used
in later computations. To overcome this drawback, we may
use image-size gradient maps but compute only regions
covered by at least one patch. Processing patches sequen-
tially, overlapping areas would be computed only once. How-
ever, parallel patchwise computations are faster for practical
applications.

C. FP: FULL PRECOMPUTING
As mentioned, one of the primary shortcomings of the Base
algorithm is the use of time-consuming floating-point opera-
tions during gradient maps computation. However, according
to Equations (5)-(8), the values of the gradient map of a
pixel are determined by the values of the partial derivatives
Px ,Py of this pixel. According to (4), the values of partial
derivatives are integers lying in the range −255 ≤ Px ,Py ≤
255 because the smoothed patch is an 8-bit image. Therefore,
there are only 511 possible values for Px and Py, which is
whywe use lookup tables (LUTs) to accelerate computations.
We precompute 8-bit values of n0, n1, and 16-bit values Fn0 ,
Fn1 in (8) for all possible combinations of Px and Py and store
them into four 511 × 511 LUTs accordingly. Thus, the only
remaining floating-point operation is the multiplication by a
threshold in (14), and the most time-consuming operations,
such as atan2 of sqrt, are not required. We call this
modification computation with full precompute (FP). The
only disadvantage of that algorithm is the size of LUTs:
5112(2 · 1+ 2 · 2) bytes, which is approximately 1.5 Mb. The
access speed to the values in such LUTs would be limited,
because they normally do not fit the L1-cache size on most
modern CPUs. Therefore, we need smaller LUTs to make
access to them faster.

D. AP: Atan2 PRECOMPUTING
The most time-consuming operation in the Gradient compu-
tation is atan2 and square root in the case of the l2 norm.
Therefore, we propose using precomputations for those func-
tions with a fixed number of angles and a quantization pro-
cedure that approximates the direction of the gradient by one

19732 VOLUME 11, 2023

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

of those angles without computing the angle itself. We now
consider integer solutions of the following equation:

|x| + |y| = Na (15)

There are 4Na points that satisfy this equation. They lie on
the square. We number these points with the index τ coun-
terclockwise starting with τ = 0 for point (−Na,Na) (see
Fig. 3). For any given vector (Px ,Py), we define (P̂x , P̂y) as
the vector that satisfies (15) and has a minimum angle with
(Px ,Py). We also denote the index of that vector as τ (Px ,Py).
That index can be computed with integer-only arithmetic
operations:

l = |Px | + |Py|,

τ0 =

⌊
Na(Px + l)+ l/2

l

⌋
,

τ =

{
τ0, if Py < 0 or τ0 = 0
4 Na − τ0, otherwise.

(16)

The process of computation of the index τ is shown in Fig. 3.

FIGURE 3. Computation of the index τ for a gradient vector (Px , Py).

We compute angles 2 for all the points of (15) and denote
them as 2̂(τ) = atan2(P̂x , P̂y). Then, we approximate (5) as:

2(x, y) ≈ 2̂(τ (Px(x, y),Py(x, y))), (17)

and (6) as:

M = Px cos(2)+ Py sin(2) ≈ Px cos(2̂)+ Py sin(2̂),

(18)

where 2̂ is an approximation of 2 according to (17). 2̂,
cos(2̂), and sin(2̂) can be precomputed for all 4Na points
of the square (15).

Using the proposed approximations and precomputing,
we eliminate the most time-consuming functions from the
gradient maps computation stage.

We can now eliminate all the floating-point operations
from that stage. In (8), n0, n1 and w1 are determined by
angle 2 only; thus, instead of a simple precomputing of 2̂,
cos(2̂), and sin(2̂), we precompute:

• indexes of gradient maps n0(τ) and n1(τ) as 8-bit values.
• ŵ1(τ) = ⌊w1(2̂(τ))Nq⌋ coefficient as an unsigned
32-bit value

• cx(τ) = ⌊cos(2̂(τ))Nq⌋, cy(τ) = ⌊sin(2̂(τ))Nq⌋ coef-
ficients as signed 32-bit values (in case of l2 norm of
gradient only),

where Nq is a predefined integer quantization factor. Now we
can determine the magnitude of the gradient for the l2 norm
as:

M =
⌊
cx(τ)Px + cy(τ)Py + Nq/2

Nq

⌋
. (19)

In case the of the l1 norm M = l = |Px | + |Py|; we have
already computed it in (16). The values for the gradient maps
are computed as follows:

Fn1 =
⌊
ŵ1(τ)M + Nq/2

Nq

⌋
,

Fn0 = M − Fn1 (x, y). (20)

We use Nq equal to a power of 2; thus, the division in (19)
and (20) is replaced with a bit-shift, which is simpler to
compute.

This modification of the Base algorithm approximation
and precomputing provides fast integer-only computation
of gradient maps. Therefore, we call it modification with
atan2 precomputing (AP). The considered modification
uses smaller LUTs than FP: 3 LUTs of 4Na values for an
RFD-like descriptor in the case of the l1 norm of the gradient
and an additional 2 LUTs of the same size in the case of the
l2 norm. Na and Nq are hyperparameters of theAP algorithm:
the larger they are, the more accurately AP approximates
Base. However, with the growth of Na, the size of LUTs
increases, which may decrease the computation efficiency.
Nq should be sufficiently small such that overflow of integer
values does not occur in (19), and (20). Nq should also be a
power of 2 to replace divisions with bit-shifts.

E. NOTE ON INEQUIVALENCE
Base, GS, GM, AP and FP are modifications of the same
algorithm for computing RFD-like descriptors. However, out
of the five versions, only Base and FP are completely equiv-
alent. Thus, using the same image, set of keypoints, and all
the parameters as an input for those five modifications, only
Base and FP are guaranteed to produce the same descriptors.
We now consider the reason why the others may vary.

GS applies global Gaussian smoothing to the input image
and then extracts patches; thus, the values of pixels near the
borders of the patches are affected by the values outside of the
patches. Therefore, the gradients and the gradient maps may
vary, leading to different descriptors. However, this effect is
not strong.

The GM also uses global Gaussian smoothing; thus, it is
different from the Base. However, it is also different from
the GS. If we take a look at (4), we may see that the partial
derivatives are not defined on the borders of the patch (top and
bottom rows for Py, and left and right columns for Px). They

VOLUME 11, 2023 19733

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

may be set to zero or initialized using the nearest neighbor
pixel. The GM has no such problem, and the gradient is
computed using the input image values lying outside the
patch. Those values also vary the value of a descriptor when
compared to the Base or GS but insignificantly.

The AP is an approximation of the Base; thus, it is not
precise. As we increase the values Nq and Na, the descriptors
become increasingly similar.

The inequivalence of the considered versions is shown in
Figure 4.

FIGURE 4. The example of proposed RFD modifications demonstrating
their inequivalence.

Although the five considered algorithms do not produce
exactly the same descriptors, they are all RFD-like descriptor
computing algorithms and can all be used for feature-based
image matching. We can also use the same receptive fields
and thresholds in them and only train them for one algorithm
without a loss of quality in image matching. We examine it in
detail and demonstrate experimental results in Section VI.

F. NOTE ON PARALLELISM
Parallel computations are standard for high-performance
applications because most modern CPUs support
multithreading.

In the considered algorithms, it is easy to use parallel com-
putations of the descriptors because the patches are processed
separately and they do not use common memory, except the
input image as a common source. In the GS and the GM
the rows of global smoothed image, partial derivatives and
feature maps can also be computed in parallel.

The importance of the possibility of parallel implementa-
tion is the primary reason why we do not consider a version
of the GM algorithm without excess computations of the
gradient maps outside of the patches because that version
would require the sequential processing of the patches or
accurate synchronization as data races may occur.

G. NOTE ON COMPLEXITY
We now consider the following setup: the computation of the
n-bit RFD-like descriptor for m keypoints on the input image
of size h× w, with the patch size s× s. As described above,
descriptor computation consists of the following stages:

1) Smoothing,
2) Gradient computation,
3) Gradient map computation,
4) Integral image computation,
5) Descriptor bit computation.

All stages, except the last one, produce an image as a result.
The same operations are performed for each pixel of the

result. We denote the complexity of computation of a sin-
gle pixel as C1, C2, C3, and C4 for stages 1, 2, 3, and 4,
respectively. The computation of a descriptor bit according
to Equations (14) and (11) requires exactly six operations of
integer addition and subtraction, one floating-point multipli-
cation and one comparison. We also denote its complexity
as C5, where C1, . . . ,C5 are not exactly the execution times
because the real execution time on the device also depends
on the efficiency of loading values from memory through
caches. We can use those complexities to show the effects
of the proposed modifications.

The complexity of the Base algorithm is

C = m(s2(C1 + C2 + C3 + C4)+ nC5). (21)

This algorithm requires O(s2) of additional memory to store
intermediate results of computation, as shown in Table 1.
The GS and GM computes the first stages for the entire

image and not for separate patches. Their complexities are as
follows:

Cs = hwC1 + m(s2(C2 + C3 + C4)+ nC5) (22)

and

Cm = hw(C1 + C2 + C3)+ m(s2C4 + nC5) (23)

respectively. These equations show that Cs < C and Cm < C
if hw < ms2. Therefore, those modifications are less complex
than the Base, if the total area of the patches is greater
than the total area of the input image, which is unusual in
image matching applications. However, we can expect those
modifications to work faster because they are more cache-
friendly. Those modifications also have one disadvantage:
they require O(s2 + hw) additional memory for intermediate
computations. Therefore, if memory allocation or access is
slow and the input image is large, they will require a long
computation time.

For AP and FP modifications, their complexities are com-
puted by the Equation (21), as for Base, but they are likely to
have lower constants C3. Because the complexity of atan2
is significantly higher than that of simpler arithmetic oper-
ations. We may also expect noticeable speedup because AP
and FP do not contain any floating-point operations at the
gradient maps computation stages. AP and FPmodifications
both requireO(s2) memory for intermediate results and some
additional memory for LUTs. As calculated above, LUTs
require approximately 1.5Mb of memory for FP. ForAP, the
LUT size depends on the number of precomputed points Na.
In case of AP with the l1 norm, there are three tables with
a total amount of 4Na(1 + 1 + 4) = 24Na bytes. For
AP with l2, there are five tables with a total amount of
4Na(1 + 1 + 4 + 4 + 4) = 56Na bytes. For example, for
Na = 256, which we used in the experiments, the sizes of
LUTs are 6 Kb and 14 Kb for l1 and l2 norms, respectively.
Therefore, AP is more memory-efficient than FP. However,
we cannot tell theoretically which one works faster: FP has
fewer operations, but the LUTs may not fit into an L1 CPU

19734 VOLUME 11, 2023

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

cache, leading to slower indexing. Therefore, we compare
them experimentally in Section VI.

V. FOUR ORIENTATIONS OF A DESCRIPTOR
In [3], the authors propose to use RFD descriptors in ID docu-
ment location and type identification tasks. They estimate the
position before keypoint extraction based on the segments of
straight lines that can be found on a document. This process
allows for projective distortion to be mitigated, except for
the scale and 90-degree rotations. Then, they use a standard
feature-based image matching procedure to determine the
document type and validate the estimated transformation. The
only disadvantage of this method is that feature matching
should be performed for four possible rotations of the doc-
ument (by 0, 90, 180 and 270 degrees).

Because there is a practical requirement to compute the
RFD in four orientations, we have investigated this problem.
In the case of RFD-like descriptors with rectangular receptive
fields, we do not need to rotate a patch to compute the
descriptor of the rotated patch but can ‘‘rotate’’ the receptive
fields instead (see Fig 5).

FIGURE 5. Equivalence of patch retaliation to receptive field
transformation.

More precisely, we propose the following transformation
of a receptive field to compute the receptive field for the
rotated patch without patch rotation:

c1 = (c0 + 2) mod 8,

x1 = s− (h0 + y0),

y1 = x0,

w1 = h0,

h1 = w0, (24)

where γ0 = (R(x0, y0,w0, h0), c0) is a receptive field in the
coordinates of the source patch; γ1 = (R(x1, y1,w1, h1), c1)
is the same receptive field but for the patch that was rotated
90 degrees clockwise in the coordinates of the source patch;
and s× s is the patch size. We need to rotate a rectangle and

to change the index of the gradient map c because when the
patch rotates, directions of the gradients change. Because one
gradient map corresponds to 45 degrees in the gradient angle
space, we increase c by 2.

Given a set of receptive fields for an RFD-like descriptor,
we can apply transformation (24) three times sequentially to
compute the sets of receptive fields corresponding to orienta-
tions of the patch: rotations by 90, 180, and 270 degrees. This
approach only requires a small amount of memory to store
additional receptive fields: 15n additional bytes for the n-bit
descriptor because c, x, y, h,w are 8-bit integers. The binary
feature descriptors usually consist of 64-512 bits (128 in the
proposed experiments), which results in 1-8 Kb of additional
memory. Now that the three additional sets of receptive fields
are computed, for each patch, we can compute the gradient
maps and magnitudes only once and then apply four sets
of receptive fields to obtain four descriptors, correspond-
ing to four possible orientations of the patch; this process
is markedly faster than computing the descriptors for four
orientations of the image.

We now consider the complexity of the computation of the
RFD-like descriptor in four orientations using the proposed
baseline algorithm described in Section III. If we compute
four descriptors by directly rotating the input image, the
complexity would be:

Cf0 ≈ 4 C = 4m(s2(C1 + C2 + C3 + C4)+ nC5), (25)

where we use the same notation as in (21). In these calcula-
tions, we neglect the complexity of the tree rotations of the
input image by 90 degrees, which is a relatively simple and
fast operation.

If we use the proposed trick to simultaneously compute
four descriptors, the complexity would be:

Cf1 = m(s2(C1 + C2 + C3 + C4)+ 4 nC5)+ 3 nCr , (26)

where Cr is the complexity of recomputation of a receptive
field according to transformation (24). Because C5 > 0 and
Cr > 0, the proposed approach would not work exactly
4 times faster than the naive approach. The speed-up is empir-
ically evaluated in the next section.

VI. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASET
To measure the computational efficiency and quality mea-
surements, we consider the feature-based document loca-
tion and identification on the photos subset of MIDV-2020
dataset [24]. This subset consists of 1000 images of unique
mock identity documents of 10 types (100 images per type),
each with unique text field values and unique artificially
generated faces. Images are taken on smartphone cameras
in challenging capturing conditions, which include complex
backgrounds (keyboard, text or outdoors scenes), low light-
ing, high projective distortions, etc. There are two objectives:
to identify a document and to find its location. Identification

VOLUME 11, 2023 19735

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

in that case is a 10-class classification task. The location of
the document is determined by its quadrangle because all
documents are plane rectangles, and the photo introduces pro-
jective distortion to this quadrangle. Examples of two images
from the dataset with document quadrangles are presented
in Fig. 6.

FIGURE 6. Images from MIDV-2020 dataset with document quadrangles:
green for ground truth, and magenta for the detected in our experiments.

2) IMAGE-MATCHING CONFIGURATION
In this study, we focus on descriptor computing. However,
to evaluate the proposed algorithms in terms of quality and
efficiency in the selected task, we need other modules of the
image matching algorithm as well. In the experiments of this
study, we use a basic image matching algorithm with the
following steps:

1) An input RGB image is converted to grayscale.
2) 3-layer scale pyramid is constructed, where the first

layer is the proposed image, the linear sizes of the
second layer are 2/3 of the input, and the linear sizes
of the third layer are 1/2 of the input.

3) For each layer of the pyramid, keypoints are extracted
using the YACIPE algorithm [35]. If the number of
keypoints is more than Tkp = 50000, Tkp, keypoints
with the highest scores are selected.

4) RFD-like descriptors are computed using one of the
algorithms described in Sections III and IV. We use
128-bit descriptors of 32 × 32 patches with recep-
tive fields and thresholds selected according to the
RFDoc [23] training algorithm. For the AP algorithm,
we set Na = 256 and Nq = 220 (see Subsection IV-D
for details).

5) The Hamming distance between all the descriptors of
the image keypoints and the descriptors of the template
image keypoints is calculated (for all 10 document
templates). If the Hamming distance Dh is lower than

Th = 32, we consider that there is a match between the
corresponding points on the image and template.

6) All the matching points are used in the RANSAC algo-
rithm to estimate the projective transformation H that
maps a region of the image to the document template
coordinates. The sampling probability of the pair of
points is set to be ps = (Th − Dh)/Th; thus, the pairs
of points that are more likely to match are more likely
to be selected in RANSAC. We use 106 iterations in
the primary loop of RANSAC and fine-tune the result.
As in [3], we do not select close points in the RANSAC
hypothesis.

The projective transformationH is the answer of the proposed
algorithm. In the practical image-matching algorithm, the
limit on the number of keypoints Tkp and the number of
iterations of RANSAC are markedly smaller. For example,
in [3], they are 1500 and 8000, respectively. However, in this
study, we focus on descriptor computing; thus, we increased
Tkp to investigate the dependence of the efficiency on the
number of keypoints. The number of RANSAC iterations is
high to reduce the influence of the transformation estimation
stage on image matching quality. We also directly compute
the Hamming distance between all the descriptor pairs to
achieve reproducible results, as suggested in [23].

To match the image of a document to a template image,
we compute the descriptors of the keypoints of the document
template in advance. Because there are 10 document types in
theMIDV-2020 photos dataset, we use 10 templates. We only
use keypoints that lie in the static regions of the document
(i.e., those parts that do not contain personal data), as sug-
gested in [3].

The considered algorithm is not the best for solving docu-
ment identification and location. The algorithms that combine
local and global features of an image show better quality than
those that rely on local features only [4]. However, in this
study, we investigate local feature descriptors, which is why
we selected a basic feature-based image-matching approach.

3) METRICS AND HARDWARE
The primary characteristic that we try to estimate exper-
imentally in this work is the computational efficiency of
computing RFD-like descriptors on CPUs. Thus, we run the
algorithm described above using AMD Ryzen 9 5950X and
Amlogic S922X Cortex-A53 CPUs. The first has ×86_64
architecture, which is common for desktop computers, and
we denote this CPU as ×86. The architecture of the second
CPU is ARM, which is popular on mobile devices, and we
denote this CPU as ARM.

We also measure the quality of the feature-based document
location and identification. Because identification in the pro-
posed case is a simple 10-class classification, we use the rate
of correctly classified documents (accuracy) to measure its
quality. In document location, we try to estimate the projec-
tive transformation M that maps document quadrangle m on
the image to the template rectangle t (t = M (m)). We let
H denote the estimated projective transformation and q – the

19736 VOLUME 11, 2023

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

estimated quadrangle (q = H−1(t)). As in [24], we use the
following scores to measure the location quality:

IoU(q,m, t) =
area(M (q) ∩ t)
area(M (q)t)

, (27)

D(q,m, t) = max
i

||ti − H (mi)||2
P(t)

, (28)

where P(t) is the perimeter of the template rectangle t .
While (27) computes the Intersection over Union score in
the t (template) coordinates, (28) computes the normalized
maximum distance between corresponding vertices in the q
(estimated) coordinates.

B. SPEED COMPARISON
We experimentally compare the running time of the five
considered algorithms for RFD-like descriptor computations:
Base (see Section III), GS (see Subsection IV-A), GM (see
Subsection IV-B), AP (see Subsection IV-D) and FP (see
Subsection IV-C). We compare the proposed modifications
(GS, GM, AP and FP) to the baseline algorithm (Base) and
not to an algorithm from any standard library because there
are no publicly available implementations of RFD [22] or
RFDoc [23] descriptors.

Thus, we run the image matching algorithm described
above in a single thread of ARM and×86 CPUs.Wemeasure
the time of descriptor computing for each of 1000 images of
the MIDV-2020 photo dataset. We repeat all measurements
twice on the ARM CPU and 10 times on the ×86 CPU to
obtain more stable results. Therefore, we have 2000 measure-
ments on ARM and 10000 on ×86 CPUs in total. Different
images have different numbers of keypoints; thus, different
numbers of patches are extracted, and the descriptor compu-
tation time varies.

The dependency of the computation time on the number
of keypoints for the proposed algorithms is shown in Fig. 7.
According to Fig. 7 for Base, AP, and FP, this dependency
is linear. That is because the number of keypoints equals
the number of patches. GS and GM require additional time
during the pre-computation stage, after which the dependence
is also linear.

Figure 7 shows that algorithms with lookup tables
(FP and AP) show the best performance. When the number
of keypoints increases, algorithms with global precomput-
ing stages (GS and GM) become more efficient in com-
parison to the baseline. When this number is greater than
10000, GS outperforms the baseline, and when it is greater
than 20000, GM outperforms both GS and the baseline.
However, as mentioned above in image matching tasks, the
limit on the number of keypoints is usually noticeably smaller
than 10000; thus, algorithms with global precomputing are
not applicable in those tasks.

To compare the efficiency of the considered algorithms,
we calculate the mean time of the descriptor computation per
image in the proposed setup Tm and the estimated time Te
(using linear estimation via least squares estimation) for
1500 keypoints. This number of keypoints is chosen to be

FIGURE 7. Computation time for different RFD algorithms using l1 norm
on ARM (top) and ×86 (bottom) CPUs.

equal to their maximum amount in [3]. We use least squares
estimation over images with fewer than 10000 keypoints
to estimate Te, which allows us to consider linear depen-
dency and ignore less stable measurements that appear on the
images with the larger number of keypoints (see Figure 7).
We also do not consider computing average time per keypoint
because GS and GM include global computation stages;
thus, their running time is not directly proportional to the
number of keypoints. Table 2 shows Tm and Te and their errors
(standard error for Tm and least squares error for Te).
The processing time measurements in Table 2 suggest that

precomputing significantly accelerates computation of RFD-
like descriptors: FP is 2 times faster than Base on ARM
CPU and 2.6 times faster on ×86 CPU. AP shows nearly
identical efficiency as FP for the l1 norm of the gradient but
is approximately 10% slower with the l2 norm.

Algorithms with a global precomputing stage
(GS and GM) only achieve better efficiency if the number
of patches is sufficiently high. If the number of patches is
low (i.e., insufficient intersections), AP, FP and even Base
algorithms perform better.

From the experimental results, we can conclude that in
most cases, the best algorithm to use would be FP because
it is easy to implement and achieves the best computational
efficiency. However, if the l1 norm is used in the gradient
maps (e.g., in the RFDoc descriptor), it is better to use the

VOLUME 11, 2023 19737

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

TABLE 2. Average descriptor computation time per image (Tm) and per
1500 keypoints (Te).

AP algorithm, which achieves the same computational
efficiency but uses markedly less memory. Overall, we rec-
ommend using the FP algorithm of RFD-like descriptor com-
puting as the default and switching to theAP algorithm if low
memory consumption is critical (e.g., on embedded devices).

C. FOUR ORIENTATIONS SPEED
In Section V, we described a fast way to compute the
RFD-like descriptor for four orientations of a patch simulta-
neously. We stated that the proposed method is more efficient
than computing four descriptors one-by-one.

Now, we experimentally measure the achieved gain. For
each image in the dataset, we measure the computation
time of RFD-like descriptors (t1) and the time of simulta-
neous computing of the descriptors in four orientations (t4).
Table 3 shows the average speed-up of the proposed algo-
rithm 4t1/t4 and the standard deviation of this speed-up over
1000 images of the MIDV-2020 photo dataset.

TABLE 3. Speed-up of fast four RFD orientations with standard
deviations over the images of the dataset.

The proposed method allows us to compute the descriptors
approximately 3 times faster (marginallymore onARMCPU,
marginally less on ×86 CPU) than by simply rotating the
input image 3 times with recomputation of descriptors.

D. QUALITY ASSURANCE
We have already mentioned in Section IV that the Base,
GS, GM, AP, and FP algorithms are not equivalent. Now,
we must ensure that the choice of the algorithm does not
affect the image matching quality. Thus, we evaluated each
of the five algorithms on the photos subset of the MIDV-
2020 dataset as described above. The receptive fields and
thresholds of the RFD-like descriptors have been computed in
advance as described in [23]. For each algorithm, we recom-
pute only the descriptors of the keypoints of the templates
before matching them to the images of the dataset.

To solve the image identification task (10-class classifi-
cation), we select the template that has the greatest number
of inliers of RANSAC (the keypoint pairs that satisfy the
estimated transformation). To evaluate the location quality,
we computed IoU (27) andD (28)metrics and compared them
to thresholds of 0.9 and 0.2, respectively, as in [24]. Results
are presented in Table 4.

TABLE 4. Feature-based document identification and location accuracy.

Table 4 shows that all the considered descriptor com-
puting algorithms demonstrate similar quality on the image
matching task. The observed quality difference is inconsistent
over the metrics and insignificant, considering that there are
only 1000 images in a dataset. These results indicate that
we can use any proposed descriptor computing algorim and
do not need to recompute receptive fields and thresholds
specifically.

VII. DISCUSSION
In this study, we proposed a detailed baseline algorithm for
RFD-like descriptor computing, which was not previously
reported in the literature or available in open source libraries.
Then, we introduced four modifications aimed at speeding up
its computation. Those modifications can be divided into two
groups.

Algorithms of the first (GS from Subsection IV-A andGM
from Subsection IV-B) perform several stages of descriptor
computation for the entire image instead of a single patch.
Those algorithms were suggested because they do not com-
pute the values in patch intersections more than once. Such
computations are also cache-friendly; thus, they should work
faster than patchwise computations. However, the experi-
ments of this study demonstrated that those algorithms work
faster than the baseline only if the number of keypoints on an
image is high. Therefore, they are not appropriate for typical
machine learning tasks.

Another group of algorithms (FP from Subsection IV-C
and AP from subsection IV-D) use LUTs to accelerate the

19738 VOLUME 11, 2023

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

computation of gradient maps – the part of an algorithm
with the most complex operations. We proposed two different
algorithms because one is simpler and contains fewer oper-
ations (FP), and the other is more memory-efficient (AP).
Based on the experimental results, FP is the fastest algorithm,
but with the l1 norm, which is used in RFDoc descriptors,
AP achieves nearly identical performance ; thus, we suggest
using the FP algorithm for RFD-like descriptor computing
by default and choosing the AP algorithm if stricter memory
restrictions are present.

We have experimentally evaluated all considered modifi-
cations and the baseline on a real-world image matching task
using a photo subset of the MIDV-2020 dataset. That exper-
iment did not show any noticeable gap in quality between
modifications and the baseline, even though no specific
adaptation of receptive field coordinates or threshold values
for modifications was performed (i.e., we only trained the
baseline).

Additionally, we have proposed a fast algorithm for com-
puting RFD-like descriptors in four orientations. Instead of
rotating the input image or the patch, it ‘‘rotates’’ the recep-
tive fields, and thus, nearly all the stages of the descrip-
tor computing (except for feature pooling and binarization)
become common for all the orientations and are only per-
formed once per patch. The experiments of this study con-
firmed that the proposed trick allows for approximately
3 times speed-up compared to computing four descriptors.
Therefore, the proposed trick should be used if computation
of the descriptors in four orientations is required. However,
not all applications require an input image to be rotated,
so one should not use that method by default.

A. STUDY LIMITATIONS
This study had three primary limitations: the set of computing
devices, the dataset size, and the fact that we only considered
one image matching application.

We start by considering a set of computing devices.
We tested the execution time on two CPUs of two of
the most popular architectures: ×86 (Ryzen 9 CPU) and
ARM (Cortex-A53 CPUs). The qualitative results of those
two CPUs coincide, and the quantitative results only vary
marginally. For example, considering simultaneous compu-
tation of the descriptors in four orientations, we achieved
×2.8 speedup on ×86 and ×3.3 time speedup on ARM.
It is possible that on different computing devices, we could
see other results. However, because descriptor computing is
usually performed on CPUs and×86 and ARM are two of the
most widely used CPU architectures, we believe the proposed
results to be representative.

The other two limitations (the dataset size and the single
image-matching task) are important in the context of quality
evaluation. We could expect that on a large dataset, Base and
FP would achieve marginally better quality because those
descriptors work exactly as theywere trained, while the others
(GS, GM, AP) use approximations (see Subsection IV-E
for more details). However, according to the proposed

experiments, the gap in quality is so small that it is not
observable on the considered dataset. We also considered
only one image matching application: matching identity doc-
ument from an image to known template (as did the authors
of RFDoc descriptors). That is why we cannot be completely
sure that the gap in quality between 1) Base and FP algo-
rithms and 2) the other considered algorithm would remain
negligible in other tasks. Even if additional experiments
showed that this gap indeed exists and is critical for practical
applications, we could retrain their descriptors according to
RFD [22] or RFDoc [23] training algorithms to compensate.

B. FUTURE DIRECTIONS
It is possible to improve the performance of RFD-like
descriptor computing on CPUs with efficient use of SIMD
instructions, which we did not consider in this work. In the
future, the concepts and methods developed in this study
could be generalized for other computing devices, including
FPGAs and ASICs. We also hope that this study can inspire
the creation of new descriptors that would be specifically
designed to be fast and memory-efficient.

VIII. CONCLUSION
In this paper, we have proposed five detailed algorithms for
RFD-like descriptor computation for 8-bit images. We have
empirically shown that any of those algorithms can be used
in image-matching tasks without quality loss and without
the need to recompute the coordinates of receptive fields
and thresholds of descriptors. The modifications that rely
on lookup tables in computing the gradient maps achieved
the best computational efficiencies among the proposed algo-
rithms: they work 2-2.6 times faster than the baseline. Thus,
we recommend using the proposed modifications in image
matching applications instead of standard RFD-descriptor
computing algorithms.

We have also presented an algorithm that allows for the
computation of RFD-like descriptors for four orientations of
a patch, which works 3 times faster than the naive method
with image rotation. We recommend using this algorithm
whenever computation of a descriptor in multiple orientations
is required.

REFERENCES
[1] K. Gao, H. Aliakbarpour, J. Fraser, K. Nouduri, F. Bunyak, R. Massaro,

G. Seetharaman, and K. Palaniappan, ‘‘Local feature performance evalua-
tion for structure-from-motion and multi-view stereo using simulated city-
scale aerial imagery,’’ IEEE Sensors J., vol. 21, no. 10, pp. 11615–11627,
May 2021.

[2] S. Gauglitz, T. Hoellerer, and M. Turk, ‘‘Evaluation of interest point
detectors and feature descriptors for visual tracking,’’ Int. J. Comput. Vis.,
vol. 94, no. 3, pp. 335–360, Sep. 2011.

[3] N. Skoryukina, V. V. Arlazarov, and D. P. Nikolaev, ‘‘Fast method of ID
documents location and type identification for mobile and server applica-
tion,’’ in Proc. ICDAR, New York, NY, USA, Feb. 2020, pp. 850–857, doi:
10.1109/ICDAR.2019.00141.

[4] N. S. Skoryukina, V. V. Arlazarov, and A. N. Milovzorov, ‘‘Mem-
ory consumption reduction for identity document classification with
local and global features combination,’’ Proc. SPIE, vol. 11605,
pp. 116051G1–116051G8, Jan. 2021, doi: 10.1117/12.2587033.

VOLUME 11, 2023 19739

http://dx.doi.org/10.1109/ICDAR.2019.00141
http://dx.doi.org/10.1117/12.2587033

A. V. Trusov et al.: Fast Computation of RFD-Like Descriptors in Four Orientations

[5] J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan, ‘‘Image matching from
handcrafted to deep features: A survey,’’ Int. J. Comput. Vis., vol. 129,
pp. 23–79, Aug. 2020.

[6] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2003.

[7] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, 2008.

[8] T. Ojala, ‘‘Multiresolution gray-scale and rotation invariant texture classifi-
cation with local binary patterns,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 7, pp. 971–987, Aug. 2002.

[9] E. Tola, V. Lepetit, and P. Fua, ‘‘DAISY: An efficient dense descriptor
applied to wide-baseline stereo,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 5, pp. 815–830, May 2010.

[10] Z.Wang, B. Fan, G.Wang, and F.Wu, ‘‘Exploring local and overall ordinal
information for robust feature description,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 1, pp. 2198–2211, Nov. 2016.

[11] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, ‘‘Brief: Binary robust
independent elementary features,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2010, pp. 778–792.

[12] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ‘‘ORB: An efficient
alternative to SIFT or SURF,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 2564–2571.

[13] M. Norouzi, A. Punjani, and D. Fleet, ‘‘Fast exact search in Hamming
space with multi-index hashing,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 6, pp. 1107–1119, Jun. 2014.

[14] C. Leng, H. Zhang, B. Li, G. Cai, Z. Pei, and L. He, ‘‘Local feature descrip-
tor for image matching: A Survey,’’ IEEE Access, vol. 7, pp. 6424–6434,
2019.

[15] Y. Ke and R. Sukthankar, ‘‘PCA-SIFT: A more distinctive representation
for local image descriptors,’’ in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., Jun. 2004, p. 1.

[16] V. Balntas, E. Riba, D. Ponsa, and K.Mikolajczyk, ‘‘Learning local feature
descriptors with triplets and shallow convolutional neural networks,’’ in
Proc. BMVC, 2016, vol. 1, no. 2, p. 3.

[17] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, ‘‘Working hard to
know your neighbor’s margins: Local descriptor learning loss,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–15.

[18] I. Suarez, J. M. Buenaposada, and L. Baumela, ‘‘Revisiting binary local
image description for resource limited devices,’’ IEEE Robot. Autom. Lett.,
vol. 6, no. 4, pp. 8317–8324, Oct. 2021.

[19] I. Suárez, G. Sfeir, J. M. Buenaposada, and L. Baumela, ‘‘BEBLID:
Boosted efficient binary local image descriptor,’’ Pattern Recognit. Lett.,
vol. 133, pp. 366–372, May 2020.

[20] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit, ‘‘Boosting binary
keypoint descriptors,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 2874–2881.

[21] T. Trzcinski, M. Christoudias, V. Lepetit, and P. Fua, ‘‘Learning image
descriptors with the boosting-trick,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 25, 2012, pp. 1–16.

[22] B. Fan, Q. Kong, T. Trzcinski, Z. Wang, C. Pan, and P. Fua, ‘‘Receptive
fields selection for binary feature description,’’ IEEE Trans. Image Pro-
cess., vol. 23, no. 6, pp. 2583–2595, Jun. 2014.

[23] D. P. Matalov, E. E. Limonova, N. S. Skoryukina, and V. V. Arlazarov,
‘‘RFDoc: Memory efficient local descriptors for ID documents localiza-
tion and classification,’’ in Proc. ICDAR, in Lecture Notes in Computer
Science, vol. 12822, J. Lladós, D. Lopresti, and S. Uchida, Eds. London,
U.K.: Springer, 2021, pp. 209–224, doi: 10.1007/978-3-030-86331-9_14.

[24] K. B. Bulatov, E. V. Emelyanova, D. V. Tropin, N. S. Skoryukina,
Y. S. Chernyshova, A. V. Sheshkus, S. A. Usilin, Z. Ming, J.-C. Burie,
M. M. Luqman, and V. V. Arlazarov, ‘‘MIDV-2020: A comprehensive
benchmark dataset for identity document analysis,’’ Comput. Opt., vol. 46,
no. 2, pp. 252–270, 2022, doi: 10.18287/2412-6179-CO-1006.

[25] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,
‘‘Pyramid methods in image processing,’’ RCA Eng., vol. 29, no. 6,
pp. 33–41, 1984.

[26] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade of
simple features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., vol. 1, Jun. 2001, pp. 1–11.

[27] O. Tuzel, F. Porikli, and P. Meer, ‘‘Region covariance: A fast descriptor
for detection and classification,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2006, pp. 589–600.

[28] M. Ambai and Y. Yoshida, ‘‘CARD: Compact and real-time descriptors,’’
in Proc. Int. Conf. Comput. Vis., Nov. 2011, pp. 97–104.

[29] S.-K. Hwang, M. Billinghurst, and W.-Y. Kim, ‘‘Local descriptor by
Zernike moments for real-time keypoint matching,’’ in Proc. Congr. Image
Signal Process., 2008, pp. 781–785.

[30] V. L. Arlazarov, Y. A. Dinitz, M. Kronrod, and I. Faradzhev, ‘‘On econom-
ical construction of the transitive closure of an oriented graph,’’ in Proc.
USSR Acad. Sci., vol. 194, no. 3, pp. 487–488, 1970.

[31] K. He, Y. Lu, and S. Sclaroff, ‘‘Local descriptors optimized for average
precision,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 596–605.

[32] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
‘‘A survey of quantization methods for efficient neural network inference,’’
2021, arXiv:2103.13630.

[33] E. Rosten and T. Drummond, ‘‘Machine learning for high-speed corner
detection,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer,
2006, pp. 430–443.

[34] P. Viswanath, P. Swami, K. Desappan, A. Jain, and A. Pathayapurakkal,
‘‘Orb in 5 ms: An efficient SIMD friendly implementation,’’ in Proc. Asian
Conf. Comput. Vis. Cham, Switzerland: Springer, 2014, pp. 675–686.

[35] A. Lukoyanov, D. Nikolaev, and I. Konovalenko, ‘‘Modification of YAPE
keypoint detection algorithm for wide local contrast range images,’’
Proc. SPIE, vol. 10696, pp. 1069616-1–1069616-8, Apr. 2018, doi:
10.1117/12.2310243.

[36] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

ANTON V. TRUSOV (Member, IEEE) was born in
Moscow, Russia, in 1997. He received the master’s
degree from the Moscow Institute of Physics and
Technology, in 2021. He is currently pursuing the
Ph.D. degree with the Moscow Institute of Physics
and Technology, National Research University.
Since 2017, he has been working as a Programmer
and a Technicianwith Smart Engines Service LLC,
and also with FRC CSC RAS, since 2021. His
research interests include device-efficient neural

network implementations and computer vision algorithms.

ELENA E. LIMONOVA (Member, IEEE)was born
in Dolgoprudny, Moscow, Russia, in 1993. She
received the master’s degree in physics, mathe-
matics, and computer science from the Moscow
Institute of Physics and Technology, in 2017. She
is currently pursuing the Ph.D. degree with FRC
CSC RAS. Since 2016, she has been working as a
Programmer and a Technician with Smart Engines
Service LLC. Her research interests include neural
network compression and image recognition on
mobile devices.

VLADIMIR V. ARLAZAROV (Member, IEEE)
was born in Moscow, USSR, Russia, in 1976.
He received the Specialist degree in applied math-
ematics from the Moscow Institute of Steel and
Alloys, in 1999, and the Ph.D. degree in com-
puter science, in 2005. Since 1999, he has been
working with the Institute for Systems Analysis,
Russian Academy of Sciences (currently the Fed-
eral Research Center Computer Science and Con-
trol, Russian Academy of Sciences), Moscow, as a

Researcher, a Senior Researcher, and the Head of the Laboratory. Since
2016, he has been the General Director of the Smart Engines Service LLC,
Moscow. Since 2018, he has been working with the Institute for Informa-
tion Transmission Problems, Russian Academy of Sciences, as a Senior
Researcher. Since 2012, he has also been working with the Moscow Insti-
tute of Physics and Technology (National Research University), Moscow,
as an Associate Professor. He has published over 150 articles and authored
30 patents. His research interests include computer vision and document
analysis systems.

19740 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-030-86331-9_14
http://dx.doi.org/10.18287/2412-6179-CO-1006
http://dx.doi.org/10.1117/12.2310243

