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ABSTRACT The central task of the stability robustness with respect to delay uncertainties lies in creating
the whole stability chart (delay map) in the delay parameter space. In this paper, we present a very simple
frequency-sweeping procedure for creating stability chart in the delay parameter plane for a class of linear
time-invariant (LTI) two-delay systems with a delay crossing talk. Actually, the procedure based on using
Rekasius pseudo-delay substitution and discriminant of quadratic polynomial to characterize the crossing
frequency set. The exact and exhaustive determination of crossing frequency intervals involves only finding
all positive real roots of a real-coefficient polynomial. With the availability of the entire crossing frequency
set, the famous cluster treatment of characteristic roots (CTCR) paradigm is applied to construct complete
stability chart in the delay plane. A by-product of the proposed procedure is the revelation of the non-zero
finite frequencies corresponding to infinite pseudo-delays. These frequencies divide the crossing frequency
intervals into subintervals over each of which the frequency-sweeping technique provides continuous
stability crossing curves in the domain of pseudo delays. For illustration and validation, two examples are
provided.

INDEX TERMS Delay map, frequency sweeping, stability crossing curves, time-delay systems.

I. INTRODUCTION
Time delays arise naturally in various feedback control sys-
tems due to the fact that the time it takes to transport mass and
energy, to transmit information, to measure process variables,
and to execute control laws. Also, time delays are often inten-
tionally introduced into a control loop to stabilize a system
and/or to eliminate the influences of high-frequency noises.
Since the primary issue in the design of feedback controllers
is to ensure the stability of the control system, the stability
analysis of time-delay systems have been received continuous
attention for more than six decades as evidenced by a large
volume of papers and books on this topic, see, e.g., [1], [2],
[3], [4], [5], [6], [7], [8], [9] and the references therein.

In general, the stability analysis of time-delay systems
can be carried out in the time domain or in the frequency
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domain. For a broad class of nonlinear, stochastic, sampled
data, or time-variant systems with fixed- or time-varying
delays [10], [11], [12], [13], [14], [15], [16], [17], the stability
analysis is usually performed in the time domain by using the
Lyapunov theory or its variants [4]. For the class of linear
time-invariant continuous-time systems with time delays, the
time-domain state-space model is often discretized for the
stability analysis via the frequency-domain approach [9],
[18], [19]. The stability of the most fundamental continuous
linear time-invariant (LTI) TDSs with fixed delays is prefer-
ably studied in the frequency domain using the spectrum
analysis, see [20] and the references therein.

Since the presence of time delays, irrespective of inher-
ently presented or intentionally inserted, may stabilize or
destabilize a system, many researchers have devoted their
efforts to investigate the delay-induced stability/instability
phenomena, and consequently, a large number of papers have
been published on the stability analysis of systems affected by
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time delays (see [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30] and the references therein).

As it can be seen from the literature [31], [32], [33], [34],
[35], [36], [37], [38], many techniques developed for the sta-
bility robustness analysis of two time-delay systems against
the delay uncertainties starts by considering the systems with
the characteristic quasi-polynomial of the form

Q(s) = A(s) + B(s)e−τ1s + C(s)e−τ2s + D(s)e−(τ1+τ2)s (1)

where τ1 > 0 and τ2 > 0 are time delays, and
A(s),B(s),C(s), D(s) are polynomials in s. There are three
reasons for choosing (1) as a model system to develop a
robustness analysis technique. First, characteristic equation
(1) contains rich dynamics, i.e., the effects two indepen-
dent delays and delay cross-talk. Second, the visualization
of delay map on the delay parameter plane facilitates the
explanation of the underlying concepts of the techniques.
Moreover, the class of systems (1) often appear in practical
applications [39], [40], [41]. A necessary and sufficient con-
dition for system (1) to be exponentially stable is that all its
characteristic roots lie in the open left-half plane (LHP) of the
complex plane. If there exists any root in the right-half plane
(RHP), the system is absolute unstable. Hence, according to
the continuity argument [5], i.e., the roots of the parametric
quasi-polynomial (1) are continuous functions of the delays,
the delay parameter plane can be partitioned into regions
within each of which the number of RHP characteristic roots
of the corresponding quasi-polynomial (1) remains invariant.
In [42], such a partition of the delay parameter space is
referred to as a τ -decomposition, which is a special case of
D-partition [43], [44], [45].

Although the characteristic equation (1) has an infinite
number of characteristic roots, the effort for exhaustive and
complete construction of the τ -decomposition boundaries on
the delay parameter plane can be greatly reduced by uti-
lizing the cluster treatment of characteristic roots (CTCR)
paradigm [46], [47]. According to the CTCR paradigm, the
τ -decomposition boundaries consist of kernel and offspring
curves. The set of kernel curves is the set of smallest positive
values of τ1 and τ2 which are the representative part of the
boundaries while all the offspring curves can be generated by
a nonlinear transformation. Under the assumption of Q(0) ̸=

0, the boundaries that separate the τ -decomposition regions
are those points which render at least a pair of complex-
conjugate characteristic roots s = ±iω, i =

√
−1, of (1).

The set of frequencies ω > 0 satisfying the condition
Q(±iω) = 0 for some positive τ1 and τ2 is called the crossing
frequency set. Mathematically, it is defined by

� = {ω > 0 : Q(±iω; τ1, τ2) = 0} (2)

for some (τ1, τ2) ∈ R2
+.

It has been shown that the crossing frequency set� consists
of a finite number of intervals of finite length [33], [47].
Hence, the exhaustive and complete determination of the
crossing frequency set � play a crucial role in applying
a frequency-sweeping technique to construct delay map in

the delay parameter space. In literature, there are two main
approaches for determining the crossing frequency set � for
the frequency sweeping. The first approach, which was pre-
sented by Gu et al. [33], is based on using the unity magnitude
property

∣∣e±iτkω∣∣ = 1, ∀ω > 0, and a graphic insight to
derive a set of equalities and inequalities for characterizing
the crossing frequency set for two-delay systems without the
delay cross-talk term, i.e. D(s)=0 in (1). This approach is in
fact an extension of the direct method [2], [48] for single
delay systems. Due to the fact that this approach is geometric
in nature, it is not easy to be implemented or algorithmized.
The second approach is an algebraic approach [31], [49],
[50], [51], which consists of two steps: First, the Rekasius
substitutions [52], [53]

e−τk s =
1 − Tks
1 + Tks

, k = 1, 2 (3)

are used to convert the quasi-polynomial (1) into the follow-
ing equivalent parametric algebraic polynomial

P(s,T1,T2)

= (1 + T1s)(1 + T2s) Q(s)|e−τ1 s=
1−T1s
1+T1s

,e−τ2 s=
1−T2s
1+T2s

(4)

Next, the resultant theory is applied to multivariable poly-
nomials PR(ω,T1,T2) and PI (ω,T1,T2), which are the real
and imaginary parts of (4) to determine the lower and upper
bounds of the set �. Except for the Rekasius substitution, the
half-angle transformations [31], [54]

e−iτkω =
1 − z2k
1 + z2k

− i
2zk

1 + z2k
, zk = tan(

τkω

2
), k = 1, 2 (5)

are also used to convert quasi-polynomial (1) into an equiv-
alent characteristic polynomial. In spite of the fact that the
resultant-based approaches have been extended to dynamic
systems with two or multiple time delays, including neu-
tral systems [55], distributed delay systems [38], [56], and
fractional-order systems [57], an exact determination of
crossing frequency set is still lack. Hence, it may waste time
in sweeping frequencies that lie between the lower and upper
bounds but not actually belong to the crossing frequency set.

The aim of this paper is to present a simple frequency-
sweeping procedure for robustness analysis of LTI systems
having the characteristic quasi-polynomial of (1). Such a
task is particularly indispensable for the design of robust
delay-based controllers, such as Smith predictors [41], PID-
deadtime controllers in [39] and [40], and tuned model con-
trollers [58], for feedback control of time-delayed plants.
The presented approach is based on the observation that the
multivariable polynomials PR(ω,T1,T2) and PI (ω,T1,T2)
are both first-degree polynomials in pseudo delay T1 or T2.
Hence, a direct variable elimination allows one to obtain
explicit ω-parametrized expressions for pseudo delays T1(ω)
and T2(ω). Since all the mathematical derivations of the
presented procedure is based on the explicit expression for the
solution of a quadratic polynomial in the variable T1 or T2, the
procedure is very simple and easy to be understood. The main
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contribution of the paper lies in deploying the discriminant
of a quadratic polynomial to determine exactly the crossing
frequency set, without invoking the polynomial resultant cal-
culation and wasting time in sweeping frequencies that do not
belong to admissible crossing frequency intervals. Moreover,
as a by-product of the presented procedure, the non-zero finite
frequencies corresponding to infinite pseudo-delays are also
revealed. These frequencies divide the crossing frequency
intervals into subintervals over each of which the frequency-
sweeping technique provides continuous stability crossing
curves in the domain of pseudo delays.

The rest of the article is organized as follows. Section II
gives some preliminaries, including the CTCRparadigm [59],
for characterizing delay maps. Our main contributions are
presented in Section III. In Section IV, two case-study exam-
ples are provided to illustrate the proposed procedure and its
effectiveness for depicting delay map. Finally, in Section V,
conclusions are given.

II. SOME PRELIMINARY FACTS
Consider an LTI two-delay system having the characteristic
function (1) with the degree of A(s) being larger than those of
B(s),C(s) and D(s). Such a delay system is of retarded type
and hence it is asymptotically or exponentially stable if and
only if the stability abscissa of the quasi-polynomial in (1),
which is defined by

α(τ1, τ2) = sup{Re(s)|Q(s) = 0} (6)

is negative, where Re(s) denotes the real part of the complex
number s. As indicated by Hale [5], the abscissa α(τ1, τ2)
is a continuous function of the delay parameters τ1 and τ2.

This property implies that the first quadrant of the (τ1, τ2)
plane can be partitioned into regions within each of which
the corresponding characteristic function (1) has the same
number of roots in the open right-half plane C+. This is the
underlying idea of the D-partition theory [33], [34], [35] and
its derivative τ -decomposition technique [32]. Hence, the set
of stability crossing curves, i.e., τ -decomposition boundaries
in the delay parameter plane consists of all (τ1, τ2) ∈ R2

+ such
that the corresponding characteristic function (1) has at least
a pair of purely imaginary roots s = ±iω. In order to depict
all τ -decomposition boundaries, it is necessary to determine
the crossing frequency set � defined in (2).

Due to the i2π periodicity of the exponential function,
it can be seen that a frequency point ω̃ ∈ � maps to the
following infinitely many delay grid point solutions of (1):(

τ1,j(ω̃), τ2,k (ω̃)
)

= (τ̃1, τ̃2) +

(
j2π
ω̃

,
k2π
ω̃

)
, j, k = 0, 1, . . . (7)

where 0 < τ̃k ω̃ < 2π, k = 1, 2. For all ω ∈ �, the solutions
in (7) constitute the set of stability crossing curves (SCCs) in
the parameter plane:

0 = {(τ1, τ2) ∈ R2
+ : Q(±iω) = 0∀ω ∈ �} (8)

The subset

00,0 = {(τ1, τ2) ∈ R2
+ : Q(±iω) = 0,

0 < τkω < 2π (k = 1, 2)∀ω ∈ �} (9)

of the stability crossing curve set 0 is referred to as the kernel
SCC and the stability crossing curves in the set 0\00,0 are
called offspring SCCs [47].
Since the set of SSCs contains an infinite number of

curve branches, it is not practical to find exhaustively and
completely the entire SSC set from the solutions of the
quasi-polynomial in (1). Instead, it has been shown that when
s = ±iω, the Rekasius substitution of (3) are exact if the
following relations hold:

τk =
2
ω

(
tan−1(Tkω) + lπ

)
, l = 0, 1, 2, . . . , k = 1, 2

(10)

where the function tan−1(x) takes values in the range [0, π)
and ω ∈ �. As a result, the s = ±iω roots can be con-
veniently solved from the converted polynomial P(s,T1,T2)
in (4). Let the crossing frequency set �T of the converted
algebraic polynomial P(s,T1,T2) be defined similarly as �

in (2):

�T = {ω > 0 : P(±iω,T1,T2) = 0∀(T1,T2) ∈ R2} (11)

It is noted that the identity � = �T holds. Moreover, the
algebraic nature of the polynomial P(s,T1,T2) implies that
ω < ∞.Hence, the crossing frequency set� consists of finite
number of intervals with finite length [33], [47].

Once the crossing frequency set �T has been exactly
and exhaustively determined, the stability crossing set in the
pseudo-delay parameter plane can be constructed as follows

ϒT =

{
(T1(ω),T2(ω)) ∈ R2

∣∣∣∣P(±iω,T1,T2) = 0
∀ω ∈ �T

}
(12)

From this stability crossing set, we can obtain from the rela-
tions (9) and (10) the kernel stability crossing curves in the
delay plane:

00,0=

(τ1(ω), τ2(ω)) ∈ R2
+

∣∣∣∣∣∣
τk (ω) =

2 tan−1(ωTk (ω))
ω

∀(T1(ω),T2(ω)) ∈ϒT ,

0 < ωτk (ω) < 2π, k = 1, 2


(13)

Besides, the sets of offspring crossing curves in the delay
plane are given by.

0j,k =

{(
τ1(ω) +

j2π
ω

, τ2(ω) +
k2π
ω

)
∈ R2

+

∣∣∀(τ1(ω), τ2(ω) ∈ 00,0

}
III. MAIN RESULTS
A. CONSTRUCTION OF CROSSING FREQUENCY Set �

The main objective of this subsection is to present a simple
procedure for revealing the exact and complete crossing fre-
quency set �. As begin, we note that with the expression
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(3) for Q, the converted algebraic polynomial P(s,T1,T2)
defined in (4) can be explicitly written as

P(s) = (1 + T1s)(1 + T2s)A(s) + (1 − T1s)(1 + T2s)B(s)

+ (1 + T1s)(1 − T2s)C(s) + (1 − T1s)(1 − T2s)D(s)

= F00(s) + F10(s)T1 + F01(s)T2 + F11(s)T1T2 (14)

where

F00(s) = A(s) + B(s) + C(s) + D(s)

F10(s) = s (A(s) − B(s) + C(s) − D(s))

F01(s) = s (A(s) + B(s) − C(s) − D(s))

F11(s) = s2 (A(s) − B(s) − C(s) + D(s)) (15)

Let s = iω, we can express the equationP(iω) = 0 as follows:

P(iω) = F00(iω) + F10(iω)T1 + F01(iω)T2
+F11(iω)T1T2 = 0 (16)

Further, let

Fjk (iω) = Rjk (ν) + iωIjk (ν), ν = ω2, j, k = 1, 2 (17)

and note ω > 0, we can obtain from the real and imaginary
parts of equation (16) the following two equations:

R00(ν) + R10(ν)T1 + R01(ν)T2 + R11(ν)T1T2 = 0 (18a)

I00(ν) + I10(ν)T1 + I01(ν)T2 + I11(ν)T1T2 = 0 (18b)

It is noted that, for a given ν = ω2 the above two equations
are both linear with respective to the unknowns T1 or T2.
Hence, explicit expressions for the solutions T1 and T2 can
be derived. To do this, we first solve (18a) for T2:

T2 = −
R00(ν) + R10(ν)T1
R01(ν) + R11(ν)T1

,R01(ν) + R11(ν)T1 ̸= 0 (19)

Substitution of this T2 into (18b) yields the following
quadratic equation for T1:

a1(ν)T 2
1 + b1(ν)T1 + c1(ν) = 0 (20)

where

a1(ν) = R11(ν)I10(ν) − R10(ν)I11(ν)

b1(ν) = R11(ν)I00(ν) + R01(ν)I10(ν)

−R00(ν)I11(ν) − R10(ν)I01(ν)

c1(ν) = R01(ν)I00(ν) − R00(ν)I01(ν) (21)

The solutions of the quadratic equation (20) can be readily
written down:

T1±(ν) =
−b1(ν) ±

√
11(ν)

2a1(ν)
(22)

where the discriminant 11(ν) is given by

11(ν) = b21(ν) − 4a1(ν)c1(ν) (23)

Similarly, if we solve (18a) for

T1 = −
R00(ν) + R01(ν)T2
R10(ν) + R11(ν)T2

,R10(ν) + R11(ν)T2 ̸= 0 (24)

and substitute this solution into (18b), we obtain the following
quadratic equation for T2:

a2(ν)T 2
2 + b2(ν)T2 + c2(ν) = 0 (25)

where

a2(ν) = R11(ν)I01(ν) − R01(ν)I11(ν)

b2(ν) = R11(ν)I00(ν) + R10(ν)I01(ν)

−R01(ν)I10(ν) − R00(ν)I11(ν)

c2(ν) = R10(ν)I00(ν) − R00(ν)I10(ν) (26)

The solutions of the quadratic equation (25) can be readily
written down:

T2± =
−b2(ν) ±

√
12(ν)

2a2(ν)
(27)

where the discriminant 12(ν) is given by

12(ν) = b22(ν) − 4a2(ν)c2(ν) (28)

It can be verified that the following identity holds:

1(ν) = 12(ν) = 11(ν) (29)

In the sequel, the notation 1(ν) without a subscript will be
used to represent such a discriminant.

Now, we are at the position to state our main contributions.
First, we note from (22) or (27) that no real solution exists
for T1 and T2 when the discriminant 1(ν) < 0 and two
real solutions (counting multiplicity) of T1 and T2 exist if
1(ν) ≥ 0. In other words, a ν > 0 with 1(ν) ≥ 0 belongs to
crossing frequency set. Hence, the distinct positive real zeros
of equation

1(ν) = 0 (30)

which are denoted by ν̃1 < ν̃2 < · · · < ν̃m provide a
set of critical squared frequencies Nc for the existence of
real (T1,T2) solutions to the simultaneous equations of (18).
Deleting the ν̃′

ls that satisfy the condition

d1(ν)
dν

∣∣∣∣
ν=ν̃l

= 0,
d21(ν)
dν2

∣∣∣∣
ν=ν̃l

̸= 0 (31)

from the setNc and relabeling the remaining elements as ν̃1 <

ν̃2 < · · · < ν̃n, we obtain a set of n frequency intervals:

�k =

(√
ν̃k−1,

√
ν̃k

)
:= (ω̃k−1, ω̃k) , k = 1, 2, . . . , n (32)

where ν̃0 = 0. Moreover, when ν increases continuously
from ν̃k − ε to ν̃k + ε, where ε is a sufficiently small
positive number, the sign of the discriminant 1(ν) changes,
i.e., 1(ν̃k − ε)1(ν̃k + ε) < 0. With the above preparation,
we have the following theorem:
Theorem 1: Let {ν̃k}

n
k=1 be a set of squared frequencies

that satisfy the conditions (30) and (31), then the frequency
intervals ω ∈ �k defined by (32) own the following proper-
ties: (i)�n ⊂ �; (ii) if �k ⊂ �, then �k−1 ∩ � = ∅ and
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�k+1 ∩ � = ∅. In other words, the crossing frequency set
can be explicitly constructed as follows:

�

=

{
�̄0 ∪ �̄2 · · · ∪ �̄n if ∃ω ∈ �0 ∋ 1(ω2) > 0 if n is even
�̄1 ∪ �̄3 · · · ∪ �̄n if ∃ω ∈ �0 ∋ 1(ω2) < 0 if n is odd

(33)

where �̄k denotes the closure of �k .
Proof: Let ε be a sufficiently small number such that ν̃n −

ε ∈ (ν̃n−1, ν̃n) ≜ �2
n and ν̃n + ε ∈ (ν̃n, ∞) ≜ �2

n+1. Since ν̃n
is the largest ν that satisfies the conditions posed in (30) and
(31), therefore, there exists no any real solution (T1,T2) to the
equations in (18) for ν > ν̃n. Hence, we have that�n+1∩� =

Ø. It is noted that the condition implies that a sign change
of the discriminant 1(ν) occurs as ν moves across a critical
squared frequency point ν̃k . This property of the critical ν̃k
and the fact that the sign of the discriminant 1(ω2) remains
invariant for all ω ∈ �k allow one to conclude that if�k ⊂ �

then �k−1 ∩ � = Ø and �k+1 ∩ � = Ø, or conversely,
if �k ∩ � = Ø then �k−1 ⊂ � and �k+1 ⊂ �. Hence,
starting from the property that �n+1 ∩ � = Ø we obtain the
result of (33). ■

B. IDENTIFICATION OF CROSSING FREQUENCIES for
T1 = ±∞ and T2 = ±∞

As shown in (19) an infinite T2 will be obtained if the follow-
ing condition holds:

R01(ν) + R11(ν)T1 = 0 (34)

Similarly, it follows from (24) that T1 = −∞ or∞ if the
following condition holds:

R10(ν) + R11(ν)T2 = 0 (35)

Here it is curious to ask: what finite ν and T1 (resp. ν and
T2) that make condition (34) (resp. (35)) hold? To the best
of authors’ knowledge, such a question has not previously
been raised. To answer this question, we take a look at the
expression in (22) for the solutions T1±. From this equation
it becomes quite obvious that any of the positive real roots,
which are denoted by ν̃1∞l , l = 1, 2, . . . , n1∞, of the poly-
nomial a1(ν) renders an infinite T1. Since the condition (35)
also implies the infinity of T1, the value of T2 corresponding
to the squared frequency ν = ν̃1∞l can be obtained as

T 1∞
2,l = −

R10(ν̃1∞l )

R11(ν̃1∞l )
(36)

which comes from (35). It is noted that when the squared
frequency ν moves across the point ν̃1∞l the correspond-
ing stability crossing curve exhibits a discontinuity which
jumps from (T1,T2) = (∞,T 1∞

2,l ) to (−∞, T 1∞
2,l ) or from

(−∞,T 1∞
2,l ) to (∞,T 1∞

2,l ).
By a similar argument, one can show that the set finite-

value pairs (ν,T1) that make T2 positive or negative infinite

are given by

(ν̃2∞l ,T 2∞
1,l ) =

(
ν̃2∞l , −

R01(ν̃2∞l )

R11(ν̃2∞l )

)
, l = 1, 2, . . . , n2∞

(37)

where ν̃2∞l , l = 1, 2, . . . , n2∞, are all positive real roots of
the polynomial a2(ν) in (26).
Finally, we note that since {ν̃1∞l }

n1∞
l=1 ⊂ � and {ν2∞l }

n2∞
l=1 ⊂

� the points of the set {ν̃1∞
l }

n1∞
l=1 ∪ {ν̃2∞

l }
n2∞
l=1 subdivide a

crossing frequency interval �k into subintervals �k,j, j =

1, 2, . . . , nk . The stability crossing curve corresponding to a
crossing frequency subinterval �k,j is continuous.

IV. ILLUSTRATIVE EXAMPLES
Example 1. Consider a two-delay system having the charac-
teristic equation (1) with [37]:

A(s) = s2 + 7.1s+ 21.1425

B(s) = 6s+ 14.8

C(s) = 2s+ 7.3

D(s) = 8

The converted algebraic characteristic polynomialP(s,T1,T2)
defined in (14) is

P(s,T1,T2) = T1T2s4 + (T1 + T2 − 0.9T1T2)s3

+ (1 + 3.1T1 + 11.1T2 + 7.0425T1T2)s2

+ (15.1 + 5.6425T1 + 20.6425T2)s+ 51.2425

The polynomials Rj,k (ν), Ij,k (ν), j = 1, 2 associated with the
even and odd parts ofP(iω,T1,T2), which are defined in (16),
are obtained as follows:

{R00,R01,R10,R11}

= {−ν + 51.2425, −11.1ν, −3.1ν, ν2 − 7.042ν}

{I00, I01, I10, I11}

= {15.1, −ν + 20.6425, −ν + 5.6425, 0.9ν}

Following (21) and (26), we form the following two sets of
polynomials

a1(ν) = ν(ν2 − 15.475ν + 39.73731)

b1(ν) = ν(−24ν + 151.1)

c1(ν) = ν2 + 95.725ν + 1057.773,

a2(ν) = ν(ν2 − 37.675ν + 145.3748)

b2(ν) = ν(153.82 − 8ν)

c2(ν) = ν2 − 10.075ν + 289.1358.

The discriminant 1(ν) is then evaluated to be

1(ν) = b2k (ν) − 4ak (ν)ck (ν)

= ν(−4ν4 + 255ν3 − 5717.465ν2

+ 73091.96ν − 168132.3)
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where k = 1 or 2. The positive real roots of this polynomial
are given by

ν̃1 = 2.863417, ν̃2 = 38.03817

It can be verified that the derivative d1(ν)/dν does not
vanish when ν = ν̃1orν̃2.

Following Theorem 1, we obtain readily the crossing fre-
quency set as

� = (
√

ν̃1,
√

ν̃2) = (1.69216, 6.16751)

The positive real roots of polynomials a1(ν) and a2(ν) and the
corresponding (T1,T2) are, respectively, found to be

{ν̃1∞1 , ω̃1∞
1 ,T 1∞

2,1 } = {3.250675, 1.802963, − 0.817548}

{ν̃1∞2 , ω̃1∞
2 ,T 1∞

2,2 } = {12.22433, 3.496330, 0.598245},

{u2∞1 , ω2∞
1 ,T 2∞

1,1 } = {4.364194, 2.08907, −4.144410}

{u2∞2 , ω2∞
2 ,T 2∞

1,2 } = {33.31081, 5.771551, 0.422562}.

It can be seen that ω1∞
1 , ω1∞

2 , ω2∞
1 and ω2∞

2 all lie in the
interior of the crossing frequency interval �, and that they
divide the interval into following five subintervals:

�1 = (ω̃1, ω̃
1∞
1 ) = (1.6921633, 1.802963)

�2 = (ω̃1∞
1 , ω̃2∞

1 ) = (1.802963, 2.08907)

�2 = (ω̃2∞
1 , ω̃1∞

2 ) = (2.08907, 3.496330)

�4 = (ω̃1∞
2 , ω̃2∞

2 ) = (3.496330, 5.771551)

�5 = (ω̃2∞
2 , ω̃2) = (5.771551, 6.167509)

Since for each fixed ω, the simultaneous equations in (18)
have two solutions (T1+,T2+) and (T1−,T2−), performing
frequency sweeping over above five frequency intervals for
the stability crossing curves gives ten segments of continu-
ous curves in the pseudo-delay plane, which are shown in
Figure 1. In this figure, (T1+,T2+) curves are red-colored
while (T1−,T2−) curves are blue-colored. The mapping of
the stability crossing curves in Figure 1 to the kernel stability
crossing curves in (τ1ω, τ2ω)-plane is shown in Figure 2. The
kernel stability crossing curves in (τ1, τ2)-plane are shown
in Figure 3. Figure 4 shows the complete delay map of the
system. The numbers shown in regions of this figure repre-
sent the number of unstable characteristic roots of the quasi-
polynomial Q(s, τ1, τ2) when the delay points (τ1, τ2) locate
in the corresponding region. It can be seen that the results
obtained in this example are the same as those given by Sipahi
& Olgac [47].

Example 2. Consider a two-delay system having the char-
acteristic equation (1) with [33]:

A(s) = (s2 + 2s+ 1)(16s2 + 8s+ 1)

B(s) = 2(16s2 + 8s+ 1)

C(s) = 1.5(s2 + 2s+ 1)

D(s) = 0

FIGURE 1. Stability crossing curves corresponding to
� = (1.69216, 6.16751) in the pseudo-delay plane of Example 1.

FIGURE 2. The stability crossing curves in (τ1ω, τ2ω)-plane of Example 1.

FIGURE 3. The kernel stability crossing curves in (τ1, τ2)-plane of
Example 1.

With these polynomials, we form the following two sets of
polynomials
a1(ν) = 256ν5 + 1568ν4 + 446.75ν3 + 33.5ν2 − 1.25ν)
b1(ν) = −4096ν3 − 512ν2 − 16ν
c1(ν) = 256ν4 − 480ν3 + 2238.75ν2 + 281.5ν + 6.75,
a2(ν) = 256ν5 + 592ν4 − 607.75ν3 − 47.5ν2 − 3.75ν
b2(ν) = −48ν3 − 96ν2 − 48ν
c2(ν) = 256ν4 + 496ν3 − 793.75ν2 − 131.5ν + 2.25.
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FIGURE 4. The complete stability crossing curves of Example 1.

FIGURE 5. (a). The stability crossing curves in the pseudo-delay plane
corresponding to the crossing frequency interval �1 = (0, 0.197037) of
Example 2. Figure 5(b). The stability crossing curves corresponding to
�2 = (0.897177, 1.07951) in the pseudo-delay plane of Example 2.

The discriminant is then evaluated to be

1(ν) = b2k (ν) − 4ak (ν)ck (ν)

= −262144ν9 − 1114112ν8 + 260608ν7

+ 3270976ν6 − 1514178.2ν5 − 456584.4ν4

− 23391.65ν3 + 633.6541ν2 + 30.092ν

FIGURE 6. (a). The kernel stability crossing curves corresponding to
�1 = (0, 0.197037) in the (τ1, τ2)-plane of Example 2. Figure 6(b). The
kernel stability crossing curves corresponding to
�2 = (0.897177, 1.07951) in the (τ1, τ2)-plane of Example 2.

FIGURE 7. The complete stability crossing curves corresponding to
�1 = (0, 0.197037) and �2 = (0.897177, 1.07951) of Example 2.

The positive real roots of this discriminant polynomial are
given by

ν̃1 = 0.0388234

ν̃2 = 0.804927

ν̃3 = 1.16533

It can be verified that the derivative d1(ν)/dν does not van-
ish when ν = ν̃1, ν̃2, orν̃3. Following Theorem 1, we readily
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FIGURE 8. (a-1). The root distribution of Q(s, τ1, τ2) with delay point A(τ1 = 1, τ2 = 4) in region R1 of Figure 7. Figure 8(a-2).
The root distribution of Q(s, τ1, τ2) with delay point B (τ1 = 1, τ2 = 26) in region R1 of Figure 7. Figure 8(b). The root
distribution of Q(s, τ1, τ2) with delay point C (τ1 = 24, τ2 = 15) in region R2 of Figure 7. Figure 8(c). The root distribution of
Q(s, τ1, τ2) for delay point D (τ1 = 48, τ2 = 4) in region R3 of Figure 7. Figure 8(d). The root distribution of Q(s, τ1, τ2) for delay
point E (τ1 = 48, τ2 = 26) in region R4 of Figure 7.

obtain the crossing frequency set

�̄ = �̄1 ∪ �̄2

�1 = (0,
√

ν̃1) = (0, 0.197037)

�2 = (
√

ν̃2,
√

ν̃3) = (0.897177, 1.07951)

The positive real roots and the associated frequency ω and
pseudo-delay T of polynomials a1(ν) and a2(ν) are, respec-

tively, found to be

ν̃1∞ = 0.0268166, ω̃1∞
= 0.163758,T 1∞

2 = −1.64546

and

ν̃2∞ = 0.83246, ω̃2∞
= 0.912392,T 2∞

1 = 1.141375
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Since ω̃1∞
∈ �1 and ω̃2∞

∈ �2, the frequency interval �1
and �2 are divided into subintervals:

�̄1 = �̄1,1 ∪ �̄1,2,

�1,1 = (ω̃0, ω̃
1∞) = (0, 0.163758),

�1,2 = (ω̃1∞, ω̃1) = (0.163758, 0.197037).

�̄2 = �̄2,1 ∪ �̄2,2,

�2,1 = (ω̃1, ω̃
2∞) = (0.897177, 0.912392),

�2,2 = (ω̃2∞, ω̃3) = (0.912392, 1.07951).

By sweeping the frequencies over the intervals �1,1, �1,2,
�2,1 and �2,2, we obtain the stability crossing curves in
the pseudo-delay plane, which are shown in Figures 5(a)
and 5(b) for the frequency intervals �1 and �2 respectively.
In Figure 5(a), red-colored curves are corresponding to the
solution set (T1+,T2+) while blue-colored ones are corre-
sponding to the solutions sets (T1−,T2−). In Figure 5(b),
green-colored curves are corresponding to the solution set
(T1+,T2+) while cyan-colored ones are corresponding to
the solutions sets (T1−,T2−). The kernel stability crossing
curves in the (τ1, τ2)-plane are shown in Figures (6a) and
(6b). Using the nonlinear transformation (9), we construct
the complete stability chart in Figure 7. To verify the cor-
rectness of the constructed stability chart, we have applied
the DDE-BIFTOOL to compute the actual root distributions
of the characteristic quasi-polynomial with five the delay
points taken form regions Rk , k = 1, 2, 3, 4, in Figures 8(a)-
(d), respectively. The number of unstable characteristic roots
corresponding to delay points A, B, C, D, and E are 0, 0, 8, 12,
and 14, respectively. Let Nk denotes the number of unstable
characteristic roots for delay points in region Rk . It can be
verified that the number of unstable characteristic roots is
increased by two the delay point moves across one stability
crossing curve.

V. CONCLUSION
This paper dealt with the problem of stability robustness anal-
ysis for LTI two-delay systems with/without a delay cross-
talk. More precisely, we present a procedure for constructing
stability chart in the delay plane. The procedure offers the
following advantages: (i) All the mathematical derivations
are based on using the explicit expression for a quadratic
polynomial in the pseudo-delay T1 or T2 with coefficients
being polynomial in the frequency ω, the end points of all
admissible crossing frequency intervals can be exactly iden-
tified without resorting to the use of resultant theory; (ii)
It allows one to determine exactly the crossing frequency
set rather than just the lower and upper bounds of the set
obtained by the resultant method; (iii) The revelation of set
of the non-zero finite frequencies corresponding to infinite
pseudo-delays, as a by-product of the procedure, allows one
to identify continuous curve segments in the pseudo-delay
plane; (iv) It is extremely simple and easy to follow. These
advantages have been demonstrated by two case studies.
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