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ABSTRACT Knowledge representation learning techniques process the knowledge graph, embedding
entities and relationships into a continuous dense low-dimensional vector space, and providing the rich
semantic association information between entities embedded in the knowledge graph to the recommen-
dation module, improving recommendation performance and providing better interpretability. However,
the knowledge representation learning techniques based on the translation model TransD with too many
parameters and no association between entity representations are difficult to apply to large knowledge graph,
as well as the problem is that most existing knowledge graph which based on recommendation systems
ignore the different levels of importance that users attach to different relationships of items. To address
these shortcomings, we propose an improved knowledge representation learning model Cluster TransD and
a recommendation model Cluster TransD-GAT based on knowledge graph and graph attention networks,
where the Cluster TransD model reduces the number of entity projections, makes the association between
entity representations, reduces the computational pressure, and makes it better to be applied to the large
knowledge graph, and the Cluster TransD-GATmodel can capture the attention of different users to different
relationships of items. Extensive comparison and ablation experiments on three real datasets show that
the model proposed in this paper has significant performance improvements in terms of average ranking,
accuracy and recall of the scoring function compared to other state-of-the-art models.

INDEX TERMS Knowledge graph, knowledge representation learning, graph attention networks, personal-
ized recommendation.

I. INTRODUCTION
In the era of information overload, the task of recommen-
dation systems is to connect users and items, on one hand
helping users to discover items of value to them, and on
the other hand enabling items to be presented to users inter-
ested in them, thus achieving a mutual win-win situation for
both consumers and producers of items, and recommendation
systems play an important role in various online services
[1]. As one of the classical recommendation models, the
collaborative filtering model simulates user preferences by
inner product operation based on a user item rating matrix,
and vector embedding of users and items. However, collab-
orative filtering model suffer from the problem of limited
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recommendation effect in cold start and data thinning, and
it is also difficult to explain the reason for recommendation
results [2], [3].

In order to solve the above-mentioned shortcomings,
knowledge graph-based recommendation systems have
become a hot research topic in recent years, because knowl-
edge graph (KG) contains information on item attributes
and various types of relationships, which can provide rich
semantic association information of items for recommenda-
tion systems [4]. The embedding-based approach embeds
the entities and relationships in the KG into a continuous
dense low-dimensional vector space, and then obtains a
low-dimensional dense vectorized representation, which is
then weighted and fused with the item score similarities in
the original recommendation system. Currently, there are
three main types of KG-based embedding models, the first
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being translation-based models, for instance TransE, TransH,
TransR, and TransD [5], [6], [7]. However, TransD model
has too many parameters and no association between entity
representations, which are difficult to apply to the large KG,
as well as the existing KG based recommendation models
ignore the different importance users usually attach to dif-
ferent relationships of items and cannot intuitively display
the attention weights. The second one is semantic matching
models, such as DistMult, ComplEx and Rescal [8], [9]. The
third is a model that fuses multiple sources of information,
using multiple sources of information related to entities and
relationships to mine the semantic relevance between entities
and build more accurate knowledge representations. How-
ever, the problem of how to make efficient use of multiple
sources of information is still challenging, and the approach
of fusing multiple sources of information is still in its prelim-
inary stage [10].

Recommendation models based on knowledge graphs fall
into threemain categories. The first is embedding-basedmod-
els, which generate latent vector representations by embed-
ding structural knowledge directly from the knowledge graph,
but tend to ignore the path connectivity of the knowledge
graph, making it difficult to interpret the resulting recommen-
dation results, e.g. CKE, DKN, KSR, etc [11]. The second is
path-based models, which use path connectivity to standard-
ize entity representations, but require manual definition of
the type and number of meta-paths, e.g. Hete-MF, HeteRec,
PathSim, etc [12]. However, the type and number of meta-
paths need to be defined manually, e.g. Hete-MF, HeteRec,
PathSim, etc. The third is graph neural network-based mod-
els, which use embedding-based methods to refine the vector
representation of the knowledge graph and path-based meth-
ods to provide interpretability of the recommendation results,
e.g. RippleNet, KGAT, etc [13].

Neural network-based approaches can learn higher-order
embedding representations from simple features layer by
layer through deep network architectures, however deep net-
works do not model between user and item information,
so using graph attention networks enables entity nodes to pass
feature information to neighbouring nodes based on weight
coefficients and enables entity nodes to perform embedding
aggregation with propagated neighbouring nodes to gener-
ate new embedded nodes containing more information, thus
enabling the learning of node uniqueness and improving the
ability of nodes to embed representations [14].

In this paper, we present for the first time an
improved knowledge representation model Cluster TransD
(CTransD) and a recommendation model Cluster TransD-
GAT (CTransD-GAT) based on KG and graph attention
networks. In order to reduce the number of entity projections
and improve application to large KG, the CTransD model
clusters entities using a clustering algorithm, and the dis-
tance relationship between entity classes is converted into
a probabilistic representation to solve the problem that the
defect of no connection between entity representations after
clustering. The CTransD-GAT recommendation model con-

verts the initial embedding vector of the KG through knowl-
edge representation learning, and then obtains the different
weight coefficients of the different relationships between
users of the items in the KG through the graph attention
networks. Then entity nodes pass feature information to
neighboring nodes according to the weight coefficients, and
make entity nodes and propagated neighboring nodes perform
embedding aggregation to generate new embedding nodes
containing more information, and get a better graph attention
networks recommendation model through scoring prediction
and model training.

The main contributions of this paper are as follows:
(1) The knowledge representation learningmodel CTransD

is improved to replace the TransD model for better represen-
tation of entity vectors and further more accurate prediction
of user ratings, which provides a solid foundation for the
CTransD-GAT recommendation model.

(2) A recommendation model CTransD-GAT based on KG
and graph attention networks is proposed. The initial embed-
ding vector is obtained from the KG through the CTransD
model, and the initial embedding vector is propagated and
aggregated with weights.

(3) A large number of comparison and ablation experi-
ments are conducted on three real datasets to prove that the
model proposed in this paper outperforms the existing state-
of-the-art models.

The rest of this paper is organized as follows: Part II
presents related works, which mainly introduces the cur-
rent research status of knowledge representation models and
recommendation models. Part III is the problem definition
of the article. Part IV introduces the improved knowledge
representation learning model CTransD. Part V presents the
overall framework of the CTransD-GAT recommendation
model, and details the design of each module of the model,
the loss function and the training process. Part VI conducts
comparison and ablation experiments as well as analyzes the
experimental results. Part VII concludes and outlooks.

II. RELATED WORKS
Knowledge representation learning achieves the represen-
tation of semantic association information of entities and
relations by projecting them into a low-dimensional vector
space, projecting objects from different sources into the same
semantic space, and constructing a unified representation
space that can efficiently compute entities, relations and the
complex semantic associations among them [15]. Knowledge
representation learning is divided into three main categories,
translation-based models, semantic matching models, and
models that fuse information from multiple sources [16].
Since translation-based models have simple training and
excellent results, while semantic matching models and fused
multi-source information models have high computational
complexity and are difficult to balance efficiency and results
in large-scale KG, this paper mainly discusses translation-
based models.
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TABLE 1. Complexity of knowledge representation learning models.

Borders et al. proposed the simple and efficient TransE
model inspired by word2vec language model which vectors
have translation invariance in semantic space, but the perfor-
mance of TransE model is unsatisfactory when dealing with
complex relations [17], [18]. ZhenWang et al. proposed the
TransHmodel, which introduces the concept of hyperplane to
replace the original relationship vector and considers entities
and relationships in the same space, however, entities and
relationships are different objective facts [19]. YanKaiLin et
al. proposed the TransR model, which projects entities under
different relations into different semantic spaces for transla-
tion, as well as the Cluster-based TransR (CTransR) model,
in which different head-to-tail entity pairs are clustered into
groups and different relationship vectors are learned for each
group to extend the TransR, based on the idea of segmented
linear regression, but the projection matrix is only related to
relations [20]. Guoliang Ji et al. proposed the TransD model,
where entities and relations use different mapping matrices,
and each entity and relation has two representations [21].

The complexity of the knowledge representation learning
model are shown in Table 1, where Ne and Nr denote the
number of entities and relationships respectively, m and n
denote the dimensionality of the entity space and relationship
space respectively, Nt denotes the number of triples in the
knowledge graph, d denotes the average number of clusters of
a relationship, and k denotes the number of clusters of entity
clusters.

Recommender system is an information filtering system in
the era of information overload, helping users find the infor-
mation they want in the massive information and reducing the
waste of time and energy caused by browsing large amount of
invalid data. Recommendation models are mainly classified
into collaborative filtering-based recommendation, content-
based recommendation, and hybrid recommendation [22],
[23].

Amazon proposes an item-based collaborative filtering
model that uses the user’s behavioral data and the item
similarity matrix to calculate offline, which is very effi-
cient and can produce high-quality recommendations, but
the user’s behavioral data is often overly sparse [24]. The
matrix decomposition computational model proposed at the
Netflix competition can solve the above problem very well.
By matrix decomposition both users and items get their cor-
responding hidden vectors, but it is not suitable for dealing
with large-scale sparse matrices because it’s huge computa-
tional [25]. Osaka University proposed the factorial decom-

position model, which can capture the second-order features
well and reduce the computational complexity [26].

In recent years, many researchers have tried to use KG
as auxiliary information for recommendations, which can be
classified into three types: embedding-based models, path-
based models, and graph neural network-based models [27],
[28]. Zhang et al. proposed a collaborative knowledge base
embedding (CKE) recommendation model that combines
knowledge embedding on the basis of collaborative filter-
ing by doing inner product operations of user representation
learning and item representation learning to obtain the prob-
ability of a user clicking on the item, however, it is easy to
ignore the path connectivity of the KG and difficult to explain
the generated recommendation results [29]. For the above
problem, Sun et al. proposed the PathSim path-basedmodel to
recommend for users by using the path connectivity similarity
of entities in the KG, but this model requires the considerable
manual design of meta-paths, which is labor-intensive and
time-consuming [30]. Aiming at solving the above problem,
Wang et al. proposed a RippleNet model based on graph
neural network, which integrates embedding-based and path-
based models to combine the semantic representation of enti-
ties, relationships and path connectivity for recommendation
[31]. In order to further mine the higher-order relationships
of the knowledge graph, Wang et al. proposed the knowl-
edge graph attention networks-based recommendation KGAT
model, which uses TransR techniques to obtain the initial
embedding vectors of entities, obtains the weights of nodes
through graph attention networks, and aggregates and updates
user or item embedding vectors in multiple iterations [32].

Graph neural networks use graph convolution to learn
representations of node and relationship features in graphs,
providing a method for extracting features from non-regular
data, extending the processing capability of deep learning for
non-euclidean data, and are widely used in various aspects
such as social networks, transportation networks, and recom-
mender systems.

In general, the translation-based model in knowledge rep-
resentation learning is simple and excellent to train and
can balance efficiency and results in large-scale knowledge
graph. The KG and graph neural network-based in recom-
mendation model propagates and aggregates initial embed-
ding vectors with weights by knowledge representation learn-
ing. The limitations of embedding-based and path-based
models are overcome, and the potential preferences of users
are automatically propagated and the hierarchical interests of
users are mined in the KG. Therefore, this paper proposes an
improved knowledge representation learning model CTransD
and a recommendation model CTransD-GAT based on KG
and graph attention networks.

III. PROBLEM DEFINITION
The problems to be solved in this paper are described as
follows:

(1) Reduce the number of parameters and computational
complexity of the knowledge representation learning model,
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FIGURE 1. The figure of CTranD model.

so that it can be better applied to large knowledge graphs and
solve the problem of no connection between entity represen-
tations after clustering.

(2) The problem of how to comprehensively consider the
different levels of importance that users attach to different
relationships of items.

(3) A large number of comparison and ablation experi-
ments on real datasets to demonstrate the performance of the
model proposed in this paper.

IV. KNOWLEDGE REPRESENTATION LEARNING
In this chapter, the knowledge representation learning model
is optimised by node-embedded representations, and a prob-
ability distribution in the space of negative examples is
constructed to assist the model in collaborative optimisa-
tion training to obtain a knowledge representation learning
CTransD model.

A. NODE EMBEDDING REPRESENTATION
Compared with the previous translation models, the TransD
model takes into account the diversity between entities and
relations at the same time, and uses two vectors to dynami-
cally reconstruct the projection matrix, and defines two vec-
tors for each entity and relation to construct the mapping
matrix. The TransD model has relatively better performance
and excellent representation capability, but too many model
parameters with relatively high computational complexity
will cause a relative increase in model training time causing
overfitting, which is difficult to apply to large KG, as well as
the defect of no connection between entities and entity repre-
sentations in the model. To address this problem, we optimize
the TransD model and propose the CTransD model, which
uses a clustering algorithm to cluster entities to reduce the
number of entity projections, and uses Euclidean distance
to represent the similarity between entity classes, and con-
verts the distance relationship between entity classes into a
probability representation to solve the defect of no connec-
tion between entity representations after clustering, and the
CTransD model as illustrated in Figure 1.

In the CTransD model for each triplet (h, r, t), set h to be
the head entity vector, r to be the relationship vector, and t
to be the tail entity vector, and cluster into K classes based
on the similarity between the entity vectors by the K-Means
clustering algorithm, each entity vector belongs to and only
belongs to a class cluster with the smallest distance to its
entity vector class cluster center.

The mean value of the cluster is calculated using the
method of arithmetic mean and this mean value is taken as
the entity class center, the center of the head entity is denoted
as eih, the neighborhood U (eih) formed by the head entity, the
center of the tail entity is denoted as ejt , the neighborhood
U (ejt ) formed by the tail entity, i, j ∈ {1, 2, . . . , k} [33], [34].
The head and tail entity class centers are defined as:

eih =

∑
h∈(U (eih))

h

N (U (eih))
, ejt =

∑
t∈(U (ejt ))

t

N (U (ejt ))
(1)

the entity class centers eih and e
j
t correspond to the projection

vectors eiph and e
j
pt , respectively, and the entities are projected

from the entity space to the relationship space, set the two
mapping matricesMrh,Mrt be:

Mrh = rp(eiph)
T

+ Im·n, h ∈ U (eiph),Mrt

= rp(e
j
pt )

T
+ Im·n, t ∈ U (ejpt ) (2)

the projected head entity h⊥ and tail entity t⊥ in the relation-
ship space are denoted as:

h⊥ = Mrhh, t⊥ = Mrt t (3)

the head entity h⊥ and the tail entity t⊥ projected into the
plane of the relation r satisfy h⊥ + r − t⊥ ≈ 0, and the triplet
score function is:

f (h, r, t) = −∥h⊥ + r − t⊥∥
2
2 (4)

In the experiment, we force the constraints to be ∥h∥2 ≤ 1,
∥t∥2 ≤ 1, ∥r∥2 ≤ 1, and ∥t⊥∥2 ≤ 1.

B. NEGATIVE TRIPLET CONSTRUCTION STRATEGY
In the optimization process of the objective function, not only
the correct triplets but also the incorrect triplets are needed,
and the KG already contains all the correct triplets. The nega-
tive sampling algorithm used in the TransEmodel is to replace
the head or tail entity by a randomly selected entity from the
set of all entities to obtain a new triplet, which is considered as
a negative example triplet. However, in one-to-many, many-
to-one and many-to-many relationships, the probability that
the constructed triplet is not a negative example triplet is
higher. To address the above drawbacks, Bernoulli sampling
algorithm is used to select entities in classes with large class
spacing to replace the head or tail entities in order to improve
the differentiation of entities by the model [35].

When generating negative example triplets, different
replacement strategies are set depending on the relationship
type. For one-to-many relationships, a larger probability of
replacing the head entity is used, for many-to-one relation-
ships a larger probability of replacing the tail entity is used,
for many-to-many relationships by considering the number
of nodes of the head and tail entities in the relationship, the
entity with the lower number is replaced.

In the triplets,Ntph denotes the average value of the number
of tail entities corresponding to each head entity,Nhpt denotes
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the average value of the number of head entities correspond-
ing to each tail entity, and the probability P is:

P =
Ntph

Ntph + Nhpt
(5)

For a given triplet, replace the head entity with probability P
and the tail entity with probability 1−P to generate a negative
example triplet.

C. PROBABILITY DISTRIBUTION IN REAL SPACE
The closer the entities are to together, the more likely they
belong to the same class, and the corresponding entity projec-
tions should be more similar. Similarly, the closer the entity
class centers are to each other, the closer the corresponding
projection vectors are. The similarity of entity class centers
and their projection vectors are structed to obtain the similar-
ity measure of them.

The class spacing is performed using the entity class center
instead of the entire entity class, and the similarity of the
entity class center is measured by the Euclidean distance, and
its similarity d(eih, e

j
h) is [36]:

d(eih, e
j
h) =

∥∥∥eih − ejh

∥∥∥
2

(6)

The Euclidean distance is converted into probability by the
normal distribution function to represent similarity, and the
probability P(eih

∣∣ ejh) of choosing eih conditionally on ejh, the
entity class central similarity probability P(eih

∣∣ ejh) is defined
as:

P(eih
∣∣∣ ejh) =

exp(−d(eih, e
j
h))∑

n̸=i
exp(−d(eih, e

n
h))

(7)

the entity class centers eih corresponds to the projection vec-

tors eiph, and the probability P(eiph

∣∣∣ejph ) that eiph is selected

conditionally on ejph, the similarity P(eiph

∣∣∣ejph ) of the entity
class center projection vector is defined as:

P(eih
∣∣∣ ejh) =

exp(−d(eih, e
j
h))∑

n̸=i
exp(−d(eih, e

n
h))

(8)

since the probabilities of the projection vectors do not have
symmetry, the conditional probabilities of the above equation
are symmetrized to obtain the entity class center similarity
probability P′(eih|e

j
h) and the entity class center projection

vector similarity P′(eiph|e
j
ph) defined respectively as:

P′(eih|e
j
h) =

p(eih|e
j
h) + p(ejh|e

i
h)

2k
, P′(eih|e

j
h) = P′(ejh|e

i
h)

(9)

P′(eiph|e
j
ph) =

exp(−d(eiph, e
j
ph))∑

n̸=m
exp(−d(emph, e

n
ph))

,

P′(eiph|e
j
ph) = P′(ejph|e

i
ph) (10)

D. EMBEDDED MODEL TRAINING
Themodel training iteration consists of two stages: triplet loss
and Kullback-Leibler (KL) divergence loss. In each iteration,
the triplet loss is firstly repeated twice, and the obtained entity
vector representation is used as the input of KL divergence
loss and training is continued once more to better collaborate
and optimize the model by alternate learning.

The triplet loss function and KL divergence loss function
are used as the objective functions of the samples for training.
The purpose of the triplet loss function is to distinguish
between positive example and negative example triplets, and
the purpose of the KL divergence loss function is to measure
the similarity between the entity class centers and their cor-
responding entity projections, and the objective function is:

L = Lscore + LKL
=

∑
(h,r,t)∈S,(h′,r,t ′)∈S ′

ξ (f (h, r, t), f (h′, r, t ′)) + KL(P||Q)

=

∑
(h,r,t)∈S

∑
(h′,r,t ′)∈S ′

max(f (h′, r, t ′) + γ − f (h, r, t), 0)

+

∑
i

∑
j
P′(eih|e

j
h) log(

P′(eih|e
j
h)

P′(eiph|e
j
ph)

) (11)

where (h, r, t) ∈ S denotes the set of positive example
triplets and (h′, r, t ′) ∈ S ′ denotes the set of negative example
triplets, generated by the negative example triplet construc-
tion strategy, P denotes the probability distribution of entity
class centres, Q denotes the probability distribution of entity
class centre projections, and γ denotes the distance between
correct triad scores and incorrect triad scores, the objective
function uses stochastic gradient descent algorithm (SGD)
to update the model parameters, each time Bernoulli sam-
pling extracts part of the triplets, generates negative example
triplets to join the triplet data set, normalizes the entities
and relationships in the set in their respective vector space
operations, and uses the normalized vector data to train the
model.

V. RECOMMENDATION MODELS BASED ON
KNOWLEDGE GRAPH AND GRAPH ATTENTION
NETWORKS
This chapter proposes a CTransD-GAT recommendation
model based on knowledge graphs and graph attention net-
works, introduces the overall framework of the model, and
describes in detail the processes of user weight preference
layers, feature propagation and embedding aggregation, rat-
ing prediction and model training.

A. OVERALL FRAMEWORK
Since the existing KG-based recommendation systems ignore
the problem of different importance arising from different
relationships of users to items, they cannot intuitively dis-
play the user preference weights. Therefore, we propose the
CTransD-GAT recommendation model based on KG and
graph attention networks, which combines the KG and graph
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FIGURE 2. Framework diagram of CTransD-GAT model.

attention networks, allowing to mine the weight information
of nodes in the KG, and then propagate and aggregate the
information of nodes according to the weight coefficients to
generate new node representations, so as to improve the rec-
ommendation accuracy, and the framework of CTransD-GAT
model as illustrated Figure 2.

(1) The first input is the KG of users, items and relations.
(2) The third part of the knowledge representation learning

CTransDmodel is employed to embed the nodes and relations
into a low-dimensional dense vector space to form the initial
embedding vectors of users, items and relations.

(3) Calculation of user weight coefficients is done by
introducing a relational attention function to learn how much
importance users attach to various relations of items and
transforming the initial KG into a weighted graph to make
it show the weight magnitude.

(4) Information propagation, where the feature information
of an entity node is propagated to neighbouring nodes based
on user weight coefficients.

(5) Embedding propagation aggregation, where the feature
information of the entity node is embedded and aggregated
with the propagated neighbouring nodes to generate a new
node representation containing more information.

(6) Rating prediction and model training is the inner prod-
uct operation between the user embedding vector and the
aggregated item embedding vector to get the predicted rating,
and the parameters in the CTransD-GAT model are trained
using the Bayesian personalized ranking (BPR) learning
algorithm.

B. USER WEIGHTED PREFERERENCE LAYER
In order to portray that the users generate different importance
to different relationships, the weight of relations to users in
the KG is calculated by the attention mechanism to judge
the degree of influence of neighboring entities on the current
entity. The inner product of the user’s embedding vector and
the relationship embedding vector is used to represent the
importance of that kind of relationship to the user. The edges
connected by the head and tail nodes in the KG are the

weights, and the weight coefficients are expressed as follows:

sru = eTu er (12)

where eu and er denote the embedding vectors of user u and
relation r , respectively. The KG is an unweighted graph that
cannot show the weight size, and the unweighted graph is
transformed into a weighted graph through the user weight
preference layer. To better assign the weights, we need to
normalize the weight coefficients by the softmax function
normalization, which is expressed as follows:

αru = soft max(sru) =
exp(eTu er )∑

e∈N (υ)
exp(eTu er )

(13)

where αru is the normalized weight coefficient and N (v)
denotes the set of neighboring nodes of node v.

C. FEATURE PROPAGATION AND EMBEDDING
AGGREGATION
Information propagation is the propagation of feature infor-
mation of entity nodes to neighboring nodes based on weight
coefficients along the connectivity between nodes, and infor-
mation aggregation is the aggregation of embeddings of entity
nodes with propagated neighboring nodes using convolu-
tional operations and generates new node representation con-
taining more information.

The neighbor nodes of all relationship types are propagated
and the nodes are weighted and summed to obtain the feature
vector of the entity’s neighbors, denoted as follows:

euN (v) =

∑
a∈N (v)

αruea (14)

In order to fuse more semantic association information of
neighboring nodes, the model will explore the use of three
different aggregation functions to aggregate the entity feature
vector ev with its neighboring feature vector euN (v) to obtain
the final feature vector ek . In this paper, three types of aggre-
gation functions are established.

(1) Sum aggregation function, which adds the entity feature
vectors and their neighbourhood feature vectors, and then
performs a nonlinear transformation, is expressed as follows:

ek = aggsum = σ (W (ev + euN (v)) + b) (15)

where W ∈ Rd ·d and b ∈ Rd are trainable weight matrices
with deviations, σ is the ReLu activation function.
(2) The GraphSage aggregation function, which joins the

entity feature vectors and their neighbourhood feature vec-
tors, and then performs a nonlinear transformation, is repre-
sented as follows:

ek = aggGraphSage = σ (W (ev||euN (v)) + b) (16)

where || denotes the vector join operation.
(3) The BI-Interaction aggregation function, summing the

entity feature vectors and their neighbourhood feature vec-
tors for nonlinear transformation, then dot product the entity
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feature vectors and their neighbourhood feature vector ele-
ments for nonlinear transformation, and finally performs the
summation operation, is represented as follows:

ek = aggBI = σ (W1(ev + euN (v)) + b1)

+ σ (W2(ev ⊙ euN (v)) + b2) (17)

where W1,W2 ∈ Rd ·d and b1, b2 ∈ Rd are trainable weight
matrices with biases, ⊙ denoting the dot product.

D. SCORING PREDICTION AND MODEL TRAINING
After the aggregation operation in the previous step, the final
item feature vector ek is obtained. The final step of the model
is to make an inner product of the user embedding vector
and the aggregated item embedding vector as the probability
value ŷuk of the user clicking on the item, which is expressed
as follows:

ŷuk = eTu ek (18)

where the prediction function ŷuk is an inner product opera-
tion to describe the predicted relevance score between user u
and item k . The higher the similarity between user and item,
the higher the score.

The parameters in the CTransD-GAT model are trained
using a Bayesian personalized ranking (BPR) learning algo-
rithm, and the BPR algorithm calculates and ranks the rel-
evance scores of each user for unknown items to personal-
ize recommendations. The loss function during the training
period is represented as follows:

loss =

∑
(u,k+,k−)∈O

− ln σ (ŷuk+ − ŷuk− ) + λ||θ ||
2
2 (19)

where O denotes the sample training set,
O = {(u, k+, k−)|(u, k+) ∈ R+, (u, k−) ∈ R−

}, R+ denotes
the positive sample data set, R− denotes the negative sample
data set, σ is the nonlinear activation function Sigmoid, θ

denotes all parameters in the model that can be trained, and
λ||θ ||

2
2 denotes the L2 regularization term, which is used to

prevent overfitting. The purpose of this loss function is to
maximize the difference between the scores of positive and
negative samples as much as possible.

VI. EXPERIMENT
The performance of the models CTransD and CTransD-GAT
are evaluated by designing experiments and analyzing the
experimental results. We first present the data set used for the
experiments, the experimental setup, the evaluation metrics
for the experimental evaluation, the baseline for comparison
with other models, and the experimental results are finally
given.

A. DATASET
In the experiments, to validate the performance of the model
designed in this paper, public experimental datasets from
three domains are used, which are from education, movies
and books, respectively.

TABLE 2. Data set information.

Education dataset: MoocCube is an open source large-
scale data warehouse serving MOOC-related research. The
dataset contains more than 190,000 users, over 700 courses
and nearly 8 million course rating data.

Movie dataset: MovieLens-25M is a stable benchmark
dataset for recommender system testing, which containsmore
than 160,000 users, 60,000 movies, and nearly 25 million
movie rating data.

Book dataset: Book-Crossing is a book rating dataset writ-
ten by Cai-Nicolas Ziegler based on data from bookcross-
ing.com. The dataset contains more than 10,000 users, 10,000
books and 1.03 million book rating data.

Knowledge cleaning is performed on each dataset data to
fill the missing values to reduce the impact of invalid data on
modeling. The vertical domain KG mostly adopts top-down
knowledge modeling, abstractly generalizes domain knowl-
edge, gets the entity concept of domain KG, defines entity
classes, object attributes, data attributes, value domains and
constraints for each entity concept in the domain, and con-
structs the domain KG ontology library. We obtain data from
the dataset to extract the required elements of the KG of
entities, attributes and relationships, instantiate the ontology
library, and form structured knowledge to deposit into the
Neo4J database to complete the vertical domain KG con-
struction, and the three datasets after completing the KG
construction are illustrated in Table 2.

B. EVALUATION INDICATORS
Knowledge representation learning models assess the qual-
ity of the algorithm by common link prediction scenarios
based on ranking, usually using the criteria MeanRank for
the average ranking of the correct entity scoring function and
Hits@10 for the odds of ranking the correct entity in the top
10 to assess the quality of the model.

The recommendation model of graph attention networks
for TopN recommendation task uses Precision@K and
Recall@K to measure the ability of the recommendation sys-
tem to correctly predict users’ preferences or not preferences
of an item, assuming that NTP, NFP, NFN , NTN denote that the
system recommends to the user and the user preferences, the
system recommends to the user but the user not preferences,
the user preferences but the system does not recommend and
the user not preferences and the system does not recommend,
respectively. The definition of precision rate is expressed as
follows:

Precision =
NTP

NTP + NFP
(20)
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the definition of recall is expressed as follows:

Recall =
NTP

NTP + NFN
(21)

graph attention networks recommendation model for click-
through prediction, AUC and F1 are used to measure the
performance of the recommendation system. AUC is the area
under the ROC curve, which indicates how well the recom-
mendation system is able to distinguish items that user pref-
erences from those that they do not like. The AUC definition
is expressed as follows:

AUC =

∫ 1

0
f (ROC)dx (22)

F1 is a comprehensive reflection of system performance by
considering both accuracy and recall, and F1 is defined and
expressed as follows:

F1 =
2 × Precision× Recall
Precision+ Recall

(23)

C. BASELINE MODELS
In order to verify the effectiveness of the CTransD and
CTransD-GAT models proposed in this paper, five baseline
models with outstanding effects in the knowledge represen-
tation learning domain and five baseline models with out-
standing effects in the recommendation model domain are
compared, respectively.

The five models in the knowledge representation learning
domain are TransE, TransH, TransR, CTransR, and TransD,
respectively.

The five baseline models with outstanding effectiveness
in the recommendation model domain are CKE, LibFM,
RippleNet, NGCF, respectively, which are specifically rep-
resented as:

CKE: A model that fuses knowledge mapping and col-
laborative filtering, while employing TransR heterogeneous
network embedding.

LibFM: A model based on feature matrix decomposition,
which employs stacked gradient descent (SGD) and alternat-
ing least squares (ALS) for optimization.

RippleNet: a water wave network model that introduces
preference propagation into a recommendation model that
fuses KG.

NGCF: Neural graph collaborative filtering model, which
embeds a bipartite graph coded representation of user items.

KGAT: An end-to-end approach to explicit modelling of
higher-order connections in knowledge graph attention net-
works based on a knowledge graph attention networks rec-
ommendation model.

D. EXPERIMENTAL PARAMETER SETTING
For each dataset, 70% was randomly selected as the train-
ing set for model training, and the remaining 30% was
used as the test set for testing data. The model was opti-
mised using the Adam optimiser in Python 3.7, Tensor-
Flow 2.10, and Numpy 1.19 environments. To ensure a

TABLE 3. Experimental results of model about CtansD.

TABLE 4. Click-through rate prediction experiment results.

fair comparison, for the baseline model, the parameter set-
tings are first based on its original text, and the com-
parison model is optimized as much as possible on this
basis. For the model CTransD, the parameter learning rate
ε is set to take values in the range {0.01,0.001,0.0001},
the spacing γ is chosen among {0.25,0.5,1,2}, the embed-
ding dimensions m and n of entities and relations are cho-
sen among {20,50,80,100}, the size of single batch data
B is chosen among {100,200,1000,1400}, and the number
of clusters K is chosen among {20,50,100,200}. For the
CTransD-GAT model, the model is trained in batch mode
with a fixed batch size of 512 and a learning rate cho-
sen from {0.01,0.001,0.0001}, and its aggregator uses the
BI-Interaction aggregator by default. the number of neighbors
and the number of hops for the nodes are 4 and 2, respectively.
10 experiments are done for each combination configuration,
and the maximum number of iterations in the experiments
is 500, and then the experimental results are averaged to
determine the optimal parameter configuration.

E. EXPERIMENTAL RESULTS
The results of the experimental prediction of the domain
knowledge graph entity links in each of the three datasets
are illustrated in Table 3. The results show that the model
CTransD has an improvement in both metrics relative to the
original model TransD, and the model CTransD represents
learning better ability relative to the other models.

Top-K recommendation and click-through prediction
experiments are performed on the baseline and CTransD-
GAT models, and the accuracy and recall of each model are
derived on each of the three datasets as illustrated in Figure 3,
as well as the AUC and F1 of each model as illustrated in
Table 4.
TheAUC and F1 values of CTransD-GATmodel are higher

than other models in all three datasets, and the accuracy rate
of all models in Top-K recommendation shows a decreasing
trend and the recall rate shows an increasing trend as the
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FIGURE 3. Accuracy rate of the model are about (a) MoocCube, (b)
MovieLens-25M, (c) Book-Crossing, respectively. Recall Rate of the model
about (d) MoocCube, (e) MovieLens-25M, (f) Book-Crossing, respectively.

TABLE 5. Experimental results of different aggregators.

K value increases. In the three datasets, the LibFM model
has a slightly lower accuracy rate compared with the other
models incorporating KG, indicating that the introduction of
KG as auxiliary information in the recommendations effec-
tively extracts the feature vectors of items and improves
the accuracy rate of the recommendations. All the models
based on graph neural networks performed better, which
also proved that the iterative aggregation method of graph
neural networks helps to mine the higher-order relationships
in the knowledge graph. The CTransD-GAT model performs
significantly better than other models that only fuse KG,
indicating that the incorporation of graph attention networks
effectively propagates and aggregates the initial embedding
vectors with weights, which improves the recommendation
accuracy and indicates the effectiveness of the model, and
also confirms that the recommendation model based on KG
and graph neural networks is better than the recommendation
model based on KG embedding.

The effects of different aggregators on the model perfor-
mance are illustrated in Table 5, and the effects of different

TABLE 6. Experimental results with different polymerization depths.

aggregation depths on the model performance are illustrated
in Table 6.

A large number of ablation experiments are conducted
on the model, and different aggregators had different effects
on the model performance. Sum aggregator, GraphSage
aggregator and BI-Interaction aggregator are compared, and
BI-Interaction aggregator had better results in each index.
The impact of different aggregation depths on model per-
formance is produced. The best performance in MoocCube
and MovieLens-25M when the number of hops is 2, and the
better performance in Book-Crossings when the number of
hops is 1. Therefore, the model performance is better when
the number of hops is 1 or 2.

VII. CONCLUSION
In this paper, we propose an improved knowledge representa-
tion learning model CTransD and a recommendation model
CTransD-GAT based on KG and graph attention networks.
The CTransD model reduces the number of entity projections
and makes the entity representations related to each other,
which reduces the computational pressure and makes it better
to be applied to large KG. The CTransD-GATmodel captures
the information of different users on different relations of
items through graph attention networks captures the weight
information of different users on different relationships of
items, and then propagates and aggregates the information of
nodes according to the weight coefficients, which improves
the recommendation performance of the model. A large num-
ber of comparison and ablation experiments are conducted
on three real datasets, and the experimental results show the
rationality and effectiveness of the model proposed in this
paper, and it outperforms the existing excellent models.
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