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ABSTRACT Automatic pain recognition is essential in healthcare. In previous studies, automatic pain
recognition methods preferentially apply the features extracted from physiological signals for conventional
models. Thesemethods provide good performance but mainly rely onmedical expertise for feature extraction
of physiological signals. This paper presents a deep learning approach based on physiological signals that
have the role of both feature extraction and classification, regardless of medical expertise. We propose multi-
level context information for each physiological signal discriminating between pain and painlessness. Our
experimental results prove that multi-level context information performs more significantly than uni-level
context information based on Part A of the BioVid Heat Pain database and the Emopain 2021 dataset. For
Part A of the BioVid Heat Pain database, our experimental results for pain recognition tasks include Pain 0
and Pain 1, Pain 0 and Pain 2, Pain 0 and Pain 3, and Pain 0 and Pain 4. In the classification task between
Pain 0 and Pain 4, the results achieve an average accuracy of 84.8 B1 13.3% for 87 subjects and 87.8 B1
11.4% for 67 subjects in a Leave-One-Subject-Out cross-validation evaluation. The proposed method adopts
the ability of deep learning to outperform conventional methods on physiological signals.

INDEX TERMS Pain recognition, physiological signals, context vector, attention module, deep learning.

I. INTRODUCTION
Pain is the body’s common response to illness that requires
medical attention. Traditional pain recognition methods are
generally through human observations and subjective recog-
nition. The physiotherapists assess a patient’s pain through
exercises during the therapy process and give reasonable exer-
cises to the patient to overcome the disease. Pain recognition
depends on the knowledge of each expert, observation, and
individual perception through the patient’s expression. This
brings many limitations because there are no universal and
reliable rules for pain recognition. Therefore, the automation
of pain recognition is necessary for humans. In the medical,
pain recognition applications is a health monitoring system
that helps humans recover from illness through physical
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therapy exercises. Pain recognition systems use behavior
and physiology to perform classification tasks. Measures are
physiological signals, facial expressions, body movements,
vocalizations, and so on, or a combination of them. In some
cases, pain recognition through the patient’s behavior is
not reliable. The patient can intentionally control emotional
expression. Furthermore, the patients express pain behavior
depending on their personality. Some patients lose awareness
and do not express painful emotions clearly and reliably.
It is difficult to recognize pain through emotional behavior.
Therefore, pain recognition using physiological signals is
essential.

Pain causes the response of the relevant neural struc-
tures and alters the measures of differences in physiological
signals. Measures of physiological signals related to pain
response such as skin conductance, heart rate variability, rest-
ing blood pressure, and electroencephalography (EEG). Skin
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conductance is a signal in response to pain. The increased
sympathetic outflow associated with pain secretes the sweat
on the skin’s surface. This is the factor to increase electroder-
mal activity (EDA). The increased sympathetic activity also
affects heart rate, increasing heart rate variability or resting
blood pressure. In addition, pain affects metabolic areas in the
cerebral cortex, or muscle activity [1]. Since the publication
of the BioVid Heat Pain Database [2], EDA and electrocar-
diogram (ECG) and (electromyogram) EMG signals have
become widely used for pain recognition [1]. EDA signals
show the skin conductance level, ECG represents the action
potential of heart rate and the EMG signal measures muscle
activity.

The task of automatic pain classification remains
extremely challenging. Many previous studies evaluating
pain use tools to extract the dynamic characteristic com-
position of physiological signals to facilitate classification.
The efficient methods use representations of physiological
signals selected carefully based on medical expertise. The
representations include relevant information extracted from
the raw data They represent as numeric feature vectors. The
set of robust representations can describe the information of
the entire data with a size smaller than that of the raw data.
These robust representations are fed into inference models
and provide fairly high performance. This proves that the
skill of selecting representations in machine learning is very
necessary for improving the classifier’s performance. It is
difficult to take advantage of robust representations because
they depend on specialized knowledge of raw datasets. This
causes time-consuming self-study and the cost of hiring
experts to build robust representations. These studies neglect
the powerful automated capabilities of the design model.

Deep learning approaches automatically generate suitable
representations of raw data. Deep learning architecture is
a multi-layer stack of simple modules that can learn and
compute non-linear mappings [3]. They entirely replace clas-
sical methods and do not depend on specialized knowledge
of physiological signals. This study aims to build a deep
learning model to replace the conventional methods which
rely on expert knowledge of physiological signals. It is pos-
sible to eliminate the hand-crafted feature selection carefully.
We experiment by extracting contextual representation from
physiological signals which have stationary and trending fac-
tors. Our idea is to build a contextual representation from the
hidden information on a sequence in physiological signals.
Contextual representation is the time series characteristics
of physiological signals for pain or non-pain manifestations.
In this study, the context representations are named multi-
level context information.

Pain recognition is a binary classification that distin-
guishes painful and non-painful manifestations. In this work,
we evaluate the performance of the proposed model based
on Part A of the BioVid Heat Pain Database [2] and the
Emopain 2021 dataset [4]. Our method uses simple pre-
processed physiological signals that are available in the
datasets.

Part A of the BioVid Heat Pain database consists of five
classes with four painful classes and a baseline class rep-
resenting a non-painful class. In particular, we perform
four classification tasks with each task being a classification
between each painful class and baseline class. Our model
applies the ability to capture spatial information and reduce
spatial resolution while preserving the important characteris-
tics of Convolutional Neural Networks. The model continues
to use the Recurrent Neural Network’s ability to extract hid-
den information. We then propose a combination of multiple
levels of context information. As shown in the EDA and ECG
illustrations in columns a) and b) of Figure 7, the signals
through pain levels affect the stationary and the trending of
the time series. Therefore, we choose the combination of
EDA and ECG signals without EMG signals. We coordinate
multi-level context information from EDA and ECG physio-
logical signals. The architecture is depicted in Figure 1.

For Part A of the BioVid Heat Pain database, the authors
in [5] propose a subject subset that excludes 20 study par-
ticipants who did not respond visibly to the pain stimuli.
In this work, we use 67 subjects in [5] recommendations out
of 87 subjects. Simultaneously, we also compare previous
studies based on 87 subjects.

To demonstrate the performance of multi-level context
information for pain recognition, we also perform the exper-
iment based on the physiological signals of the Emopain
2021 dataset. The main contributions of this paper are as
follows:
• We propose a deep learning approach based on phys-
iological signals for pain recognition. Our method
does not perform additional signal preprocessing, but
directly uses the simple preprocessed physiological sig-
nals available in the dataset. Our method has the role of
feature extraction and classification, completely replac-
ing manual extraction methods that require highly spe-
cialized knowledge.

• Our experimental results prove that multi-level context
information is more significant than uni-level context
information based on Part A of the BioVid Heat Pain
database and the Emopain 2021 dataset.

• The multi-level context information which is explored
from hidden sequence information gives the competitive
performance of classification tasks based on Part A of
the BioVid Heat Pain database.

This paper includes the following sections. Section II rep-
resents the background knowledge in deep learning employed
for pain recognition automation architecture. Section III con-
sists of the sub-net architectures used in our architecture and
the analysis of themulti-level context information. Section IV
reports the dataset, training details, illustrations, comparative
results of the proposed model, and discussion. Section V is
the conclusion of the paper.

II. RELATED WORKS
For machine learning, there are many effective methods used
in pain recognition. In [6], the authors explore both video and
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FIGURE 1. Overview of the proposed model.

physiological data, they manually propose features extracted
from each signal channel (EMG, ECG, EDA) for pain per-
ception, and their results indicate the Random Forest (RF)
model [7] is effective for automatic pain recognition. Simi-
larly, the authors in [8] perform a broad spectrum of different
feature extraction algorithms to extract robust information
from EMG, ECG and EDA signals for the RF classifier.
In [9], the authors perform complex signal preprocessing for
BVP, ECG and EDA. They then extract statistical features
for each of the signal channel. Feature selection and princi-
pal component analysis are performed to select high-quality
features from the statistical features. Then they use simple
models including Linear Discriminant Analysis (LDA) [10],
k-Nearest Neighbor (kNN) algorithm, and Support Vector
Machine (SVM) [11] for classification. In [12], the authors
extract features from EDA, ECG, and EMG signals and
explore different machine learning models which contain
Linear Regression, Support Vector Regression (SVR) [13],
Neural Networks, and Extreme Gradient Boosting Regres-
sion (XGBoost) [14]. Their results indicate that the EDA
signal significantly affects pain intensity estimation. In [15],
the authors perform bidirectional LSTM to extract repre-
sentative features from the EDA signal. This representative
feature is used as the input of the XGBoost for pain intensity
classification.

There are many methods to apply the extracted features
from physiological signals for deep learning models. In [16],
the authors employ the hand-crafted features extracted from
EDA and ECG signals based on [6]. They then implement
multi-task learning with neural networks (MT-NN) approach
to compare logistic regression (LR), and SVM. Their results
show that MT-NN outperforms any other algorithms for pain
recognition. In [17], the authors extract the hand-crafted
features from the deconvolved skin conductance data and
heart rate variability. The experiments on machine learning
and recurrent neural network regression are explored for pain
recognition. Their results show the ability to capture temporal

dependencies of LSTM. In [18], the Butterworth filter is
applied to remove noise and artifacts. The authors extract
EDA, ECG, EMG handcrafted features, and RNN-generated
features. They then select 50 features for the Artificial Neural
Network (ANN) input. The proposed method outperforms
most of the previous research for pain recognition.

In addition, several methods fully apply deep learning for
both feature extraction and classification model. In [19], the
authors employ a Butterworth filter to remove noise from
ECG and EDA signals. Based on these modalities, their
results indicate the effectiveness of the combination of convo-
lutional and LSTM networks for pain assessment. In [20], the
authors process EDA, ECG, and EMG physiological signals
with a Butterworth filter and data augmentation to enhance
samples. Their study mainly builds inference models based
on convolutional neural networks. Their experimental evalu-
ations demonstrate that the proposed uni-modal architecture
using EDA and the deep fusion approaches significantly
outperform previous methods. In [21], the authors pro-
pose a multi-modal Deep Denoising Convolutional AutoEn-
coders (DDCAE) architecture using Convolutional Neural
Networks. They reduce the sampling rate, noise, and artifacts
from EDA, ECG, and EMG signals and perform data aug-
mentation. In DDCAE, the authors propose a gating layer
to create a weighted representation based on the channel-
specific latent representations for each input channel. The
weighted representation is then used to optimize an inference
model for classification or the regression task. The attention
mechanism is also applied for weighted representation to
improve performance.

III. PROPOSED METHOD
In this section, we introduce the materials for the proposed
method. We introduce the definitions of multi-level context
information on physiological signals in pain intensity recog-
nition. Firstly, we recommend architectures suitable for phys-
iological signals including spatial and temporal architectures.
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Secondly, we present Bahdanau Variant Attention to extract
context information. In the last section, we introduce the
multi-level context information in detail.

A. SPATIAL ARCHITECTURE
Inspired by previous studies on the breakthrough perfor-
mance of deep learning networks, the proposed architec-
ture is built to emphasize the classification performance of
deep learning networks and minimize dependence on manual
designs. The work of expertise in medicine is precisely hand-
crafted features of physiological signals. This is employed
automatically in deep learning with hierarchical layers that
carry optimal parameters and weights.

In deep learning, Convolutional Neural Networks (CNN)
are widely used and highly effective networks for classifica-
tion tasks. The pooling layers reduce the number of parame-
ters to improve the calculation speed and avoid over-learning
while preserving essential characteristics. Non-linearity is
necessary to create non-linear decision boundaries between
the output and the input, which partly helps CNN make
breakthroughs.We opt a non-linear activation function named
Exponential Linear Unit (ELU) instead of ReLU to retain
negative values. The Exponential Linear Unit (ELU) activa-
tion function is performed elementwise on every value from
the input to saturate to a negative value when the argument
gets smaller. Also, it reduces the vanishing gradient effect.

In this study, we implement CNN with ELU activation to
retain the negative values of feature maps. Then, we perform
Instance Normalization to normalize all features of one chan-
nel. Finally, the feature maps are averagely pooled to reduce
the spatial resolution. A simple spatial architecture designed
for physiological signals is built, as shown in Figure 2.

B. TEMPORAL ARCHITECTURE
Recurrent Neural Network (RNN) is not inferior to CNN
in many aspects of deep learning networks. RNNs are also
widely used and highly effective in tasks. However, RNN has
some errors in backpropagation but Long short-term memory
(LSTM) overcomes this disadvantage. Currently, this type
of architecture is popular and widely used. In unidirectional
LSTM, the hidden state carries contextual information from
the backward to the forward direction in a unidirectional
manner. Bidirectional LSTM is a sequence processing model
that carries two LSTM directions: forward and backward.
This helps BiLSTMs effectively increase the amount of infor-
mation available to the network. Therefore, BiLSTMs help
extract temporal information and capture context information
as a time series of physiological signals. It is illustrated in
Figure 3.

C. BAHDANAU VARIANT ATTENTION
The use of attention mechanisms in neural networks has
brought great success in many tasks. The main idea of the
attention mechanism is to focus on some relevant details
and ignore the rest selectively. Attention is a mechanism
that allows us to highlight different regions on an image.

The attention mechanism also aids in focusing correlated
words in a sentence. In deep learning, attention constructs a
vector whose values are important weights. These weights
determine the amount of attention we should pay to each
hidden state to generate the desired output.

In [22], Bahdanau et al. proposed neural machine trans-
lation with a novel architecture using an encoder-decoder
approach. The authors implement an attention mechanism
that incorporates the hidden state of RNN to extract context
vectors in the decoder. For each word, the context vector is
computed as the weighted sum of annotation. Each attention
weight is obtained by normalizing each energy score with a
softmax function, thereby determining the amount of atten-
tion that should be paid to each hidden state to produce the
desired output. The energy score is built on the alignment
function of the previous hidden state and the annotation.
The annotation of each word is obtained by concatenating
the forward and backward hidden states. Efficient use of the
weighted sum of these annotations helps context vectors carry
more selective context information than hidden states.

Inspired by the Bahdanau attention mechanism, we pro-
pose a variant of the Bahdanau attention mechanism for pain
recognition tasks. The idea of variation is based on separately
constituting two context vectors with attention weights from
the last forward and backward states. Combining the two
context vectors provides more contextual information regard-
ing the input sequence. The context vector of the variant is
calculated as follows:

c = c(forward) ⊕ c(backward) (1)

For the input sequence with length T, the annotation ht
(t = 1, ..T ) is a concatenation of forward hidden states
−→
ht and backward one

←−
ht . At the time t , the annotation

ht = [
−→
ht ,
←−
ht ] summarizes the information of forward and

backward in the input sequence. The context vector c(forward)

is calculated similarly to Bahdanau [22]:

c(forward) =
T∑
t=1

α
(forward)
t ht (2)

where

α
(forward)
t = softmax(e(forward)t ) (3)

e(forward)t = vTa tanh(Wal
(forward)
t + Uaht ) (4)

where Wa,Ua, va are weight matrices with the alignment

model a as a feedforward neural network. We let l(forward)t
be the scaled last forward hidden state at the time t . The
last hidden state contains all the temporal information from
the hidden representations and inputs of the previous time
step. The c(backward) is implemented similarly to the c(forward).
In addition, the combination of the scaled last hidden infor-
mation is given as follows:

l = l(forward) ⊕ l(backward) (5)
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FIGURE 2. CNN spatial architecture.

FIGURE 3. BiLSTMs architecture.

D. MULTI-LEVEL CONTEXT INFORMATION
This section introduces a method capable of extracting multi-
level representations from context information. We first per-
form standardization as a preprocessing step. After being
preprocessed, each physiological signal modality, as shown
in Figure 1, is fed into the Instance Normalization layer to
normalize the input layer. After normalization, each output is
fed into a CNN block to extract spatial information. Concur-
rently, the pooling layers are used to reduce spatial resolution.
The output of the CNN block is connected to the BiLSTMs
and Bahdanau Variant Attention in the level blocks.

Levels of blocks are built based on the fluctuating informa-
tion of the last hidden information, as it plays a pivotal role
in creating the context information. In this work, we choose
the classification of Pain 0 and Pain 4 to illustrate, that other
classification tasks have similar analyses. The last hidden
information of EDA and ECG for the classification Pain 0
and Pain 4 are illustrated in Figure 4 and Figure 5. High-
level values have larger fluctuations and deviations than the
remaining levels. It is similar toMiddle Level and Low Level.
We implement scaling to expand the last hidden information
at the High Level and compress it at the Middle Level and
Low Level before feeding it to the attention module.

In each level block, the hidden information and the scaled
last hidden information are fed into Bahdanau Variant Atten-
tion to extract the context vector. Combining the scaled last
hidden information and the context vector creates context
information. Finally, we combine the context information of
all level blocks generating multi-level context information,

as shown in Figure 6. Let k be the level of the block, the
context information CI and multi-level context information
MLCI are expressed in the following formula:

CI k = ck ⊕ lk (6)

MLCI = CI1 ⊕ CI2 ⊕ . . .⊕ CIm (7)

We perform m = 3 for the network architecture corre-
sponding to 3 levels: High Level, Middle Level, and Low
Level. In this work, we combine multi-level context informa-
tion from EDA and ECG physiological signals. The represen-
tations for the classification tasks are shown in Figure 7. The
detail of the last column c) is described in Figure 8.We choose
the classification of Pain 0 and Pain 4 to explain the com-
position of the illustration. The combined representation is
dropped out to avoid overfitting. Finally, the fully connected
layer (FC) is passed to compress the feature dimension and
Softmax function is applied to predict the probability of pain
occurrence. An overview of the architecture is illustrated in
Figure 1.

E. IMPLEMENTATION DETAILS
This network is trained with python programming language
using Keras on Tensorflow version 2.7. Adam optimiza-
tion [23] is performed to optimize the binary cross-entropy
loss function. In binary classification, the cross-entropy loss
function is defined as:

L = −(y log(p)+ (1− y) log(1− p)) (8)

where y is the class with the binary value (0 or 1) and p is the
prediction probability of the class.

For Part A of the BioVid Heat Pain database, we use
leave-one-subject-out (LOSO) cross-validation to improve
the comparability of recognition performances. The perfor-
mances are estimated with LOSO on all the available subjects
in the dataset. In [5], the authors propose a subject subset of
20 that excludes participants as noise subjects because they
do not respond clearly to applied pain stimuli. So, LOSO
cross-validation is conducted with the remaining 67 subjects.
We train 50 epochs with 64 samples for the batch. The
training process pauses when the validation loss results are
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FIGURE 4. Multi-level hidden information from EDA signal for the classification pain 0 and pain 4 of
subject 071614-m-20. The training process performs LOSO cross-validation evaluation with 67 subjects.
They are histogram charts with the x-axis representing the value and the y-axis representing the
frequency of the hidden information. The blue, red, and green colors represent high level, Middle Level,
and Low Level, respectively.

FIGURE 5. Multi-level hidden information from ECG signal for the classification pain 0 and pain 4 of
subject 071614-m-20. The training process performs LOSO cross-validation evaluation with 67 subjects.
They are histogram charts with the x-axis representing the value and the y-axis representing the
frequency of the hidden information. The blue, red, and green colors represent high level, Middle Level,
and Low Level, respectively.

not improved after five executions. The parameters for the
proposed model are given in Table 1.
For the EmoPain 2021 dataset, we use 3-fold cross-

validation on the training set. We then employ the average
of 3-fold prediction probability to give the final prediction
probability on the validation and the test sets. The evaluation
employs the F1 score of each class,MCC, and accuracy (in%)
for performance comparison. The parameters are also given
in Table 2.

IV. EXPERIMENTAL RESULTS
A. DATASET
1) BioVid HEAT PAIN DATABASE
BioVid Heat Pain Database [2] is a multi-modal dataset
including visual and physiological signals. The healthy sub-
jects are thermally stimulated to induce pain under controlled
temperature conditions. Pain thresholds are divided into five
classes: Pain 0, Pain 1, Pain 2, Pain 3, and Pain 4. Pain 0 is
the baseline class that represents the non-painful class. The
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FIGURE 6. The architecture of multi-level context information.

TABLE 1. Hyperparameter for the classification tasks based on Part A of
the BioVid heat pain database.

others represent four pain classes. The temperature starts at
32◦C as the initial temperature, then increases gradually but
does not exceed 50.5◦C. At that time, the participants feel
the heat of pain until the pain was unacceptable. In addition,
two intermediate levels are added. The experiment runs for
25 minutes with random pain levels. Each pain level is stim-
ulated 20 pain times in 4 seconds. Following each pain level
is a random rest duration of 8-12 seconds.

Data is recorded as frontal videos and different signal
modalities. The signals include EDA, ECG, and EMG sig-
nals. EDA shows the skin conductance level index measured

TABLE 2. Hyperparameter for the classification tasks based on the
Emopain 2021 dataset.

on the index finger and ring finger. In [2], this sensor is
considered an excellent indicator of internal tension because
the sweat glands are activated exclusively sympathetically.
The ECG represents the action potential of heart rate mea-
sured from two electrodes, one on the upper right side and
one on the lower left side of the body. The heart rate, the
interbeat interval, and the heart rate variability features of
the ECG represent a person’s mental indication and emo-
tional activity [2]. The EMG signal measures muscle activ-
ity and represents general psychophysiological arousal. The
current dataset includes EMG at the trapezius muscle, located
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FIGURE 7. The first column a) is EDA signal input, the second column b) is ECG signal input, and the last column c) is multi-level context
information in 67 subjects of LOSO cross-validation evaluation. Both EDA and ECG signals are 1-dimensional with a sequence length of 2816. The
x-axis represents the sequence length and the y-axis represents the sequence value.
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FIGURE 8. Detail illustration in the last column c) for the classification pain 0 and pain 4 of subject 071614-m-20.

posteriorly in the shoulder region. The activity of the trapez-
ius is a sign of a high-stress level.

The database includes 90 participants equally divided into
3 age groups such as 18–35, 36–50, and 51–65 years. Each
group is divided equally with 15 male and 15 female sub-
jects. The database consisted of multiple parts with slightly
different sizes and characteristics from 90 participants, the
reports of previous studies are primarily based on Part A.
To facilitate a comparison of the approaches, we evaluate
them based on Part A of the BioVid Heat Pain Database
in this study. Several subjects are missing due to technical
problems during recording [6]. Therefore, only 87 subjects
were available [6]. We describe the data structure of Part A
in Table 3. It is balanced for classification tasks.

The signals are provided as both raw and prepro-
cessed [24], [25]. For the preprocessed signals, a Butterworth
filter with 20–250 Hz and 0.1–250 Hz is applied to the EMG
and ECG signals. The EMG signal is additionally filtered
by the Empirical Mode Decomposition technique [26] and
its bursts are detected by the Hilbert Spectrum [27]. Each
video has a sequence length of 5.5 seconds. Each signal has
a sequence length of 2816, a time window of 5.5 seconds,
and an epoch length of 512 Hz. For each subject, there are
20 random pain stimuli times for each level. The dataset

consists of 87 subjects*20 times*5 levels= 8700 samples for
the pain intensity recognition task.

2) EMOPAIN 2021 DATASET
The AffectMove 2021 Challenge [4] is divided into three
tasks. Task 1 of the competition promotes protective behavior
detection based on subjects with chronic musculoskeletal
pain from the Emopain dataset [28]. This dataset is built
on the deep knowledge of the automatic detection of affec-
tive/cognitive experiences without subjective evaluation fac-
tors. The Emopain 2021 dataset is a subset of the EmoPain
dataset [28] suitable for building protection behavior detec-
tion technology [4]. It is used for Task 1 of The AffectMove
2021 challenge [4].

The dataset contains anonymized 3D full-body joint posi-
tions from videos and electromechanical signals from the
back muscles of 19 subjects with chronic low back pain.
The data has two classes Pain or No Pain. It consists of
5.827, 1.844, and 2.744 samples with training, validation,
and testing sets, respectively. It also includes 51 features
corresponding to 51 joint positions extracted from videos
and four features corresponding to four muscle groups of
electromechanical signals.We also describe the data structure
in Table 4 and its distribution in Figure 9.
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TABLE 3. Data structure of Part A of the BioVid heat pain database.

TABLE 4. Data structure of the EmoPain 2021 dataset.

FIGURE 9. Distribution of the Emopain 2021 dataset.

B. PERFORMANCE ANALYSIS
1) BioVid HEAT PAIN DATABASE
We evaluate the proposed model based on Part A of the
BioVid Heat Pain Database. We use the LOSO cross-
validation method, which assigns a subject as a test, and
the remaining subjects are used for training. The training
process includes 67 times for 67 subjects and 87 times for
87 subjects. The average accuracy (in %) of the training
process over the LOSO cross-validation evaluation is used for
comparison with previous studies and the standard deviation
is also provided. For pain recognition, we perform four binary
classification tasks.

Experiments on other modalities are also performed.
Table 5 presents the performance of the classification tasks
for 67 and 87 subjects in the LOSO cross-validation. We con-
clude that EDA is of great significance in the proposed

approach to pain recognition. The combination of EDA and
ECGmostly has the best performance for classification tasks.

We experiment with architectures using only one level of
context information including Low Level, Middle Level, and
High Level. Table 6 compares the performance of levels for
classification tasks on 67 subjects and 87 subjects in a LOSO
cross-validation evaluation. The results show that multi-level
context information performs more significantly than uni-
level context information based on physiological signals.

The evaluation of the proposed model based on the highest
pain classification compared with previous studies is pre-
sented in Table 7. In Table 5, we experiment on EDA signal
and achieve an accuracy of 84.8B113.3% for 87 subjects and
87.6B117.4% for 67 subjects. Our results for the classifica-
tion of Pain 0 and Pain 4 are also the best for EDA signals. The
approach in [6] using 5-fold cross-validation evaluation with
all modalities has a 4.2% lower average accuracy than our
approach using LOSO cross-validation evaluation with EDA
and ECG signals. Even though the approach in [16] employs
EDA and ECG modalities with 10-fold cross-validation, our
method still has a 2.15% better average accuracy. In addition,
ourmethodwhich only performs the combination of EDA and
ECG achieves better results than the methods that combine
the entire modality. In addition, the authors in [5] eliminate
noise subjects who did not respond visibly to pain stimuli dur-
ing training. There are few performance reports on this subset.
However, we also report the performance of 67 subjects. Our
approach has the highest performance on this topic for the
classification of Pain 0 and Pain 4.

Table 8 presents the performance of the proposed approach
compared to several previous approaches for classification
tasks. The proposed approach mostly outperforms other
methods for other classification tasks. However, the perfor-
mance of the proposed method is slightly inferior to that of
the method in [20]. The authors of [20] perform complex
data preprocessing for physiological signals and data aug-
mentation to increase the amount of data. By contrast, our
method uses the available signals in the dataset and achieves
competitive results for pain recognition.

In addition, we reveal Receiver Operating Characteristic
(ROC) Curves for classification tasks with 67 subjects and
87 subjects in Figure 10 and Figure 11.

2) EMOPAIN 2021 DATASET
We also apply the proposed method using physiological sig-
nals of the Emopain 2021 dataset for binary classification.
The training process is conductedwith 3-fold cross-validation
on the training set to evaluate the validation and the test sets.
Let each fold k , we set up the weight W (k)

i for each class i in
the training process to solve unbalanced data:

W (k)
i =

N (k)

2N (k)
i

, i = {0, 1} (9)

where N is the specific number of samples.
Table 9 shows the effect of combining levels in our

approach. The results prove that using multi-level gives better
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TABLE 5. Performance based on Part A for the classification tasks in a LOSO cross-validation evaluation.

TABLE 6. Level performance comparison based on Part A of the BioVid heat pain database for the classification tasks in a LOSO cross-validation
evaluation.

TABLE 7. Performance comparison based on Part A of the BioVid heat pain for classification pain 0 vs. pain 4.

TABLE 8. Performance comparison based on Part A of the BioVid heat pain for the classification tasks in a LOSO cross-validation evaluation.

outcomes than using uni-level in the context information
based on physiological signals. Table 10 compare perfor-
mance based on the Emopain 2021 Dataset. The previous
methods are proposed for 3-D joint of video, and then four
features of signals are used together. In [30], the authors
propose 19 angle features and a statistic feature from the 3-D
joints to enhance the performance on the validation set. They

use the late fusion for 1-DCNN architecture with shortcut
connections. In [31], the authors calculate the distance vectors
between joints and the hips center, normalize by the distance
between the shoulders center and the hips center. Random
Forest is used for classification. In [32], the authors use
statistical features for Random Forest and XGBoost models.
In [33], they perform late fusion between PA-ResGCN for
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TABLE 9. Level performance using physiological signals based on the Emopain 2021 dataset.

FIGURE 10. Receiver operating characteristic curves based on Part A of
the BioVid heat pain for the classification tasks with 67 subjects.

FIGURE 11. Receiver operating characteristic curves based on Part A of
the BioVid heat pain for the classification tasks with 87 subjects.

3-D joints and CNN for signals. They also conclude that
EMGs do not improve their performance.

FIGURE 12. Receiver operating characteristic curves based on the
Emopain 2021 Dataset.

However, the results of the proposed method are feasible.
We also illustrate ROC on validation set and test set in
Figure 12.

C. DISCUSSION
The method mainly applies basic architectures, including
spatial, temporal architecture, and attention modules. With a
simple architecture based on physiological signals available
in datasets, our method offers competitive performance with
previous methods. The proposed method is based on hidden
sequence information to generate context information. Our
experimental results demonstrate that using multi-level is
more effective than using uni-level in the context information
based on Part A of the BioVid Heat Pain database and the
Emopain 2021 dataset. For Part A of the BioVid Heat Pain
Database, our method using EDA achieves an accuracy of
87.6B117.4% 84.8B113.3% for the classification Pain 0 and
Pain 4 in the LOSO cross-validation evaluation with 67 and
87 subjects, respectively. In addition, the combination of
EDA and ECG achieves an accuracy of 87.8B111.4% and
84.8B113.3% for the classification Pain 0 and Pain 4 in the
LOSO cross-validation evaluation with 67 and 87 subjects,
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TABLE 10. Performance based on the Emopain 2021 dataset.

respectively. The proposed model achieves competitive per-
formance with previous methods for other classification
tasks.

The novelty of our method is the proposal of multi-
level context information from physiological signals for pain
recognition tasks. Latent information on sequences of phys-
iological signals has the potential to be explored in classifi-
cation tasks. Specifically, we explore hidden information for
pain recognition in this study. Our approach replaces manual
extraction methods that require highly specialized knowledge
in medicine.

However, our method has not been optimally effective on
the Emopain 2021 dataset and several classification tasks of
Part A of the BioVid Heat Pain database. We experiment with
common parameters for physiological signals and have not
yet explored the optimal parameters for each physiological
signal. The competitive results show that the parameters do
not primarily affect performance.

The latent sequence information can be further explored
and improved in the future to produce capable context infor-
mation on physiological signals. The combination of signifi-
cant context information creates superior multi-level context
information.

V. CONCLUSION
This paper proposes a deep learning approach based on
physiological signals for pain recognition. Our method has
the role of feature extraction and classification, completely
replacing manual extraction methods that require highly
specialized knowledge.We propose multi-level context infor-
mation explored from hidden sequence information. Specif-
ically, the architecture employs hidden information for the
attentionmechanism to create the context vector.We combine
hidden information and context vector to create the context
information. Combining context information at three levels
produces multi-level context information. We perform binary
classification between baseline and different pain intensi-
ties based on Part A of the BioVid Heat Pain database.
In addition, we also perform binary classification based on
the Emopain 2021 dataset. Our experimental results prove
that multi-level context information has more significance
than uni-level context information based on Part A of the
BioVid Heat Pain database and the Emopain 2021 dataset.
Our results demonstrate the great significance of EDA in pain
classification. Combining EDA and ECG mostly provides

good performance in classification tasks based on Part A of
the BioVid Heat Pain database.

In summary, the deep learning approach has superior
potential to replace previous conventional methods in pain
recognition tasks. The exploration of hidden information in
the physiological signal sequence provides significant perfor-
mance for classification tasks.
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