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ABSTRACT This paper addresses the problem of estimating a functional vector for a class of linear
time-invariant descriptor systems with unknown inputs. The unknown inputs are considered in both the
system dynamics and measurement equations. The proposed observer has an order less than or equal to the
dimension of the functional vector to be estimated. The existence of functional ODE observers is proved
under simple rank conditions on the system coefficient matrices. A few numerical examples are included to
illustrate the proposed theory and designed algorithm.

INDEX TERMS Descriptor systems (differential-algebraic equations), linear systems observers, functional
(partial state) observers, unknown inputs.

I. INTRODUCTION
In this paper, we study a class of linear time-invariant (LTI)
descriptor systems of the form

Eẋ(t) = Ax(t) + Bu(t) + Fv(t), (1a)

y(t) = Cx(t) + Gv(t), (1b)

z(t) = Kx(t), (1c)

where E ∈ Rm×n, A ∈ Rm×n, B ∈ Rm×k , C ∈ Rp×n,
F ∈ Rm×q, G ∈ Rp×q, and K ∈ Rr×n are known
constant matrices. The vectors x(t) ∈ Rn, u(t) ∈ Rk ,
v(t) ∈ Rq, and y(t) ∈ Rp are the semistate vector, the
known input (control) vector, the unknown (immeasurable)
input vector, and the (measured) output vector, respectively.
Notably, unlike the standard state space theory, x(t) does
not satisfy the semigroup property and cannot be initialized
with an arbitrary initial condition; therefore, we call x(t) the
semistate vector instead of the state vector. The functional
vector z(t) ∈ Rr contains unmeasured (output) variables, and
therefore observers are needed to estimate them. An observer
that estimates zwithout estimating the whole semistate vector
x is said to be a functional (or partial state) observer. More-
over, any functional observer becomes a full-state observer
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if K is the identity matrix of order n. The first order matrix
polynomial (λE −A), in the indeterminate λ, is called matrix
pencil for (1). We call the system (1) regular if m = n
and det(λE − A) is not an identically zero polynomial in λ.
In the present paper, we do not necessarily assume that the
system is regular or square. Moreover, we also allow con-
sidering the cases when matrices E and A may be under or
over-determined.

Descriptor systems result from mathematical modeling of
physical processes where the dynamics are subject to alge-
braic constraints. To name but a few, descriptor systems have
found extensive applications in electrical circuits, mechanical
systems, and chemical engineering; for more motivation and
references, we refer the readers to the books [1], [2], [3]. Due
to separate independent investigations by researchers from
different disciplines, there are several names synonymous
with descriptor systems, viz. singular systems [1], [2], [4],
generalized state space systems [5], or systems described by
differential-algebraic equations (DAEs) [6], [7]. From the
seminal work of El-Tohami et al. [5], the theory and design
of observers for descriptor systems have beenwell developed.
Recently, a relatively complete discussion on necessary and
sufficient conditions for the existence of full-state observers
for linear descriptor systems without unknown inputs has
been given by Jaiswal et al. [8].
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On the other hand, many applications need only a part
or combination of semistates instead of having information
on the whole semistate vector. Some particular examples
are feedback control, and fault or disturbance detection [9].
Functional observers eliminate the redundancy because the
full-state observers may estimate even those states which are
either directly measurable or are of no use. Besides the appli-
cations’ viewpoint, theoretically, functional observers are
essential because these can be designed under much weaker
conditions than those which are necessary for the existence
of full-state observers. Therefore, functional observer design
is an active area of research, even in the case of standard state
space systems, e.g., see [10]. Moreover, as far as the linear
descriptor systems are concerned, considerable attention has
also been paid to the design of functional observers. The
contributions made toward such observers can be broadly
classified into two approaches. In the first approach, the
observers are made in DAE form itself by adding a lin-
ear correction term to the dynamics of the original descrip-
tor system [2], [11], [12]. On the other hand, the second
approach provides observers that are described only by ordi-
nary differential equations (ODEs) [13], [14], [15], [16], [17].
Such observers are often called ODE (or Luenberger-type)
observers. An ODE observer is always preferred because it
can be arbitrarily initialized and is easy to implement using
standard software, such as the ode45 module in MATLAB.

It is notable that, due to the appearance of input deriva-
tives in the solutions, descriptor systems are susceptible
to small changes in input variables. However, there are
many practical situations where control systems arise either
with noise/disturbances or inputs are not entirely accessi-
ble. Therefore, the observer design problem for descriptor
systems with unknown inputs is of great significance for its
theoretical and practical importance. Many results have been
obtained on full-state observers for descriptor systems with
unknown inputs in the last three decades; see [18], [19], [20],
[21], [22], [23], [24] and references therein. On the other
hand, the literature on functional observers for descriptor
systems with unknown input is not very rich [12], [25], [26],
[27], [28]. Berger [12] has studied descriptor systems (1) in
the context of disturbance decoupled estimation and estab-
lished a necessary and sufficient condition for the existence of
functional DAE observers. The initial contributions on func-
tional ODE observers [25], [26], [27] are for regular or square
linear descriptor systems, and the assumptions under which
the observers are designed are too restrictive. More recently,
Zhang et al. [28] have proved the existence of prescribed-time
functional ODE observers for the systems of the form (1)
under some rank conditions, which are weaker than those in
the previous works [25], [26], [27].

The main aim of the current paper is to generalize the exist-
ing results on full-state observers for linear descriptor systems
with unknown inputs to the case of functional observers.
There are two main reasons for rendering such general-
izations. First, the functional observers can be designed

with considerably weaker assumptions. Second, functional
observers can have significantly lower order than full-state
observers. The observer design approach used in the current
paper is purely algebraic and hence, easily implementable.
The main features of the approach are that (i) it is not
restricted to the square descriptor systems; (ii) the formulated
functional observer is governed by ODEs only; (iii) it handles
the presence of unknown inputs in both the dynamics of
semistates and the outputs; (iv) the used existence conditions
are milder than the previous existing works on functional
ODE observers; and (v) the proposed observer may have
reduced order less than the dimension of the functional vector
to be estimated. The above fourth and fifth features of the
approach make this paper unique to the earlier works [12],
[25], [26], [27], [28]. Notably, the order of the realized
observers is equal to the dimension of the functional vec-
tor in [15], [16], [17], [25], [26], [27], and [28]. However,
the functional vector z, in general, may contain information
available in the output vector y. It is further to note that the
article [28] describes an observer design method under the
intended necessary and sufficient conditions. However, in the
current paper, we show that the conditions established in [28]
are still restrictive and need not be necessary in the case of
asymptotic observers.

The paper is organized as follows. Section II starts with the
problem statement and collects some preliminary results used
in this article. Section III contains the main contribution and
provides a less restrictive set of conditions for the existence
of functional ODE observers. Here, the proposed observer
has an order less or equal to the dimension of the functional
vector to be estimated. Two numerical examples are given to
illustrate the observer design procedure in Section IV. Finally,
Section V concludes the article.
We use the following notations: 0 and I , respectively, stand

for appropriate dimensional zero and identity matrices. For
more clarity, the identity matrix of size n × n is sometimes
denoted by In. All missing blocks are zero matrices of appro-
priate dimensions in a block-partitioned matrix. The symbols
Row(A), A⊤, and A+ represent the row space, the transpose,
and the Moore-Penrose inverse (MP-inverse) of any matrix
A, respectively. C denotes the set of complex numbers and
C̄+

:= {λ ∈ C | Re(λ) ≥ 0}. A matrix pencil (λE − A)
is said to have normal-rank s if rank(λE − A) = s, for all
finite λ ∈ C except some individual values. A block diagonal
matrix having matrices X , Y , and Z on its main diagonal is
represented by blk-diag(X ,Y ,Z ). The notion ẑ(t) → z(t) as
t → ∞ means that limt→∞ ess sup[t,∞)||ẑ(t) − z(t)|| = 0.

II. PROBLEM STATEMENT AND PRELIMINARIES
In this paper, we propose a method to design an observer of
the following form:

ẇ(t) = Nw(t) +
[
H L

] [
u(t)
y(t)

]
, w(t) ∈ Rl (2a)

ẑ(t) = Rw(t) +
[
M1 M2

] [
u(t)
y(t)

]
. (2b)
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Any observer of the above form is called an ODE observer
because (2a) is a system of ODEs only. Throughout the study,
it is assumed that the system designer has already defined
the system (1) in such a way that we have an input u(t) and
a certain (unknown) initial condition Ex(0−) such that the
solution set of (1) is nonempty. Such a pair ofEx(0−) and u(t)
is called an admissible pair for (1), see also [8, Definition 4].
The tuple (x, u, v, y, z) ∈ L 1

loc(R → Rn
×Rk

×Rq
×Rp

×Rr )
is said to be a solution of (1) if it satisfies (1) for almost all
t ∈ R and Ex ∈ AC(R → Rn), where L 1

loc andAC represent
the set of locally Lebesgue integrable functions and the set of
absolutely continuous functions, respectively. We denote the
solution set of (1) by B, which is also called the behavior of
(1) in [6] and [29], where the authors have used B to define
various solution and observability concepts for (1). We now
exploit B to define functional ODE observer for (1)
Definition 1: System (2) is said to be a functional

ODE observer for (1), if for every (x, u, v, y, z) ∈

B, we have a solution (w, u, y, ẑ) of (2) such that
limt→∞ ess sup[t,∞)||ẑ(t) − z(t)|| = 0.
The non-negative integer l in (2a) is called the order of the
observer. If l < r , the observer is called a reduced-order
observer. Moreover, If l = 0, the observer is expressed only
by (2b) and is called a static observer.

The main problem that we have considered in the current
article is to design a functional ODE observer (2) for a given
system (1). Mathematically, the problem is to design matrices
N , H , L, R, M1, and M2 of appropriate dimensions such that
ẑ(t) → z(t) as t → ∞.
We now recall the following fundamental results of matrix

theory from our recent work [15]. All these results will be
used in the sequel of the current paper.
Lemma 1: System XA = B is solvable for the unknown X

if and only if rank
[
A
B

]
= rankA, equivalently, BA+A = B.

Moreover,

X = BA+
− Z (I − AA+),

where Z is an arbitrary matrix of appropriate dimension.
Lemma 2: Let A ∈ Fm×n, B ∈ Fp×n, and F be any field.

Then for a consistent system in unknowns x and z: Ax = b
and z = Bx, the vector z ∈ Fp can be uniquely determined if
and only if rank

[
A
B

]
= rankA.

Lemma 3: Let X, Y , and Z be any matrices of compatible
dimensions. If X has full row rank and/or Z has full column
rank, then

rank
[
X Y
0 Z

]
= rankX + rankZ .

Lemma 4: Let X and Y be any two matrices of compatible
dimensions. Then rank(XY ) = rankY if and only if the matrix[

X
I − YY+

]
has full column rank.

Lemma 5: Let A, B, C, and D be any matrices of com-

patible dimensions such that rank
[
A B
C D

]
= rank

[
A B

]
, then

rank
[
A
C

]
= rankA and rank

[
B
D

]
= rankB.

The following lemma is motivated by the work of Jaiswal
et al. [17].
Lemma 6: Let E ∈ Rm×n, A ∈ Rm×n, B ∈ Rm×k , and F ∈

Rm×q. Then there exist two orthogonal matrices U ∈ Rm×m

and V ∈ Rn×n such that

UEV =

E11 E12
0 E22
0 0

 , UAV =

A11 A12
A21 A22
0 A32

 , (3a)

UB =

B11B21
0

 , andUF =

F11F21
0

 , (3b)

where
1) E11 has full row rank,

2)
[
E11 E12 B11 F11
0 E22 B21 F21

]
has full row rank,

3) A32 has full column rank.
Proof: Take the matrix quadruple (E,A,B,F) and com-

pute an orthogonal row compression matrix U1 ∈ Rm×m of[
E B F

]
such that

U1
[
E B F

]
=

[
E1 B1 F1
0 0 0

]
,

where matrix
[
E1 B1 F1

]
has full row rank, say r1. Denote

U1A =

[
A1
A2

]
,

where A1 ∈ Rr1×n, and compute an orthogonal column
compression matrix V1 ∈ Rn×n of A2 such that

A2V1 =
[
0 A32

]
,

where A32 ∈ Rm−r1×c1 has full column rank. Denote E1V1 =[
Ẽ1 Ē1

]
, where Ẽ1 ∈ Rr1×n−c1 and further compute an

orthogonal row compression U2 ∈ Rr1×r1 of Ẽ1 such that

U2Ẽ1 =

[
E11
0

]
,

where E11 has full row rank. Thus, the desired decomposition
is obtained by taking the orthogonal matrices

U =

[
U2 0
0 Im−r1

]
U1 and V = V1.

□
We end this section by recalling the following fundamental

result from standard state space control systems theory.
Definition 2 [30]: The matrix pair (A, C) is called

detectable if and only if

rank
[
λI − A
C

]
= n, for all λ ∈ C̄+.

Equivalently, a matrix Z of compatible dimension exists such
that the matrix A− ZC is Hurwitz (stable).
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III. OBSERVER DESIGN
By setting the notations

0 :=


E A B 0 0 F 0 0
0 E 0 A 0 0 F 0
0 0 0 E A 0 0 F
0 0 0 C 0 0 G 0
0 0 0 0 C 0 0 G
0 0 0 0 K 0 0 0

 ,

9 :=



E A B 0 0 F 0 0
0 E 0 A 0 0 F 0
0 0 0 E A 0 0 F
0 0 0 C 0 0 G 0
0 0 0 0 C 0 0 G
0 0 0 0 K 0 0 0
0 0 0 K 0 0 0 0


,

and

� :=


E A B 0 0 F 0 0
0 E 0 A 0 0 F 0
0 0 0 E A 0 0 F
0 0 0 C 0 0 G 0
0 0 0 0 C 0 0 G
0 0 0 K λK 0 0 0

 ,

we assume that system (1) satisfies the rank conditions:

rank0 = rank9, (4)

and

∀ λ ∈ C̄+
: rank0 = rank�. (5)

Remark 1: The assumptions (4) - (5) are milder than the
conditions used in earlier works on functional ODEobservers
for linear descriptor systems with unknown inputs [25], [26],
[27], [28]. Thus, the current paper covers a larger class of
descriptor systems, and this fact will be explained again in
Section IV by considering a numerical example.

In order to design observers, we first transform system (1)
into a new coordinate system by using the matrices U and V
in Lemma 6. In view of the decomposition (3), system (1) can
be written as

E11ẋ1 + E12ẋ2 = A11x1 + A12x2 + B11u+ F11v, (6a)

E22ẋ2 = A21x1 + A22x2 + B21u+ F21v, (6b)

0 = A32x2, (6c)

y = C1x1 + C2x2 + Gv, (6d)

z = K11x1 + K12x2, (6e)

where x = V
[
x1
x2

]
, CV =

[
C1 C2

]
, KV =

[
K11 K12

]
, and

the number of columns in C1 and K11 are the same as in E11.
The fact that the matrix A32 has full column rank implies x2 =

0 and hence system (6) reduces to

E11ẋ1 = A11x1 + B11u+ F11v, (7a)

ȳ = C̄1x1 + G1v, (7b)

z = K11x1, (7c)

where ȳ =

[
−B21u
y

]
, C̄1 =

[
A21
C1

]
, and G1 =

[
F21
G

]
. Let

rank(G1) = q1. Then, by using the singular value decom-
position (SVD), there exist two orthogonal matrices U3 and
V3 such that

U3G1V3 =

[
Iq1 0
0 0

]
. (8)

Therefore, premultiplying (7b) by U3 and assuming that v =

V3

[
v1
v2

]
, we obtain[

y1
y2

]
=

[
C11
C21

]
x1 +

[
Iq1 0
0 0

] [
v1
v2

]
,

whereU3ȳ =

[
y1
y2

]
andU3C̄1 =

[
C11
C21

]
. Thus, system (7) can

be rewritten as

E11ẋ1 = 8x1 + B11u+ F12y1 + F13v2, (9a)

y2 = C21x1, (9b)

z = K11x1, (9c)

where F11V3 =
[
F12 F13

]
and 8 = A11 − F12C11. It is

notable that the functional vector z in (9) is precisely the same
as in (1).

If rank
[
C21
K11

]
̸= rankC21 + rankK11, then some part of

z is already known form the output y2. Consequently, there
exist a permutation matrix P and two matrices S11 and P̄ of
appropriate dimensions such that Row(S11) ∩ Row(C21) =

{0}, Row(S11) ⊂ Row(K11), S11 has full row rank (say l), and

K11 = P
[
S11
P̄C21

]
.

Therefore, (9) reduces to

E11ẋ1(t) = 8x1(t) + B11u(t) + F12y1(t) + F13v2(t), (10a)

y2(t) = C21x1(t), (10b)

z(t) = P
[
S11
P̄C21

]
x1(t) = P

[
z1(t)
z2(t)

]
, (10c)

where z1(t) = S11x1(t) and z2(t) = P̄y2(t). Since z2 is
exactly known from the output y2, it is sufficient to design a
functional observer for z1 to estimate the functional vector z.
It is notable that if

rank
[
C21
K11

]
= rankC21 + rankK11,

then S11 = K11, P = I , and P̄ is an empty matrix.
Now,we propose the following system as a functional ODE

observer for (10):

ẇ(t) = Nw(t) + TB11u(t) + TF12y1(t) + Ly2(t), (11a)

ẑ(t) = Rw(t) +My2(t), (11b)

wherew(t) ∈ Rl , R = P
[
Il
0

]
,M = P

[
M̄
P̄

]
, and M̄ is a matrix

of appropriate dimension to be determined.
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It is notable that the above observer for z in (10) is also
a functional ODE observer for z in (1). In the following
theorem, we prove that there exist matrices N , T , L, and M̄
such that (11) is a functional ODE observer for (1) if some
linear matrix equations are consistent and the matrix N is
Hurwitz.
Theorem 1: The observer (11) estimates the functional z(t)

in (1) if the following conditions hold:[
T M̄ Q N

]
6 = 2, (12a)

and N is Hurwitz, (12b)

where Q = NM̄ − L, 2 =
[
S11 0 0

]
, and 6 =

E11 8 F13
C21 0 0
0 C21 0
0 −S11 0

.
Proof: Let e = ẑ− z and e1 = w− TE11x1. Then

e = Rw+My2 − K11x1

= Rw+ P
[
M̄
P̄

]
y2 − P

[
S11
P̄C21

]
x1

= Re1 + R(TE11 + M̄C21 − S11)x1 (13)

and

ė1 = ẇ− TE11ẋ1
= Ne1 + (NTE11 + LC21 − T8)x1 − TF13v2. (14)

Thus from (13) and (14), we obtain that e → 0 as t → ∞ if
the following conditions hold

TE11 + M̄C21 = S11, (15a)

NTE11 + LC21 − T8 = 0, (15b)

TF13 = 0, (15c)

and N is Hurwitz. (15d)

Here, it is notable that Eq. (15b) is nonlinear in the unknowns.
To make it linear, we substitute (15a) in (15b) and obtain

T8 + QC21 − NS11 = 0, (16)

where Q = NM̄ − L. Clearly, Eqs. (15a), (15c), and (16) can
be rewritten as (12a). This completes the proof. □
Now, we transform the assumptions (4) and (5) from sys-

tem (1) to system (10). Define

Ũ1 = blk-diag(U ,U ,U , Ip, Ip, Ir ),

Ṽ1 = blk-diag(V ,V , Ik ,V ,V , Iq, Iq, Iq),

Ũ2 = blk-diag(Im1 ,U3,U3, Ir ),

Ṽ2 = blk-diag(In1 , In1 ,V3,V3),

where E11 ∈ Rm1×n1 . Since the rank of a matrix does not
change by pre- and post-multiplication of invertible matrices.
Therefore,

rank0 = rank Ũ10Ṽ1. (17)

We now write 0 in terms of the system coefficients E , A, B,
F , C , andG in the right hand side of (17). Then Lemma 3 and
Lemma 6 infer that

rank0 = rank
[
E11 E12 B11 F11
0 E22 B21 F21

]
+ 3 rankA32

+ rankE11 + rank00, (18)

where 00 =


E11 A11 0 F11
C̄1 0 G1 0
0 C̄1 0 G1
0 K11 0 0

 .

Again, to simplify the rank of the matrix 00, we use the
fact that rank00 = rank(Ũ200Ṽ2) and perform the following
operations:
1) Substitute decomposition (8), F11V3 =

[
F12 F13

]
,

U3C̄1 =

[
C11
C21

]
in Ũ200Ṽ2 and obtain

Ũ200Ṽ2 =


E11 A11 0 0 F12 F13
C11 0 Iq1 0 0 0
C21 0 0 0 0 0
0 C11 0 0 Iq1 0
0 C21 0 0 0 0
0 K11 0 0 0 0

 .

2) Perform elementary row operations due to pre-multiply
the matrix Ũ200Ṽ2 by

I −F12
I

I
I

I
I

 .

3) Use Lemma 3 twice for full rankmatrices Iq1 and obtain

rank00 = rank(Ũ200Ṽ2)

= 2q1 + rank


E11 8 F13
C21 0 0
0 C21 0
0 K11 0

 .

4) Substitute K11 = P
[
S11
P̄C21

]
, use the facts P is a permu-

tation matrix and

rank00 = 2q1 + rank


E11 8 F13
C21 0 0
0 C21 0
0 S11 0
0 P̄C21 0

 .

5) Perform elementary row operations due to pre-multiply
the right most matrix in the above expression by

I
I

I
I

−P̄ I

 .
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Therefore, we obtain

rank0 = rank
[
E11 E12 B11 F11
0 E22 B21 F21

]
+ 3 rankA32

+ rankE11 + 2q1 + rank01, (19)

where 01 =


E11 8 F13
C21 0 0
0 C21 0
0 S11 0

.

By the similar arguments which are used to obtain the rank
identity (19), it is easy to obtain that

rank9 = rank
[
E11 E12 B11 F11
0 E22 B21 F21

]
+ 3 rankA32

+ rankE11 + 2q1 + rank91 (20)

and

rank� = rank
[
E11 E12 B11 F11
0 E22 B21 F21

]
+ 3 rankA32

+ rankE11 + 2q1 + rank�1, (21)

where

91=


E11 8 F13
C21 0 0
0 C21 0
0 S11 0
S11 0 0

 and �1=


E11 8 F13
C21 0 0
0 C21 0
S11 λS11 0

.

Thus, from (19), (20), and (21), it follows that system (1)
satisfies (4) and (5) if and only if the system (10) satisfy the
conditions

rank91 = rank01 (22)

and

∀ λ ∈ C̄+
: rank�1 = rank01. (23)

Thus we have proved the follow result.
Lemma 7: System (1) satisfies conditions (4) and (5) if and

only if conditions (22) and (23) hold for system (10).
The rank identities (22) and (23) will be used to prove

the following theorem. The proof of the following theorem
is motivated by recent works [16], [17], where the authors
have studied systems of type (1) without unknown input
and established a sufficient condition for the existence of
functional ODE observers.
Theorem 2: The system (12) is solvable for the unknowns

if and only if (22) and (23) hold.
Proof: Lemma 1 infers that Eq. (12a) is solvable for the

unknowns if and only if (22) holds. Moreover,[
T M̄ Q N

]
= 26+

− Z (I − 66+), (24)

where Z is an arbitrary matrix of appropriate dimension.
Thus,[
T M̄ Q N

]
=

[
T1 M̄1 Q1 N1

]
−Z

[
T2 M̄2 Q2 N2

]
, (25)

where

T1 = 26+


I
0
0
0

 , T2 = (I − 66+)


I
0
0
0

 ,

M̄1 = 26+


0
I
0
0

 ,

M̄2 = (I − 66+)


0
I
0
0

 , Q1 = 26+


0
0
I
0

 ,

N1 = 26+


0
0
0
I

 ,

Q2 = (I − 66+)


0
0
I
0

 , and N2 = (I − 66+)


0
0
0
I

 .

Now, it remains to prove that the matrix N obtained in (25)
is Hurwitz. By Definition 2, there esixts a matrix Z such that
N obtained in (25) is Hurwitz if and only if the matrix pair
(N1,N2) is detectable, i.e., for all λ ∈ C̄+,

matrix
[
N1 − λI
N2

]
has full column rank. (26)

In view of Lemma 1, (22) is equivalent to the fact that 2 =

26+6. Hence, (23) can be rewritten as, for all λ ∈ C̄+,

rank


I 0 0 0
0 I 0 0
0 0 I 0


26+

+ λ
[
0 0 0 −I

]
 6 = rank6. (27)

Then Lemma 4 implies that (27) holds if and only if, for all
λ ∈ C̄+,

I 0 0 0
0 I 0 0
0 0 I 0


26+

+ λ
[
0 0 0 −I

]
I − 66+

 has full column rank.

(28)

By substituting the values of 26+ and I − 66+ in (28),
we obtain, for all λ ∈ C̄+,

I 0 0 0
0 I 0 0
0 0 I 0
T1 M̄1 Q1 N1 − λI
T2 M̄2 Q2 N2

 has full column rank,

which, by a direct consequence of Lemma 3, completes the
proof. □
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The following remark is warranted on Theorems 1 - 2 and
Lemma 7.
Remark 2: Lemma 7 proves that conditions (4) and (5)

hold for system (1) if and only if conditions (22) and (23) hold
for system (10). Thus, both of Theorems 1 - 2 infer that the
functional ODE observer (11) estimates the functional z(t) in
(1) if the assumptions (4) and (5) hold true. However, it is
not always recommended to verify assumption (5) initially
because it requires the determination of rank for polynomial
matrix �. It is a simple observation from Theorem 2 that
under the rank assumption (22), which is equivalent to (4),
the condition (23) and hence (5) holds if and only if the matrix
pair (N1, N2) is detectable, cf. Definition 2.
Based on Theorems 1 and 2, we now summarize the

observer design procedure in the form of Algorithm 1 below.

Algorithm 1 Computational steps to construct functional
ODE observer (11) for system (1)

1) Compute orthogonal matricesU and V as in Lemma 6.
2) Convert system (1) into the form (7) as explained in

Section III.
3) Use the SVD of G1 to compute orthogonal matrices

U3 and V3 as in (8).
4) Convert system (7) into the form (9) as explained in

Section III.

5) If rank
[
C21
K11

]
̸= rankC21+rankK11, then compute the

matrices P, S11, and P̄ such that

K11 = P
[
S11
P̄C21

]
.

Otherwise, take S11 = K11, P = I , and P̄ an empty
matrix.

6) Calculate 26+ and I −66+ by using the expressions
just below Eq. (12).

7) Extract N1 and N2 from 26+ and I − 66+, respec-
tively by using (25).

8) Compute Z such that the matrix N = N1 − ZN2 is
Hurwitz, also see Remark (3) below.

9) Compute T , M̄ , Q, and N by using (25).

10) Compute L = NM̄ − Q and M = P
[
M̄
P̄

]
(see the

expressions just below Eq. (11)).

Remark 3: The existence of Z in step 8) of Algorithm 1
is guaranteed due to the detectability of the matrix pair
(N1, N2), cf. Definition 2. Moreover, we can compute Z by
applying the concepts of Lyapunov stability theory, which
infers that Z can be obtained by solving the following linear
matrix inequality (LMI) for P̄2 = P̄⊤

2 > 0 (positive definite)
and Z̄ :

N⊤

1 P̄2 + P̄2N1 − N⊤

2 Z̄
⊤

− Z̄N2 < 0,

where Z̄ = P̄2Z, for more details, we refer to Chapter
5 in [31].

It is a well-known fact that if normal-rank(λE − A) < n,
then there exists more than one solution to (1a) [6]. Since

we estimate the functional vector via the observer design
approach, for any admissible pair of initial condition and
control input, z has to be unique in (1c) even if the uniqueness
of the semistate vector x is not recognized from (1a) alone.
In the following theorem, we show that conditions (22) and
(23) ensure the uniqueness of z1 in (10), which is equivalent
to saying that under assumptions (4) and (5), the functional
vector z in (1) can be determined uniquely for any admissible
pair (Ex(0−), u(t)).
Theorem 3: Suppose conditions (22) and (23) hold for

system (10). Then, for each admissible pair (E11x1(0−), u(t))

and output
[
y1(t)
y2(t)

]
, there exists a unique vector z1(t) satisfy-

ing (10).
Proof: Using the Laplace transform technique on (10)

and assuming no new notations for the Laplace transforms of
system variables, we obtain

Ē11(s)x̄1(s) =

[
E11
0

]
x1(0−) +

[
B11
0

]
u(s) + F̄

[
y1(s)
y2(s)

]
,

z(s) = P
[
S11 0
P̄C21 0

]
x̄1(s),

where Ē11(s) =

[
sE11 − 8 −F13
C21 0

]
, F̄ =

[
F12 0
0 Ip2

]
, and

x̄1(s) =

[
x1(s)
v2(s)

]
.

On the other hand, from (22) and (23), we obtain

rank91 = rank�1, for each λ ∈ C̄+.

Let p2 be the number of rows in matrix C21. Setting, for λ ∈

C̄+
\ {0},

Ũ3 =



Im1

1
λ
Ip2

1
λ
Ip2 Ip2

Il

 ,

Ṽ3 =

λIn1
−In1 In1

In1

 ,

and Ũ4 =



Im1

1
λ
Ip2

1
λ
Ip2 Ip2

λIl Il
1
λ
Il


,

we obtain

rank(Ũ491Ṽ3) = rank(Ũ3�1Ṽ3).
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This is equivalent to the fact that, for λ ∈ C̄+
\ {0},

rank


λE11 − 8 8 F13

C21 0 0
0 C21 0
0 λS11 0
S11 0 0



= rank


λE11 − 8 8 F13

C21 0 0
0 C21 0
0 λS11 0

 .

Hence, Lemma 5 infers that

normal−rank

sE11 − 8 − F13
C21 0
S11 0

=normal−rank Ē11(s),

i.e., z1 can be uniquely determined (see Lemma 2). □

IV. NUMERICAL ILLUSTRATION
Example 1: In this example, we illustrate Algorithm 1 for

designing functional ODE observer of a descriptor system
of the form (1). Consider (1) described by the coefficient
matrices:

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , A=


−1 1 0 0
−1 0 0 1
0 − 1 1 1
0 0 1 0

 , F=


−1
0
0
0

 ,

B =


1 0
0 1
0 0
0 0

 , C =


1 0
0 0
0 1
0 1


⊤

,G =

[
0
1

]
,

K =


1 0
1 1
0 − 1

−1 0


⊤

.

This system does not satisfy the conditions proposed in [28].
Therefore, we cannot design a functional ODE observer for
this system by using the methods available in the articles
[25], [26], [27], [28]. However, the system coefficient matri-
ces satisfy conditions (4) and (5), and therefore, a functional
ODE observer exists for this system.
First, by using the step 1) in Algorithm 1, we obtain

U =


−1 0 0 0
0 − 1 0 0
0 0 1 0
0 0 0 1

 and V =


0 − 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

Then step 2) of Algorithm 1 infers the following system coef-
ficient matrices for (7):

E11 =

[
0 1 0

−1 0 0

]
, A11=

[
−1 − 1 0
0 − 1 − 1

]
,

F11 =

[
1
0

]
,

B11 =

[
−1 0
0 − 1

]
, C̄1=

−1 0 1
0 − 1 0
0 0 1

 ,

G1 =

0
0
1

 ,

and K11 =

[
1 − 1 − 1
1 0 0

]
.

Now, by following the step 3), we calculate

U3 =

 0 0 1
0 1 0

−1 0 0

 and V3 = 1,

and thus, step 4) of Algorithm 1 provides the coefficient
matrices of (9):

E11 =

[
0 1 0

−1 0 0

]
, 8 =

[
−1 −1 −1
0 −1 −1

]
,

F12 =

[
1
0

]
, F13 = [empty]2×0, B11 =

[
−1 0
0 − 1

]
,

C21 =

[
0 − 1 0
1 0 − 1

]
, and K11 =

[
1 − 1 − 1
1 0 0

]
.

Here,

rank
[
C21
K11

]
= 3 ̸= 4 = rankC21 + rankK11.

Thus, step 5) ensures that some part of the functional vector
can be determined from the output y2, and thus, we obtain

S11 =
[
1 0 0

]
, P̄ =

[
1 1

]
, and P =

[
0 1
1 0

]
.

Therefore, (10c) reduces to

z = P
[
S11x1
P̄y2

]
=

[
P̄y2
S11x1

]
=:

[
z1
z2

]
. (29)

Clearly, we can determine z1 from the new output y2, and
observer is required only for z2. Thus, by following the
remaining steps of Algorithm 1, we obtain the first order
functional ODE observer (11) with the coefficient matrices:

N =
[
−10

]
, T =

[
5.5 −1

]
, L =

[
−50.5 4.5

]
,

R =

[
0
1

]
, and M =

[
1 1
5.5 0

]
.

Figure 1 shows the time responses of actual z(t) and esti-
mated functional ẑ(t). For the sake of numerical simulation,

we take u =

[
cos(t)
t

]
, v = sin(t), x1(0) =

[
−5 2 1

]⊤, and
w(0) = −1. Figure 1a shows that ẑ1 is exactly the same as
z1 because z1 is available from the output y2 in (29).
Example 2: In this example, we implement the proposed

functional ODE observer design method to estimate the volt-
age v2 in an electronic circuit shown in Figure 2 [28]. Here,
C1 and C2 denote capacitors, R1 and R2 stand for resistors,
and L is an inductor. Moreover, v1 and v2 represent the volt-
ages of C1 and C2, whereas i1 and iL represent the currents
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FIGURE 1. Time responses of actual and estimated functional in
Example 1.

FIGURE 2. An electronic circuit.

flowing across capacitor C1 and inductor L, respectively.
We assume that the voltage source input vin = vs is unknown.
After applying the Kirchhoff law, we obtain that the circuit
admits the following mathematical description [28]:

dv1
dt

=
1
C1
i1(t), (30a)

dv2
dt

=
1
C2
iL(t) −

1
C2R2

v2(t), (30b)

diL
dt

=
1
L
v1(t) −

1
L
v2(t), (30c)

vs(t) = v1(t) + R1iL(t) + R1i1(t). (30d)

By taking the semistate vector x =
[
v1 v2 iL i1

]⊤, the mea-
surable output y =

[
v1 iL i1

]⊤, and the unmeasured output

FIGURE 3. Time responses of the actual and estimated v2.

z = v2, the above system can be easily written in the form (1)
with coefficient matrices:

E =


C1 0 0 0
0 C2 0 0
0 0 − L 0
0 0 0 0

 , A =


0 0 0 1

0 −
1
R2

1 0

−1 1 0 0
1 0 R1 R1

 ,

B = 04×1, F =


0
0
0

−1

 , C =

1 0 0 0
0 0 1 0
0 0 0 1

 ,

G = 03×1, and K =
[
0 1 0 0

]
.

For simulation purpose, we take the circuit parameters C1 =

100 mF, C2 = 100 mF, R1 = 4 �, R2 = 4 �, L =

0.1 H [28]. It can be checked easily that the system satisfies
assumptions (4) and (5), therefore we can design a functional
ODE observer (11) by using Algorithm 1 to estimate v2:

N =
[
−10

]
, T =

[
−0.0100 0 −9.9975

]
, R =

[
1
]
,

L =
[
9.9975 10.0075 0

]
, and M =

[
0 −0.9998 0

]
.

In Figure 3, the true and estimated values of z = v2 have
been plotted by taking x(0) =

[
−1 2 −2 −4

]⊤
, w(0) = 4,

and the unknown input vs(t) = 4 sin(1.5t). Clearly, Figure 3
reveals that the designed functional ODE observer converges
to the true v2 of the system (30).

V. CONCLUSION
This paper has established a new set of the existence condi-
tions for functional ODE observers for a general class of lin-
ear time-invariant descriptor systems with unknown inputs.
These conditions are much milder than those obtained in the
earlier works on functional ODE observers. A numerically
stable and easily implantable algorithm has been proposed for
the observer design. If there is any redundancy between the
measured output and the functional vector to be estimated,
the designed algorithm provides an observer of an order
less than the dimension of the functional vector. However,
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the existence conditions established in this paper are less
restrictive, but they are still sufficient. Hence, there is still
room for additional works to fill this gap and to work on the
necessary and sufficient conditions for the existence of func-
tional observers for linear descriptor systems with unknown
inputs.
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