
Received 21 January 2023, accepted 16 February 2023, date of publication 23 February 2023, date of current version 1 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3248283

Packing Multiple Types of Cores for
Energy-Optimized Heterogeneous
Hardware-Software Co-Design of
Moldable Streaming Computations
SEBASTIAN LITZINGER 1, JÖRG KELLER 1, AND CHRISTOPH KESSLER 2
1Faculty of Mathematics and Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany
2Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden

Corresponding author: Sebastian Litzinger (sebastian.litzinger@fernuni-hagen.de)

The work of Christoph Kessler was supported by ELLIIT (Excellence Center at Linköping - Lund in Information Technology), through the
project C05 GPAI (General-Purpose AI Computing).

ABSTRACT For fixed-application scenarios in embedded soft-realtime computing, the ideal (w.r.t. energy
consumption) heterogeneous multi-core CPU design within given chip dimensions can be configured by
composing it from given pre-layouted, rectangular chip submodules for each of a number K > 1 of core
types, where K in practice is a small constant. For example, K = 2 in traditional ARM big.LITTLE designs.
Nevertheless, even better solutions might be achieved for K > 2, and many feasible combinations can exist.
For this purpose, we investigate finding all combinations of instances of K > 1 different types of given
axis-parallel rectangles that can be packed within a given fixed-size 2D rectangle, and we propose two new
packing heuristics: the corner heuristic for K ≤ 4, and the onion heuristic for larger K . Both heuristics
strive to pack cores of the same type close together, to simplify implementation of on-chip bus and shared
cache structures. The core combinations can be used in co-optimizing chip configuration, task mapping and
scheduling for stream processing applications. We evaluate the corner heuristic for a number of different
types of ARM softcores and chip dimensions, and show that it outperforms strip packing techniques from
the literature and yields similar results to an advanced rectpack heuristic allowing rotation, though these do
not try to pack similar cores closely.

INDEX TERMS Packing rectangles, heterogeneous multi-core CPU, design space exploration, hardware-
software co-design.

I. INTRODUCTION
In embedded systems, applications such as streaming com-
putations and platform are often developed simultaneously,
so that the platform is targeted towards the application
at hand [1]. Within the platform, we focus on the config-
uration of a processor chip with multiple cores of differ-
ent types, as computer architecture follows a strong trend
towards higher core-level parallelism and towards increased
heterogeneity, and will continue to do so for the foreseeable
future [2], [3].

In addition to Application Specific Integrated Circuits
(ASICs), which first come to mind for such a platform to

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

implement the necessary number of IP cores, also Field Pro-
grammable Gate Arrays (FPGAs) implementing soft-cores
may be used, in order to allow for a configuration update
at a later time. The three main configuration parameters of
such a system are application throughput, platform power
consumption, and platform area, which all shall be optimized
(throughput maximized, power consumption and area mini-
mized), but which are interdependent. The design space of
possible solutions is large, as also the application must be
configured: we assume a streaming application which con-
sists of a number of parallelizable tasks of known workload
that execute and communicate in rounds. A scheduler assigns
a degree of parallelism and an operating frequency to each
task, maps the tasks onto the different (types of) cores, and
sets start times for all tasks. For a fixed application, a static

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 19301

https://orcid.org/0000-0003-2200-7337
https://orcid.org/0000-0003-0303-6140
https://orcid.org/0000-0001-5241-0026
https://orcid.org/0000-0003-0619-0338

S. Litzinger et al.: Packing Multiple Types of Cores

FIGURE 1. Our approach generates a table of all different feasible
non-dominated multi-type core combinations, which will be considered
by the ILP solver [4] in the subsequent design space exploration phase.

scheduler performs these actions prior to actual execution.
Thus, scheduling can be combined with the question of
core provisioning in the platform, leading to integration of
scheduling and design space exploration.

In order to reduce the solution space, one can constrain
one parameter, such as giving a maximum area, and find
the Pareto front of all optimal combinations of throughput
and power consumption, or one can constrain two parame-
ters, such as maximum area and minimum throughput, and
optimize the third. Overheating the chip can be avoided by
constraints on maximum frequency or task placement.

In a previous work [4], we have presented an integer linear
program (ILP) that combines this design space exploration
with the actual task allocation, scheduling and frequency
scaling to obtain a Pareto front of solutions that show min-
imum power consumption compared to throughput, given an
area constraint. Yet, computing the area need of a collection
of processor cores of different types poses a problem in
itself, even in the absence of different integration technology
generations. A simple solution might rely on knowledge of
approximate area consumption for each core type to compute
total area as a weighted sum, leaving out geometry consider-
ations, and thus overestimating the number of possible cores.
An exact solution might layout the necessary cores to see if
they can be placed (and routed) within the die area.While this
solution is already cumbersome for pre-layouted IP cores, the
design space exploration needs many combinations of differ-
ent cores, which would have to be checked for feasibility, i.e.
such an approach is impractical.

As an intermediate, we follow a geometric approach: if
there are K different core types with known rectangular
dimensions, and the dimension of the die rectangle is fixed,
then for any combination of (p1, . . . , pK−1) cores of types 1
to K − 1, that can be packed within the die rectangle,
we compute a layout that fits the maximum number pK of
cores of type K that we can still place on the die. Thus,
we compute all possible, non-dominated combinations of
core counts (p1, . . . , pK), which can be used as a reference
table in the above ILP (see also Figure 1). This solution is
much faster than providing an exact layout, and it yields more
realistic numbers than the simple area calculation. The corner
heuristic that we present and employ works for K ≤ 4 core
types, and can be extended to more core types via the onion
heuristic. As an additional advantage, the heuristic tries to
place cores of one type in several rows, so that structures

like buses are as short as possible and the regular geometry
supports bus layout. Similarly, resources like shared caches
can be placed easier in such a geometry. We call this feature
proximity property. A potential concern with a layout placing
all cores of a type in close proximity is that the hardware may
be damaged due to thermal issues. However, in addition to
frequency scaling and specifying different maximum operat-
ing frequencies depending on cumulative core load, modern
CPUs will employ throttling to avert imminent damage to the
chip caused by overheating. Of course, it is still advisable to
apply an adequate cooling solution to prevent throttling from
happening under normal operating conditions. What is more,
the scheduler may consider thermal issues when placing tasks
onto different cores (see [5] for how this can be achieved on
the application level).

We formalize the proximity property and compare our
heuristic with state-of-the-art placement approaches both
with respect to packing density and with respect to proximity,
and find that it is competitive with respect to density and
superior with respect to proximity.

Overall, this article makes the following contributions:
• We present two heuristic algorithms: the corner heuristic
for K ≤ 4, and as its generalization the onion heuristic
for arbitrary number K of core types, to solve the prob-
lem of generating all possible non-dominated optimized
combinations of different numbers of pre-layouted cores
of K different types that can be packed with proximity
within a die rectangle with given dimensions. We also
suggest a generalization to consider restricted rotation
in the packings.

• We experimentally evaluate and compare our heuristics
with respect to optimization time and aggregated solu-
tion quality with state-of-the-art rectangle packing algo-
rithms, using core type parameters taken from real-world
ARM cores and for different die sizes.

The remainder of this article is organized as follows.
Section II discusses related work. Section III formalizes the
problem, introduces the corner heuristic and sketches how to
extend it to an onion heuristic. Section IV presents experi-
mental results to compare the placement performance of the
corner heuristic to other heuristics and to an upper bound.
Section V summarizes and proposes future work.

II. RELATED WORK
Floorplanning as the placement of general cells on a
2-dimensional area has been applied as one step in the VLSI
design chain for decades, see e.g. Lengauer’s book [6]. While
those cells typically are much smaller than a complete core,
also floorplanning for amultitude of (possibly different) cores
has been considered in design space exploration [7], [8]. Yet,
the design goal there is often not to place the maximum
number of cores, but a fixed combination of different cores
that is optimal with respect to a required throughput or power
consumption. This is also true for [9] where a placement
heuristic for two different core types is given, which we
generalize to K > 2 core types in this paper. While [9], by

19302 VOLUME 11, 2023

S. Litzinger et al.: Packing Multiple Types of Cores

design,1 places similar cores as closely as possible, it does not
formalize proximity, only considers two core types, and does
not use that placement, but the achieved core counts serve as
a lower bound in a design space exploration.

The decision problem of placing a complete set ofm rectan-
gles with fixed orientation2 into a bounding rectangle of given
dimensionB×H is NP-complete [10], and likewise placingm
such rectangles in a rectangle of given area but variable
dimensions [11]. The corresponding optimization problem is
to find the minimum area rectangle that can accommodate
all m rectangles. The problem can be generalized to 2D
bin packing by minimizing the number of fixed-size/area
bounding rectangles needed to accommodate all m objects.
Note that we consider here a related but different prob-
lem: Given an arbitrarily large supply of rectangular cores
of K different types, i.e. sizes, find all feasible, non-
dominated (see Section III) combinations of these that can
be packed within a given B×H rectangle. A related problem
is strip packing [12], where a given sequence of rectangles is
packed into a strip of given width, to minimize strip length.

Huang and Korf [13] consider an inverse problem: given a
number of rectangles, find the smallest enclosing rectangle.
However, even if that enclosing rectangle has less area than
the chip rectangle, this does not indicate that the rectangles
fit into a chip, i.e. a feasible solution.

Du et al. [14] use a system with CPU cores, GPU and
FPGA, i.e. K = 3 core types, thus going beyond ARMs
big.LITTLE with K = 2.
In addition to the above goals, we require that rectan-

gles of same type be packed close together, which exist-
ing techniques do not have as a constraint or objective.
Huang et al. [15] investigate rectangle packing, but without
considering to pack equal-sized rectangles close together.
While they mention a ‘‘corner-occupying action’’, their algo-
rithm does not show the concept of arranging similar cores
in successive rows in a corner as in our corner heuristic.
Jylänki [16] provides a survey of rectangle packing algo-
rithms (some of which allow rotation by 90 degrees). The
rectpack library contains a selection of these. Yet, no algo-
rithm used in the code tries to place equal-sized rectangles
close to each other.

All previously mentioned approaches only provide one
packing, while our approach provides all possible packings,
so that a user can select the most suitable solution among
those of similar core counts according to further needs.

III. CORNER AND ONION PACKING HEURISTICS
A. PROBLEM FORMULATION
A (system) configuration (p1, . . . , pK) ∈ NK

0 describes a
heterogeneous multicore system with K core types that is

1The placement heuristic in [9] is actually a variant of the special case
of the corner heuristic (Sect. III) for K = 2, where in [9] the placement of
the two different core types instead starts from opposite corners of the chip
rectangle, but otherwise proceeds in the same way.

2Rotations further increase the solution space, unless all rectangles are
squares.

composed of p1 ≥ 0 cores of type 1, . . . , and pK ≥ 0 cores
of type K .

Each core type i = 1, . . . ,K comes with a given rect-
angular layout of dimensions bi × hi, and we assume that
the bi (and likewise the hi) sizes are pairwise general, i.e.,
not integer multiples of each other or of some base size unit,
so that a discretization of the two-dimensional chip area for
the core placement is not applicable. Even in the case of a
possible discretization, sub-solutions will differ by different
forms of their border which prevents re-use in an approach
such as dynamic programming.

A configuration (p1, . . . , pK) is feasible if pi instances of
rectangle type i, for all 1 ≤ i ≤ K , can be packed together in
the given rectangle so that they do not overlap.

Each feasible configuration can be associated with one3

feasible placement as proof of its feasibility. A feasible place-
ment is defined by a vector containing the positions of all∑K

i=1 pi cores’ rectangles such that these are placed within
the given B× H rectangle and do not overlap.
A configuration p1, . . . , pK is dominated by some other

feasible configuration (p′1, . . . , p
′
K), if there exists some core

type q ≤ K such that p′q > pq and for all r ̸= q,
p′r ≥ pr . For example, forK = 2, (1, 1) is dominated by (1, 2)
and both by (2, 2), while (1, 2) is not dominated by (2, 1).
Dominated configurations are uninteresting, because they are
not Pareto-optimal with respect to the number of cores that
can be accommodated. Hence, we will only keep the non-
dominated configurations, and it will be up to the optimized
software [9] to decide if the additional core(s) are used or
powered down.

A feasible placement is called contiguous if the rectangles
of each core type are placed contiguously, i.e., any two rectan-
gles of the same type are either direct neighbors sharing one
edge or are connected by a path of such pair-wise directly
neighbored rectangles of the same type. We call a feasi-
ble configuration contiguous if it has a feasible, contiguous
placement associated with it.

The problem that we solve (ALL-ND-F-C-CONFs) is
defined as follows: Given chip rectangle dimensions B × H
and K > 1 different core types with their pre-layouted core
dimensions b1 × h1, . . . , bK × hK , we want to generate the
set of all feasible, contiguous, non-dominated configurations
(p1, . . . , pK), and annotate each such configuration with one
feasible contiguous placement, e.g., the one with best prox-
imity score, cf. Sect. IV-D. As all reported configurations are
non-dominated, we compute a K -dimensional Pareto front.
Note that, in itself, ALL-ND-F-C-CONFs is not an opti-

mization problem, but a set of many decision problems to be
solved. It will calculate the entries in the configuration table
for parameterization of the actual optimization algorithm for
hardware-software co-design described in [9].

3In general, there will exist multiple such placements for the same system
configuration.

VOLUME 11, 2023 19303

S. Litzinger et al.: Packing Multiple Types of Cores

B. CORNER PLACEMENTS AND CORNER HEURISTIC
In order to constrain the number of solutions of the feasible
placement problem and to enforce feasible placements, we
arrange all rectangles of the same type into one corner of the
boundary rectangle, as illustrated in Fig. 2 (left). This seems
to constrain our approach to K ≤ 4, yet can be overcome.

Before presenting the complete heuristic, we start with a
slightly simplified problem. We are given K different types
of cores, each with rectangular shape, to be placed on a rect-
angular chip. For core types i = 1, . . . ,K − 1, the number ci
of cores of type i is given (and all those cores fit onto the chip).
We place the cores of each type so that they are close together.
Afterwards, we place as many cores of type K as possible.
For K ≤ 4, we place the cores of each type in one corner of
the chip rectangle. For type i = 1, the complete rectangle
is still available. If all c1 cores of type 1 fit into one row
or one column of the chip rectangle, we have the following
possibilities. As a first possibility, we place all ci cores in a
row. Alternatively, we can place ci−1 cores in a row, and one
core in the next row. Thus, we can explore all combinations
of cores placed onto rows such that each subsequent row
contains at most as many cores as the previous row. The last
possibility is that all c1 cores are placed in one column, i.e.
one core per row. Fig. 2 (left) shows all possibilities to place
c1 = 4 cores. If only t < c1 cores fit into the first row, the
number of possibilities is reduced.

The total number n(c, t) of possibilities of placing c cores
with at most t cores in the first row can be computed as the
sum of all possibilities when j cores are placed in the first row,
for j ≤ min(c, t). The recursion ends as n(c, 1) = 1 (all cores
in one column) and n(0, t) = 1 (no more cores to be placed).

n(c, t) =
min(c,t)∑
j=1

n(c− j, j). (1)

When placing cores of type i = 2, we proceed similarly for
an adjacent corner, only the rectangle is not empty anymore,
i.e. the first row or column might be shortened. By construc-
tion, the placement of a further core type is only restricted
by the maximum number of cores within the first row. Some
placements might not be possible, for example it could be
that not all ci cores can be placed into one column because
of insufficient height of the chip rectangle. Therefore, strictly
speaking, the equal sign in (1) must be a less than or equal to.

Fig. 2 (mid) shows the only possible placement of a fourth
core type for one possible placement of 2, 1 and 1 cores
of the first three core types, respectively. The figure also
illustrates that the last core type can (and should) be treated
differently: We can allow any placement even if not complete
rows can be filled, if rows do not start at the chip border, and
even if subsequent row (parts) have a greater length than the
previous row. As a nice property, the cores will still cover a
connected area by the construction of the placements for the
previous core types. Fig. 2 (right) shows 27 copies of core
type 4. The special treatment of the last core type forbids to
argue on the different bounding rectangles containing the ci

cores of core type i. While this is sufficient to determine the
placements of the next core type as a succeeding row/column
cannot be longer than a previous one, Fig. 3 (top) illustrates
for K = 2 that different placements of core type 1 (in blue)
with identical bounding rectangles allow different numbers
of cores of the last core type 2 (in yellow). Similar examples
exist for larger K . If K > 4, different placements within the
same bounding box may lead to different opportunities for
placing type i > 4 in the onion heuristic, see Section III-C.

To find all possible placements of all core types, our corner
heuristic (cf. Algorithm 1) computes upper bounds on the
number of cores of each type, and finds all possible place-
ments for all combinations of core types 1 to K −1, extended
by as many cores as possible for core type K . By default,
we do this in decreasing order of core area and using corners
in clockwise order; cf. Section IV for the impact of core type
order. The corner heuristic nests loops per core type to enu-
merate all feasible different allocations of numbers of cores
of the K different types 4 (including 0 for some but not all
types). As soon as infeasibility is detected by an enumerating
loop, it can break because adding more cores will not lead to
any further feasible solutions.5 Among all reported solutions,
a postprocessing step (as part of the reporting function) can
eliminate those that are dominated, i.e., not Pareto-optimal.

For the simplified case that core types are treated in order of
descending size, cores are quadratic with side length ratio 2:1
between successive core types, and the chip is quadratic with
k times the side length of the largest core type, we provide a
complexity analysis.

For K = 2, we first place the largest core type i = 1. If the
number of possibilities to place at most w ≤ k cores into one
row and and use at most h ≤ k rows is Ni(w, h), then we seek
N1(k, k) which is

N1(k, k) =
k∑
j=1

N1(j, k − 1) = O(k!)

with the usual constraints N1(j, 1) = j + 1, N1(i, 0) = 1,
N1(0, ∗) = 1 and N1(1, j) = j+ 1.
For each number of cores of type i = 1, the over-

all configuration with placement computed by the corner
heuristic is a non-dominated configuration, as all convex
possible corner-adjacent placements of the type-1 cores are
enumerated and, for each one, the largest possible number of
cores of type 2 that can be placed in the remaining area can
immediately be computed. Thus, the formula above defines
the complexity. For K = 3, for each placement of cores of
type 1, all possible placements for cores of type 2 (starting
from 1 to the maximum number possible in the given shape)
must be computed. For each such placement, the number of

4We note that completely different approaches to the problem, such as
greedy strategies, may be possible, but consider them to be outside the scope
of our current research.

5Note that the loop for the last core type (here, the p4 loop) is only
conceptual; a more efficient and more effective implementation that replaces
the p4 loop is described in Section IV-A.

19304 VOLUME 11, 2023

S. Litzinger et al.: Packing Multiple Types of Cores

FIGURE 2. Left: all possibilities to place 4 cores in a corner. Mid: sole possibility for placing
6 copies of core type 4 (grey) after 2, 1 and 1 copies of core type 1 (green), 2 (yellow) and
3 (blue), respectively. Right: treating core type 4 as last core type allows 27 copies.

Algorithm 1 Corner Heuristic Algorithm for Packing K = 4 Core Types
Input: Set R of K = 4 rectangle types of size (wi, hi), i = 1, . . . ,K
Result: Set S of different feasible core allocations (p1, p2, p3, p4), initially empty
int pmax[K], p1, p2, p3, p4;
Permute core type indexes to establish desired placement order (e.g., random)
for i = 1; i ≤ K ; i++ do

pmax[i]← max. feasible number of cores of type i (if no cores of other types)
end for
for p1 = 0; p1 ≤ pmax[1]; p1++ do

create scene with p1 cores of type 1 in all possible placements lower left corner
for p2 = 0; p2 ≤ pmax[2]; p2++ do

add to scene p2 cores of core type 2 in all possible placements upper left corner
if no placement possible then

break loop
end if
for p3 = 0; p3 ≤ pmax[3]; p3++ do

add to scene p3 cores of core type 3 in all placements at upper right corner
if no placement possible then

break loop
end if
for p4 = pmax[4]; p4 ≥ 0; p4−− do

if any placement of p4 additional cores of type 4 is possible in lower right corner then
▷ . . .Extend here for Onion heuristic with more loops of ‘‘inner’’ type

add (p1, p2, p3, p4) and their placement to set S of solutions
break loop

end if
end for

end for
end for

end for

cores of type 3 that can be placed can be determined immedi-
ately. Thus, also here the number of possibilities defines the
complexity. As the number of rows for cores of type 2 is at
most 2k , and at most 2k cores of type 2 can be placed in one
row (if no core of type 1 shortens this row), by an argument
similar to the above the complexity is O((2k)!) so that the
total complexity can be bounded by O(k! · (2k)!). However,
this bound might not be sharp anymore.

Aswithmany complex problems, onemaywonderwhether
metaheuristics could pose a promising alternative approach.
Metaheuristics are generally applied to optimization prob-
lems, whereas we consider a set of decision problems. What
is more, metaheuristics are usually adopted for huge search
spaces where enumerating all possible solutions is hardly
conceivable in a finite amount of time. We on the other
hand are interested in generating all non-dominated feasible
configurations for given chip size and core dimensions, which
cannot be guaranteed by a metaheuristic approach. As our
algorithm can inspect the entire search space in a reasonable
amount of time for relevant problem sizes, we furthermore

fail to see the necessity to employ heuristic techniques on this
level. That being said, when checking the feasibility of a given
configuration by attempting to generate a feasible example
placement, one could pursue a metaheuristic approach. It is
to be expected though that this will require a much larger
computational effort than our current strategy.

C. ONION HEURISTIC
To compute placements for K > 4 core types, we extend the
corner heuristic into the onion heuristic. We apply the corner
heuristic on the first 4 core types, but with the difference that
we treat core type 4 similar to the core types 1 to 3, as it
is not the last core type. Then the chip rectangle is filled
from the borders, but contains an empty space in its interior.
We find the largest rectangle fitting into that empty space,
and use this rectangle as our new chip border into which
to place K ′ = K − 4 core types recursively by the onion
heuristic (which reduces to the corner heuristic once K ′ ≤ 4).
Fig. 3 (bottom), starting from a variant of Fig. 2 (mid), shows
two rectangles of equal area that could serve as boundary

VOLUME 11, 2023 19305

S. Litzinger et al.: Packing Multiple Types of Cores

FIGURE 3. Top: different placements of 7 copies of core type 1 (blue) in
3 rows and 3 columns leading to different core counts for last core type
K = 2 (yellow). Bottom: possibilities for new rectangular boundary to
place further core types after placing 2, 1, 1 and 8 copies of core types
1 to 4, resp., when K > 4.

for placing further core types. Thus, implementing the onion
heuristic necessitates further decision, such as choosing the
rectangle of largest size and aspect ratio closest to 1.
Considering Restricted Rotation Until now, the corner and
onion packing heuristics do not consider rotation of core
rectangles by 90 degrees, in contrast to some other rectangle
packing heuristics from the literature (cf. Section II). Not
considering rotation leads to less flexibility in packing and
might thus miss some good solutions that might be feasible
if rotation were allowed. Selecting a fixed orientation for all
cores of the same type (and trying both options) is not much
more flexible. Instead, mixing both orientations in the same
packing will maximize flexibility. However, an exhaustive
enumeration of the two possible orientations (portrait and
landscape) for each placed rectangle is out of the question,
as it would lead to a time complexity that is exponential in
the maximum possible number of cores. However, for corner
placement we make the following observations that can sim-
plify the mixing of portrait and landscape orientations:

First, in case of multiple rows of one core type in a corner,
it makes sense to pack cores of equal orientation on top
of each other; hence, we get straight columns (consisting
either of portrait cores only or of landscape cores only). This
restriction will avoid internal fragmentation in a core type’s
chip region due to rotation, and will simplify further steps.

Second, due to the non-increasing row lengths property in
corner placement, we cannot become infeasible by shifting,
among all these columns for the same core type, all portrait
columns to the ‘‘left’’ and keeping the landscape columns to
their ‘‘right’’ (directions referring to the base side of the rect-
angle with the filled corner to its left). Likewise, such shifting
does not change the packing density, and it re-establishes
the non-increasing row lengths property even in the case of
rotation. Moreover, it helps to reduce mixed-rotation-caused
external fragmentation towards core placements for the next
‘‘inner’’ core type for the onion heuristic, cf. Fig. 4 (left).

FIGURE 4. Restricted mixing of core orientations, here for flattest corner
packings. Left: keeping portrait columns to the left, pc1 = 3, p1 = 12.
Right: inserting a ‘‘mezzanine’’ row of landscape-oriented cores,
pc1 = 3 and p1 = 24.

With these considerations we can generalize the corner
heuristic and onion heuristic to consider restricted mixed
rotation as follows: we replace each of the four nested loops
(Algorithm 1) by two nested loops for each core type i =
1, . . . , 4 (i.e., 8 nested loops in total for corner packing): an
outer loop for core type i iterates over the number of portrait
columns pci from 0, 1, 2, . . . up to pmax[i], but only as long
as these can be accommodated in the bottom row. An inner
loop for core type i iterates over the numbers of all type-i
instances pi (regardless of orientation) from pci upwards until
at most pmax[i], and breaks if no cores of type i can be placed
anymore, similarly to the previous loop for core type i in
Algorithm 1. These pi cores are placed row-wise, i.e., first pci
portrait cores, then landscape cores until the row is filled or
no more cores are to be placed; if there are further cores, they
are entered in the second row, again first in portrait format and
then in landscape format, and so on. As soon as the portrait
columns are more than one landscape core higher than the
landscape columns, we add an extra row (‘‘mezzanine row’’,
see Fig. 4 (right)) to the landscape columns to balance the
height difference between portrait and landscape columns
as far as possible while preserving the non-increasing row
lengths property.

IV. EXPERIMENTAL RESULTS
A. IMPLEMENTATION OF THE HEURISTIC
In order to evaluate our approach presented in Section III,
we have created a Python implementation6 of the corner
heuristic. In doing so, it does not suffice to know the total
number of possible placements for a given configuration as
specified in (1) but these placements will have to be com-
puted. This problem is equivalent to the problem of providing
all partitions of a given integer (sorted in descending order),
where the number of summands aswell as their absolute value
is bounded. The integer then represents the total number of
cores of a certain type to be placed, while the limit on the
number of terms corresponds to the maximum number of
rows, and the maximum absolute value of each term is the
maximum number of columns. Cores are always placed in
the bottom left corner, and prior to beginning placement of the
next core type, the scene is rotated clockwise by 90◦. After all
cores of a type have been placed, the current partial solution

6The source code of our implementation, including the other heuristics
used for the evaluation, is available at https://github.com/sglitzinger/
corepacking

19306 VOLUME 11, 2023

S. Litzinger et al.: Packing Multiple Types of Cores

FIGURE 5. Resulting placements for different methods of maximizing
fourth type core count: row-based (left), grid-based (right).

is checked for feasibility. This is done by computing the
coordinates of a polygon which covers the chip area allocated
to the cores of a type, for each core type already placed.
With the help of the shapely library,7 it can be determined
whether any of the polygons intersect, in which case the
partial solution is not feasible, and further core placement
will be foregone. Obviously, this procedure is invoked only
for ≥ 2 polygons, i.e. only after two or more core types have
been placed on the chip. When filling the remaining free area
on the chip, one has to account for the possibility that there
can be rows in which the free space does not extend to the
edge of the chip (this is specific for compositions of≥ 2 core
types). Beginning placement on the left may therefore lead to
large unused areas when a collision is detected for the initial
leftmost placement, and the rest of the row is subsequently
ignored, cf. Fig. 5 (left). In contrast, one may check for each
possible position of a core in a grid anchored in the bottom
left corner whether a collision occurs, and if it does not, place
a core in the respective position. This way, waste can be
dramatically reduced, see Fig. 5 (right). In the example, this
even leads to a different optimal placement of the blue core
type, which is now 3-3-1-1 instead of 3-3-2.

B. COMPETING APPROACHES
As we are dealing with a restricted version of an otherwise
well-studied problem, there is no shortage of approaches
to tackle the general problem of rectangle packing, and it
will be interesting to see how well our method fares in
comparison. In particular, we have computed solutions with
the rectpack library8 implementing various algorithms
presented in [16]. There are three categories of algorithms
(MaxRects, Guillotine, and Skyline), and we have picked
one from each category. Furthermore, we have created a
Python implementation of the strip packing heuristic in [17],
Algorithm 1 (BestFitPack). Although strip packing solves a
slightly different problem (minimizing the height of a strip of
given width), it can be applied to our problem.

C. EXPERIMENTAL SETTINGS
In our experiments, we seek to place four different types of
cores on a chip of given width and height. Naturally, it is
desirable to operate with realistic data, thus we have obtained
areas and aspect ratios of various real-world core types: ARM

7https://github.com/Toblerity/Shapely
8https://github.com/secnot/rectpack

A7 and A15,9 ARM A72,10 and a Mali T760 GPU.11 For
each core type, we have assumed a rectangular shape, and as
data for individual cores was not available in all cases, we
have used values for whole clusters, i.e. including caches,
which would have to be placed on the chip in any case.
Although these core types originate from different eras and
are produced in different technology nodes, which makes it
unlikely to encounter a combination of them on a single chip,
utilizing real-world data serves to get the problem’s size and
structure right. We have computed solutions for three chip
sizes (16mm × 16mm, 24mm × 24mm, and 32mm ×
32mm). As larger chips are not realistic by today’s standards,
there seems to be no need to consider even larger problem
instances.

In each experiment, we have attempted to place a given
number of A15, A72, and Mali cores on the chip. If a feasible
solution could be computed, A7 cores were subsequently
placed until no further placement was possible. For the
24mm × 24mm chip, the maximum number of A15,
A72, and Mali cores were 24, 20, and 30, respectively.
These figures were computed as ⌊widthchip/widthcore⌋ ·
⌊heightchip/heightcore⌋ for each core type. Consequently,
25·21·31 = 16275 different configurations had to be investi-
gated. Evidently, a feasible solution is only conceivable if the
combined area of A15, A72, and Mali cores does not exceed
the total chip area. This holds for 4027 of the 16275 config-
urations, which may therefore serve as an upper bound for
the total number of feasible solutions. The 32mm × 32mm
chip can accommodate at most 48 A15, or 30 A72, or 56Mali
cores resulting in 49·31·57 = 86583 different configurations,
with 21150 as an upper bound for the number of feasible
solutions as per the consideration above. For the 16mm ×
16mm chip, we have 12 A15, 6 A72, or 12 Mali as maxi-
mum core counts, which yields 1183 different configurations,
412 being an upper bound here. For the three chip sizes and
each configuration, we have attempted to compute a solution
in ten different ways:
• MaxRectsBssf (rotation allowed/not allowed),
• GuillotineBssfSas (rotation allowed/not allowed),
• SkylineBl (rotation allowed/not allowed),
• BestFitPack, i.e. strip packing,
• corner heuristic (random order, descending total area,
descending core area).

The first three algorithms are part of the rectpack library
and are detailed in [16]. For the corner heuristic, we have
considered the order in which the core types are placed on
the chip a parameter. One set of experiments was based on
a randomized order, which was individually determined for
each configuration. For the other experiments, either the area
occupied by a single core of the respective type or the area
covered by all cores of a given type for a given configuration

9https://www.anandtech.com/show/6768/samsung-details-exynos-5-
octa-architecture-power-at-isscc-13

10https://en.wikichip.org/wiki/arm_holdings/microarchitectures/
cortex-a72

11https://www.anandtech.com/show/9330/exynos-7420-deep-dive/2

VOLUME 11, 2023 19307

S. Litzinger et al.: Packing Multiple Types of Cores

yielded the placement order. There is good reason to expect
that the placement order has a notable influence on solution
quality for the corner heuristic: as the first and third core types
to be placed on the chip are rotated by 90◦ in the final solution
(and the second and fourth core types are not), solutions for
the same configuration but based on a permuted placement
order may differ substantially.

D. MEASURING SOLUTION QUALITY
We have judged the performance of each method by three
characteristics: the number of feasible solutions produced,
solution quality in case a feasible solution is available, and
proximity of cores of the same type. A measure of solution
quality will have to reflect the ultimate goal to place as
many A7 cores on the chip as possible for a given feasible
placement of A15, A72, and Mali cores. We have thus opted
to construe solution quality as the distance (in # A7 cores) to
an upper bound, which is the remaining free area on the chip
after placing the A15, A72, and Mali cores, divided by the
area an A7 core occupies.
Number of Feasible Solutions In a first approach, we may
compare the number of feasible solutions each method
yields. This information is provided by Table 1. Nearly all
rectpack methods produce a larger number of feasible
solutions than the other approaches, the only exceptions being
Guillotine without rotation for the large chip size, where
strip packing delivers slightly more feasible solutions, and
Skyline without rotation for the smallest chip. For all three
chip sizes, the Skyline algorithm with rotation achieves the
highest ratio of feasible solutions. It is by far the best option
for the medium chip size with 70.3% feasible solutions rel-
ative to the upper bound (the second best, Guillotine with
rotation, being at 62.1%), whereas for the large chip the
gap narrows, and Skyline without rotation replaces Guillotine
with rotation as the second best method. Interestingly, for
the MaxRects algorithm, rotation only pays off in terms of
the number of feasible solutions for the small chip, and
strip packing performs much better for the large chip size.
The corner heuristic cannot quite keep up with the rectpack
algorithms, and for the small and large chips even falls behind
strip packing. Although the placement order does have some
effect, its extent is apparently rather marginal in terms of
the total number of feasible solutions. It should be noted
that the upper bound we have computed here represents only
a rough estimation, and should by no means be regarded
as the supremum; the number of configurations for which
a feasible solution exists may well be significantly lower.
Here, at least one feasible solution was discovered for 299
configurations for the small chip, 3086 for the medium chip
size, and 16656 for the large chip. Another interesting aspect
is the number of solutions which are exclusively provided
by a particular method, i.e. the number of configurations
for which no other method has delivered a feasible solution.
For the medium chip size, Skyline with rotation unsurpris-
ingly features the most exclusive solutions as it is far ahead
of any other method in terms of the total number of feasible

solutions. Moreover, the corner heuristic in all variations
stands out here as it awards more exclusive solutions than
the other methods aside from the single exception just men-
tioned when focusing on the medium and large chips. For
the small chip, there are very few exclusive solutions overall,
which is not surprising as there are not that many solu-
tions in total due to the low number of possible configura-
tions. Mind that exclusive solutions are solutions which are
unique to the particular method, which includes variations
such as rotation or placement order. In that sense, the place-
ment order should not be neglected for the corner heuristic,
as it may enable one to reach solutions unavailable to the other
methods.

To get a better understanding of the underlying algorithms’
capabilities, Table 2 displays the same results, this time
grouped by algorithm. It becomes clear that the corner heuris-
tic profits notably from varying the placement order (which
could be expected considering the substantial number of
exclusive solutions the corresponding methods offer). It can
thus beat strip packing for all chip sizes, the Guillotine algo-
rithm on the medium and large chips, and on the medium chip
even outmatch the MaxRects algorithm, which is the default
algorithm of the rectpack library. Although the Skyline
heuristic produces feasible solutions for a slightly larger num-
ber of configurations, the ample number of exclusive solu-
tions underlines the corner heuristic’s relevance. As already
pointed out in Section I, the corner heuristic’s solutions fea-
ture a placement which assembles cores of the same type in
spatial proximity. For our purposes, this is a very beneficial
property that the solutions computed by the other algorithms
do not inherently possess.
Quality of Feasible Solutions In addition to the number of
feasible solutions an algorithm yields the solution quality
when it produces a feasible solution is of major interest.
To enable a fair comparison, we will focus on the config-
urations for which each algorithm has delivered a feasible
solution. Table 3 shows maximum and average distances
in # A7 cores to an upper bound based on the remain-
ing free chip area after placing the A15, A72, and Mali
cores (as discussed above). For the two larger chip sizes,
we have an identical ranking of the examined algorithms:
the Guillotine and MaxRects algorithms perform well when
it comes to the maximum distance from the upper bound,
followed by the corner heuristic and the Skyline algorithm.
Ranked by the average distance to the upper bound the
corner heuristic delivers the best results, while there are
hardly any noticeable differences between the three algo-
rithms from the rectpack library. For the small chip, the
corner heuristic cannot match the rectpack algorithms’
performance not only in terms of the maximum distance but
also with regard to the average distance to upper bound.
The strip packing algorithm trails behind in any aspect here.
Very likely, this can be explained by the adaptation to our
specific problem: in order to prioritize the development of a
feasible solution, the A15, A72, and Mali cores are placed
on the strip first, and afterwards A7 cores are added until the

19308 VOLUME 11, 2023

S. Litzinger et al.: Packing Multiple Types of Cores

TABLE 1. Total number of feasible solutions, number of feasible solutions relative to upper bound, number of solutions exclusive to the respective
method, nonproximity, and runtime for all considered methods and all three examined chip sizes.

strip’s height reaches the chip height. Due to the nature of
the algorithm, areas on the chip where an A7 core could be
placed but none of the other cores types are regarded as waste
and are not reprocessed at the final stage of A7 placement.
An alternative could be to insert several A7 cores into the list
of cores to be placed initially. This approach however involves
the risk of producing an infeasible solution where otherwise a
feasible solution would have been within reach, as A7 cores
might also be preferred by the algorithm in situations where
cores of other types could be selected.

While the average distances to the upper bound on core
count are very similar for all considered rectpack algo-
rithms, the distributions differ to some extent, as Fig. 6
illustrates. For the MaxRects and Guillotine algorithms, the
vast majority of cases lies within a rather narrow range. This
does not hold for the Skyline algorithm, especially for the
large chip size (cf. bottom row of Fig. 6). Concerning the
corner heuristic, a large number of solutions which are fairly
close to the upper bound is accompanied by a small fraction
of solutions which are notably worse. The distribution for
the strip packing algorithm is visibly wider than the other
distributions, particularly for the medium chip size. As with
the upper bound on the number of feasible solutions, it should
be noted that the existence of any solution which places that
many A7 cores is by no means guaranteed. On the whole,
it can be considered unlikely as this would imply that a
solution with close to zero waste could be constructed for
each configuration.
Proximity To assess if the cores of each type are posi-
tioned close together, and to compare different heuristics
in this respect, we introduce the notion of nonproxim-
ity. If the intersection of two cores u, v, u ̸= v is a line
(and not a single point), their distance is 0. Otherwise,
their distance is the Manhattan distance between their cen-
troids, normalized in the core dimension. The Manhattan
distance seems preferable to the Euclidean distance, as rout-
ing of busses to connect cores is normally done along
axes. For each core u of a type, the smallest distance to
any other core of the same type, closest(u), is determined.

Nonproximity for a core type i in a specific configuration is
Di = maxu∈Ci closest(u), where Ci is the set containing all
cores
of type i. Nonproximity for a configuration is the average
of Di over all core types i.

Table 1 provides nonproximity values, averaged over all
configurations for which each method yields a feasible solu-
tion. Nonproximity is indeed very low for the heuristic
approach, and both ordering criteria pay off in this regard.
When it comes to strip packing, the favorable nonproximity
figures are due to the same feature which leads to the under-
whelming solution quality: areas on the chip once marked
as waste are not reprocessed later on and as such, the A7
cores will not be scattered over the chip to utilize every
last bit of the die. For MaxRects and Guillotine, rotation
leads to worse nonproximity, which is plausible as rota-
tion should offer more possibilities to squeeze in additional
cores. Interestingly, this does not always hold for Skyline,
which also delivers the best overall nonproximity among the
rectpack algorithms deployed in our investigation.

E. RUNTIMES
Finally, we will take a quick look at the runtimes for exam-
ining all configurations as measured by the time mod-
ule’s process_time function, which can be gathered from
Table 1. Strip packing is the fastest method. The rectpack
algorithms take longer to execute when rotation is allowed,
although this does not guarantee a better outcome for each
individual configuration, as we have already seen. On the
small chip, all methods terminate within seconds. While for
the medium chip the corner heuristic delivers its results only
a little slower than the other approaches, the gap becomes
substantially wider for the large chip. Fortunately, computa-
tions can still be handled in less than a day on a single CPU
core (we used an AMD Ryzen 7 2700X consumer CPU), and
if even larger chips were to be considered, one could easily
distribute the work over several cores or machines, as each
configuration can be treated independently. Interestingly, the

VOLUME 11, 2023 19309

S. Litzinger et al.: Packing Multiple Types of Cores

TABLE 2. Total number of feasible solutions, number of feasible solutions relative to upper bound, and number of solutions exclusive to the respective
algorithm for all considered algorithms and all three examined chip sizes.

TABLE 3. Maximum and average distances to upper bound (# A7 cores) for all configurations where each algorithm yields a feasible solution (all chip
sizes).

FIGURE 6. Distribution of distances to upper bound (# A7 cores) for all configurations where each algorithm yields a feasible solution. Top row:
16 mm × 16 mm chip, center row: 24 mm × 24 mm chip, bottom row: 32 mm × 32 mm chip.

19310 VOLUME 11, 2023

S. Litzinger et al.: Packing Multiple Types of Cores

corner heuristic’s runtime is heavily influenced by the place-
ment order as well, where employing a random placement
order takes nearly twice the time to complete on the large
chip than placing cores in descending order of core size.

All in all, the corner heuristic can compete with algorithms
which are directed at the more general problem of rectangle
packing in terms of the number of feasible solutions, and
the solution quality it produces when a feasible solution is
found surpasses that of the other algorithms considered here.
Moreover, its solutions possess a property desirable in our
context: placing cores of the same type next to each other.

V. CONCLUSION AND FUTURE WORK
For design space exploration in heterogeneous multi-core
chip design for a given application, it is important to effi-
ciently determine if a certain allocation of pre-layouted cores
drawn from a small constant number K of different core
types is feasible or not for accommodation on a chip of given
dimensions, where cores of same type should be kept contigu-
ous. For the underlying Pareto-optimal contiguous K -types
rectangle packing problem, we have presented the corner
heuristic for K ≤ 4 core types to generate Pareto-optimal
core allocations and their packings within a given rectangular
chip area. We have shown that the heuristic is competitive
with core-type agnostic state-of-the-art rectangle packing
techniques while keeping cores of same type close together.
We also have shown how to generalize the corner packing
heuristic to K > 4 core types (onion packing heuristic) and
to taking restricted rotation of core rectangles into account.
Implementation and evaluation of these extensions will be
the subject of future work. Furthermore, we will consider
non-rectangular core layouts, non-convex chip areas available
for placing cores, core packing taking un-core placement or
maximum wire length constraints into account, or packing in
3 dimensions.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their valuable contributions to improve their article.

REFERENCES
[1] P. Marwedel, Embedded System Design. Cham, Switzerland: Springer,

2010.
[2] J. Dean, D. Patterson, and C. Young, ‘‘A new golden age in com-

puter architecture: Empowering the machine-learning revolution,’’ IEEE
Micro, vol. 38, no. 2, pp. 21–29, Mar. 2018.

[3] J. L. Hennessy and D. A. Patterson, ‘‘A new golden age for computer
architecture,’’ Commun. ACM, vol. 62, no. 2, pp. 48–60, Jan. 2019.

[4] J. Keller, S. Litzinger, and C. Kessler, ‘‘Integrating energy-optimizing
scheduling of moldable streaming tasks with design space exploration for
multiple core types on configurable platforms,’’ J. Signal Process. Syst.,
vol. 94, no. 9, pp. 849–864, Sep. 2022.

[5] C. Kessler, J. Keller, and S. Litzinger, ‘‘Temperature-aware energy-
optimal scheduling of moldable streaming tasks onto 2D-mesh-based
many-core CPUs with DVFS,’’ in Job Scheduling Strategies for Parallel
Processing, D. Klusáček, W. Cirne, and G. P. Rodrigo, Eds. Cham,
Switzerland: Springer, 2021, pp. 168–189.

[6] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout.
Leipzig, German: Teubner, 1990.

[7] N. Khan, J. Castro-Godinez, S. Xue, J. Henkel, and J. Becker, ‘‘Automatic
floorplanning and standalone generation of bitstream-level IP cores,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 1,
pp. 38–50, Jan. 2021.

[8] I. Shallari, I. S. Leal, S. Krug, A. Jantsch, and M. O’Nils, ‘‘Design space
exploration for an IoT node: Trade-offs in processing and communica-
tion,’’ IEEE Access, vol. 9, pp. 65078–65090, 2021.

[9] J. Keller, S. Litzinger, andC.W.Kessler, ‘‘Combining design space explo-
ration with task scheduling of moldable streaming tasks on reconfigurable
platforms,’’ in Proc. 17th Int. Symp. Appl. Reconfigurable Comput.,
vol. 12700. Cham, Switzerland: Springer, 2021, pp. 93–107.

[10] B. S. Baker, E. G. Coffman Jr., and R. L. Rivest, ‘‘Orthogonal packings
in two dimensions,’’ SIAM J. Comput., vol. 9, no. 4, pp. 846–855, 1980.

[11] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, ‘‘VLSI mod-
ule placement based on rectangle-packing by the sequence-pair,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 15, no. 12,
pp. 1518–1524, Dec. 1996.

[12] C. Kenyon and E. Remila, ‘‘Approximate strip packing,’’ in Proc. 37th
Conf. Found. Comput. Sci., Oct. 1996, pp. 31–36.

[13] E. Huang and R. E. Korf, ‘‘New improvements in optimal rectangle
packing,’’ inProc. 21st Int. Conf. Artif. Intell. (IJCAI), 2009, pp. 511–516.

[14] D. Du, Q. Liu, X. Jiang, Y. Xia, B. Zang, and H. Chen, ‘‘Server-
less computing on heterogeneous computers,’’ in Proc. 27th ACM Int.
Conf. Architectural Support Program. Lang. Operating Syst., Feb. 2022,
pp. 797–813.

[15] W. Huang, D. Chen, and R. Xu, ‘‘A new heuristic algorithm for rectangle
packing,’’Comput. Oper. Res., vol. 34, no. 11, pp. 3270–3280, Nov. 2007.

[16] J. Jylänki. (2010). A Thousand Ways to Pack the Bin—A Practical
Approach to Two-Dimensional Rectangle Bin Packing. [Online]. Avail-
able: http://pds25.egloos.com/pds/201504/21/98/RectangleBinPack.pdf

[17] L. Wei, Q. Hu, S. C. H. Leung, and N. Zhang, ‘‘An improved skyline
based heuristic for the 2D strip packing problem and its efficient imple-
mentation,’’ Comput. Oper. Res., vol. 80, pp. 113–127, Apr. 2017.

SEBASTIAN LITZINGER received the M.A.
degree in philosophy from Eberhard Karls Uni-
versität Tübingen, Germany, and the M.Sc.
degree in practical computer science from Fer-
nUniversität in Hagen, Germany, where he is
currently pursuing the Ph.D. degree with the Par-
allelism and VLSI Group. His research interests
include energy-efficient task scheduling for paral-
lel systems, the application of machine learning
techniques to scheduling problems, and neural
architecture search.

JÖRG KELLER received the Ph.D. degree in com-
puter science from Universität des Saarlandes,
Saarbrücken, Germany, in 1992. He is a Professor
with the Faculty of Mathematics and Computer
Science, FernUniversität in Hagen, Germany. His
research interests include energy-efficient parallel
computing, security and cryptography, and fault
tolerant computing.

CHRISTOPH KESSLER received the Ph.D.
degree in computer science from Universität des
Saarlandes, Saarbrücken, Germany, in 1994. He is
a Professor with the Department of Computer and
Information Science (IDA), Linköping Univer-
sity, Linköping, Sweden. His main research inter-
ests include parallel computing and compilers,
especially models and frameworks for high-level
parallel programming, program parallelization,
optimization, and code generation.

VOLUME 11, 2023 19311

