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ABSTRACT Growing electricity demand, the deployment of renewable energy sources and the widespread
use of smart home appliances provide new opportunities for home energy management systems (HEMSs),
which can be defined as systems that improve the overall energy production and consumption of residential
buildings by controlling and scheduling the use of household equipment. By saving energy, reducing
residential electricity costs, optimizing the utilization rate and reliability of utility companies’ power systems,
and reducing air pollution for society, HEMSs lead to an enhancement in the socioeconomic development
of low-carbon economies. This review aims to systematically analyze and summarize the development
trends and challenges of HEMSs in recent years. This paper reviews the development history of the HEMS
architecture and discusses the characteristics of several major communication technologies in the current
HEMS infrastructure. In addition, the common objectives and constraints related to scheduling optimization
are classified, and several optimization methods in the literature, including various intelligent algorithms,
have been introduced, compared, and critically analyzed. Furthermore, experimental studies and challenges
in the real world are also summarized and recommendations are given. This paper reveals the trend from
simple to complex in the architecture and functionality of HEMSs, discusses the challenges for future
improvements in modeling and scheduling, and shows the development of various modeling and scheduling
methods. Based on this review, researchers can gain a comprehensive understanding of current research
trends in HEMSs and open up ideas for developing new modeling and scheduling approaches by gaining
insight into the trade-offs between optimum solutions and computational complexity.

INDEX TERMS Demand response, home appliances, home energy management system, optimization,
renewable energy resources, smart grid.

ABBREVIATIONS
RERs Renewable energy resources
GHG Greenhouse gas
AMI Advanced metering infrastructure
BHC Bidirectional high-speed communication
SG Smart grid
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DR Demand response
HEMS Home energy management system
DERs Distributed energy resources
HESS Home energy storage systems
NILM Non-intrusive load monitoring
BEMSs Building energy management systems
EMS Energy management system
EVs Electric vehicles
PV Photovoltaic
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HAN Home area network
LP-WAN Low-power wide-area network
BES Battery energy system
PAR Peak-to-average ratio
HVAC Heating, ventilation and air conditioning
RCC Resident comfort criteria
DRE Distributed renewable energy
ESS Energy storage system
LP Linear programming
BILP Binary integer linear programming
MILP Mixed integer linear programming
NLP Non-linear programming
MINLP Mixed integer non-linear programming
SoC State of charge
EES Electrical energy storage
TOU Time of use
RTP Real time price
IBR Inclining block rate
DP Dynamic programming
GA Genetic algorithm
PSO Particle swarm optimization
BOA Butterfly optimization algorithm
ABC Artificial bee colony
NSGA-II Non-dominated sorting genetic algorithm
DoD Depth of discharge
AI Artificial Intelligence
ANN Artificial neural network
MAS Multi-agent system
SVR Support vector regression
MPC Model predictive control

I. INTRODUCTION
Society is facing several problems such as energy shortage
and environmental pollution caused by fossil fuels [1].
To solve the energy issues, the need for a reliable and
secure energy supply that is independent of fossil fuels
is an important goal for most countries [2]. Consequently,
renewable energy resources(RERs), such as solar, wind, and
biomass power are deployed at scale to provide dependable
energy and mitigate greenhouse gas (GHG) emissions [3].
However, unlike traditional energy sources, the volatile and
intermittent nature of the RESs in power systems may lead
to unforeseen peaks in energy production, which affects the
stability of the power grid [4]. To overcome these shortages,
technologies including advanced metering infrastructure
(AMI) and bidirectional high-speed communication (BHC)
develop rapidly, which leads the power grid transiting from
a traditional centralized grid to distributed smart grid (SG).
Thus, to meet the changes in time-based electricity prices or
other forms of financial incentives and to provide flexibility
and reliability in SGs, demand response (DR), which is
defined as changes in electricity usage by end users also
diversified increasingly [5].

In addition, with the vigorous development of control
and communication technologies, various electronic home

entertainment, information, and communication equipment
have gradually become an indispensable part of home life.
People’s life is becoming more and more convenient and
intelligent, and living standards are also getting higher
and higher. In the meantime, modern lifestyles also bring
some disadvantages. For example, the widespread use of
smart household appliances leads to a dramatic increase in
household energy consumption [6]. Besides these, there are
circumstances of wasting energy consumption or low energy
consumption utilization rate in the community due to the lack
of energy-saving awareness or the failure to pay attention
to the working conditions of various electrical appliances in
time of some residents [7]. Manual monitoring and control
are not enough to achieve the goal of energy conservation in
smart homes. Therefore, intelligent scheduling and control of
kinds of home appliances have become an important direction
for energy conservation in smart homes.

The technology to improve the energy production/
consumption condition of homes systematically by schedul-
ing home appliances intellectually is called a home energy
management system (HEMS) [6]. The HEMS can transfer
or reduce energy costs by scheduling the use of household
appliances, in addition, it enables the energy generated
by distributed energy resources (DERs) to be stored and
managed with home energy storage systems (HESS) [8],
by improving the overall energy production and consumption
conditions of a house. This is usually achieved by using
an optimal scheduling algorithm to calculate the appropriate
time to turn on or turn off a device by considering factors such
as external information (e.g., updated grid prices or weather
forecasts) and inner information (e.g., consumer preferences
or home appliance historical usage data) [9].

Compared with manual operation, HEMSs have the advan-
tage of automatically assessing electricity prices, household
demand, the uncertainty of external environmental variables,
and customizing appropriate household energy consumption
plans to control the use of household appliances. Nowadays,
HEMSs have become increasingly attractive for end-use
customers, power companies, and society to ensure power
control and management. By optimizing the energy con-
sumption of customers’ homes according to electricity price
and their habits, HEMSs can save energy for society while
reducing the electricity cost of their homes. Furthermore,
HEMSs allow public utilities to analyze the future energy
needs of customers to optimize the application of power and
increase the reliability of power systems [10].

There are many surveys and review articles about HEMSs.
A summary of the main relevant review articles on HEMSs
between 2015 and March 2022 is presented in Table 1. Based
on the different aspects of HEMSs, these research papers
can be roughly divided into HEMS’ architectures [11], [17],
functionalities [11], [17], [19], infrastructures [11], [13], [20],
modeling categorizations and approaches [6], [21] and kinds
of optimization scheduling strategies [6], [11], [16], [21], [22]
as well as HEMS applications in SG and DR [23] and
interdisciplinary meta-reviews about HEMSs [24]. However,
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TABLE 1. Existing review papers on different areas of HEMSs (2015-2022).

according to the classification results, it can be found that
except for the [11] published in 2016, which reviewed all
aspects of HEMS in an overall manner, other review articles
only cover some or even one aspect of HEMS. For example,
reference [19] focuses on non-intrusive load monitoring
(NILM), which is one part of the monitoring functionalities
of HEMSs while [22] proposes a 3-tier taxonomy of machine
learning applications in HEMSs. This result not only means
that the review of HEMSs in recent years has become more
and more refined due to the in-depth research but also
indicates that the overall discussion of HEMSs needs to be
reorganized and improved.

This paper aims to systematically analyze and summarize
the development trends and challenges of HEMSs in recent

years. Three main contributions are provided in this work.
Firstly, the development history of the HEMS architecture
is reviewed and updated along with the characteristics of
major communication technologies in the current HEMS
infrastructure. Secondly, since there are few review papers
that mentioned about the collection of the optimization
objective functions, this work classifies and collects the
objectives functions and constraints of scheduling optimiza-
tion. In addition, common used optimization algorithms are
introduced, compared, and critically analyzed. Finally, the
applications and challenges of HEMS are also summarized
and research recommendations are given to help readers
have a comprehensive understanding of current trends in the
HEMSs.

The remainder of this paper is organized as follows. The
architecture of HEMS including the development process,
the description of every moduels, and the functionalities of
HEMSs is introduced in Section II. Section III discusses
the characteristics of major communication technologies
deployed in the current HEMS infrastructure. Objectives
functions, constraints, and optimization algorithms are clas-
sified, introduced, compared, and critically analyzed in
Section IV. Section V describes and discusses the appli-
cation and challenges faced in HEMS, along with the
research recommendations. Finally, Section VI concludes the
work.

II. ARCHITECTURE OF HEMS
The overall system structure of HEMSs is gradually formed
since 1979 [25]. With the widespread installation of AMI
and the development of SG, HEMSs develop from early
analog systems with limited application to modern modular
smart systems [10]. As shown in Table 2, the development
process of HEMSs mainly focuses on three aspects, i.e.,
the improvement of the system architecture, the update of
information transmission technologies, and the optimization
of the scheduling strategy. In this section, the typical
architecture of a HEMS is described, along with the main
functionalities of the HEMS.

As an application on the end-user side of SG, a modern
HEMS can be defined as a modular system with the ability
to interact with household appliances and public utilities that
organically integrate all power generation, consumption, and
storage equipment in the home with a variety of intelligent
technologies to ameliorate the power efficiency. The general
architecture of a HEMS is presented in Fig. 1, which can be
divided into five main components below:

A. CENTRAL CONTROLLER
In the literature, the central controller has been introduced
in different technical terms such as smart controller [10],
smart center [11], or central platform [9], which is the core
component of a HEMS. To manage and optimize the energy
usage of household appliances, it usually provides five major
system management functionalities, including monitoring,

VOLUME 11, 2023 20001



B. Han et al.: Home Energy Management Systems: A Review of the Concept, Architecture, and Scheduling Strategies

TABLE 2. The development process of HEMSs.

logging, management, control, and alarm [10], [11], [54],
as shown in Fig. 2.

TABLE 2. (Continued.) The development process of HEMSs.

FIGURE 1. Typical architecture of a representative HEMS.

1) MONITORING
Monitoring is a functional module that monitors energy
consumption in the HEMS and generates real-time infor-
mation. This function can liberate the user’s attention and
automatically achieve the purpose of power conservation.
The monitoring function of some HEMSs can be more
powerful, such as providing a visual display service of their
operating modes and/or the energy consumption status of
each household appliance.

2) LOGGING
Logging is the process that collates and saves the data
information of electricity consumed for each appliance
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FIGURE 2. Major functionalities of a representative HEMS.

including DERs, plug-in electric vehicles (EVs), and energy
conservation states. Moreover, the logging contains DR
analysis for real-time electricity prices from the utilities,
external environmental variables recording and analysis such
as user behavior and weather condition, and fault alarming
history.

3) MANAGEMENT
Management is the primary functionality of a HEMS to
achieve some objectives such as energy saving, cost reduc-
tion, and environmental protection. Specifically, management
aims to collect, collate, and analyze the information related to
the usage of home appliances collected by smart meters, such
as real-time power consumption, and combine it with given
performance optimization indicators (electricity costs, living
comfort, peak reduction, and greenhouse gas emissions, etc.)
to calculate the most suitable scheduling mechanism for each
household appliance, and finally, achieve the goal of energy
optimization.

4) CONTROL
Control can be divided into direct control and remote control
based on the method which is used to control the system.
Direct control refers to the method of monitoring and
controlling the system directly through the central controller
or its central visual platform,whereas remote control signifies
the method of monitoring and controlling the system through
other accessible devices networked with the central controller
such as PCs, laptops, and smartphones.

5) ALARM
Alarm, also known as fault detection, means that when the
various electrical equipment involved in HEMS, such as
DERs, HESS, and EVs, cannot work normally or various
networks associated with HEMS, including water, electricity,
and the Internet, are disconnected, the controller will detect
the source of the error, activate the alarm device, and transmit

the corresponding fault information, e.g. fault locations,
types, etc. to the display devices.

In a summary, in a fully functional HEMS, the central
controller is the component that complements the given
objectives and meets user-defined specifications and prefer-
ences by processing usage data, forecasting uncertainties, and
providing optimization strategy in a house. The description
and the application of common objectives that have been used
in HEMS can be seen in section IV.

B. SMART HOME APPLIANCES
As the terminal parts of HEMSs, smart home appliances
are devices with monitoring, communication, and control
capabilities with the center controller. Only when the home
appliances were scheduled and operated at a proper time,
the preset goals of HEMSs can be achieved ultimately.
Since there are diverse appliances in each family, and
the ownership rate, power consumption, and usage of
different devices are also very different among families [55],
to manage energy consumption effectively and efficiently,
smart home appliances are usually classified before modeling
and calculating. In this review, household appliances are
divided into conventional appliances, smart appliances,
and EVs according to whether the appliance requires a
smart plug and can be used as emergency energy supply
equipment [11], [56].

1) CONVENTIONAL APPLIANCES
Conventional appliances refer to traditional electrical devices
without communication and automatic control functions.
To successfully connect these appliances to the HEMS and
obtain proper dispatch, these appliances need to be equipped
with additional auxiliary communication and control equip-
ment such as smart plugs, which have the ability to identify
the attached appliance, record its energy consumption pattern
of it, and recognize the behavior of users [56].

2) SMART APPLIANCES
Different from conventional appliances, smart appliances in
this section refer to novel household electrical devices that
are equipped with intelligent control and communication
modules themselves but cannot provide emergency power
supply for other loads. Smart appliances do not require
extra smart plugs to connect to the HEMS, which is the
embodiment of the continuous development of smart home
technology and the basis for widespread residential energy
management [11], [56].

3) ELECTRIC VEHICLES
EVs mentioned in the HEMS literature not only refer to
EVs powered purely by electricity in rechargeable batteries,
but also include various hybrid vehicles, in which electricity
occupies part of the driving energy. An EV is a special
kind of smart appliance due to the feature of the energy
storage system. Generally, EVs in the HEMS are able to
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FIGURE 3. Classification principles for home appliances.

provide emergency power for other household loads [11].
Recently, EVs have fascinated great attention because of
their important role in reducing global pollution, improving
energy efficiency, promoting the stability of the grid system,
and playing an important role in future DR applications
[10], [12], [57], [60].

In addition to the classification mentioned earlier, Fig. 3
presents some other category methods for household appli-
ances that are convenient for modeling and optimization.
For example, home appliances can be classified into
uncontrollable loads, curtailable loads, uninterruptible loads,
interruptible loads, and regulating loads by their DR behavior
[61] [6]. Principles like physical properties and job types
were described and discussed in [13]. The authors in [62]
categorized residential appliances in accordance with their
task types to get the best feasible task activation plan. The
appliances in the work [63] were simplified and classified
into time-shiftable appliances, thermostatically controlled
appliances, and power-shiftable appliances based on their
consumption patterns.

C. SENSING AND MEASURING DEVICES
Sensing and measuring devices are the fundamental elements
in the HEMS. The sensing and measuring devices can be
wired, wireless devices, or both, these devices are responsible
for collecting information from the surrounding environment
such as the temperature, power consumption, and level
of energy storage. The common sensor devices that have
been used in HEMS are shown in Table 3. Other sensors
include the sensors that can measure physical quantities such
as humidity, current, voltage, and illuminance, and detect
smoke, movement, or room occupancy [9], [64]. With the
installation of AMI, the importance of novel sensing and
measuring devices in HEMSs grows rapidly by serving as
a BHC interface between the users and the utilities [65].
By collecting various usage data from utility services, smart
sensing, and measuring devices enable the HEMS to manage

TABLE 3. Sensors regularly used in HEMSs.

real-time grid information for customer accounts to attain the
objectives of the family and provide the utility opportunities
to predict the load demand more accurately in the future, thus
reducing power generation costs and loss.

D. ENERGY GENERATION AND STORAGE DEVICES
In recent years, due to the inherent intermittence and
randomness of RESs, individual households are becoming
participants in RESs electricity generation with the inde-
pendence and self-sufficiency feature of home microgrids.
Currently, RESs are integrated into smart homes including
solar photovoltaic (PV) [66], wind [67], biomass [68],
geothermal energy [69], and so on [70]. In addition, hybrid
energy systems such as solar-wind energy [49] and solar–
wind–diesel energy [71] have also been complemented to
provide a reliable and sustainable power supply for a family
with a full set of modern home appliances and complete basic
residential functions.

Due to the intermittence and randomness characteristics
of RESs, the electricity generated by RESs integrated with
homes is ensuring the continuity and stability of the power
supply of home microgrids. Usually, the energy storage
device in a smart home refers to a local battery with an energy
management system, which offers an effective solution by
providing energy storage for subsequent use and energy
dispatch that trades energy with public utilities with a given
profit when electricity generation exceeds local demand.

E. USER INTERFACE
The user interface is a kind of software that allows the
provision of an interface between the controller, sensors,
smart meter, and the appliances of the HEMS and has
the function of displaying information. The purpose of this
module is to enable users to operate HEMS according to
their own preferences, and to ensure the quality of life of
residents while monitoring and dispatching household energy
consumption in real-time more conveniently and efficiently.
The user interface software is designed to be a common
model for friendly use to bring more interactive choices to
residents. Early user interface software was designed to be
installed on personal computers. In the past decade, due to
the popularity and user-friendly nature of remote mobile and
control devices, increasing in the number of user interface
software has been designed to be applications for tablets
and mobile phones and bring more interactive choices to
residents [9].
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FIGURE 4. Communication technologies for HEMS.

III. COMMUNICATION OF HEMS
Within a home, an effective HEMS for whole-house energy
management requires both external information (e.g., house-
hold activities, electricity prices, and weather forecasts) and
appropriate communication with the corresponding devices
[6], [9]. Therefore, an efficient communication system
(wired or wireless) that shares demand-side information and
optimizes the operation of home appliances locally is also
required for a HEMS. Recently, the traditional electricity
grid is changing to a smarter infrastructure, called the smart
grid, which enables the energy management of homes at
grid terminals by BHC. Subsequently, many communication
schemes with hardware implementation emerged within the
home area network(HAN).

A summary of most communication technologies that
have been applied in HEMSs is shown in Fig. 4. Among
them, wired technologies, such as Ethernet [72], [73],
Bacnet [74], [75], LonWorks [76], and ModBus [76],
usually have high data rates and reliability but also high
deployment costs. On the contrary, wireless technologies,
such as Zigbee [77], [78], WiFi [78], [79], Bluetooth
[80], [81], Z-wave [82], [83], 6LoWPAN [84], [85], and
Enocean [73], [86], etc., have low installation cost compared
to wired technologies. In addition, wireless technologies do
not require wiring and are easy to set up. Thus the installation
of smart home appliances can be deployed without making
major changes to home wiring, and are more convenient for
maintenance and expansion, hence being better candidates for
the HAN.

However, with the explosive usage of household appli-
ances, wireless technologies are faced with small scalability,
narrow coverage area, and signal interference problems due
to the sharing of the frequency band (e.g., 2.4GHz for ZigBee,
Bluetooth, and Wi-Fi). In addition, traditional long-distance
wireless technologies like WiMAX [87] also have an extra
monthly fee after the installation, which affects the promotion
of this kind of technology. To solve these problems, new
low-power wide-area network(LP-WAN) technology with
sub-GHz frequency band and long-distance characteristics is

gettingmore andmore attention. LP-WANhas the advantages
of low power consumption, wide coverage area, high
stability, and strong anti-interference ability, which has great
application potential in the field of HAN communication.
At present, the application of LP-WAN mainly focuses on
the two technical standards of LoRa [88], [89] and NB-IoT
[89], [90], which have been used in large-sized houses such
as villas and duplex buildings.

The communication protocols used in the communication
system of the house can be selected based on the parameters
including data rate, coverage area, deployment cost, power
consumption, security, reliability, stability, and scalabil-
ity [65]. Table 4 presents the advantages and disadvantages
of wireless communication technologies used in HEMS.
It is worth mentioning that compared with the technical
details of the communication protocol used in the HAN, most
HEMSs users usually pay more attention to deployment cost,
installation simplicity, and maintaining the stability of the
HAN. This may illustrate the phenomenon of the coexistence
of various protocols in the market. Thus, multi-mode
gateways containing multiple communication protocols have
been one of the solutions to the compatibility problem under
the coexistence of multiple devices and multiple protocols.

IV. OPTIMIZATION OF HEMS
Generally, HEMSs increase household energy utility effi-
ciency by reducing or shifting the consumption of various
home appliances. Since the reduction of load demand often
leads to the discomfort of residents, which affects their
participation in DR programs, the load-shifting method
is more popular in residential buildings [9]. The typical
schematic diagram of a HEMS is illustrated in Fig. 5. The
consumption planning needs to rely on optimization and
scheduling methods to find the best working hours for each
household appliance. Therefore, the consumption operation
of each appliance must be described for the formulation of
optimization objectives, the choice of optimization methods,
and the consequent calculation and operation constraints.
This section describes the main optimization objectives,
constraints, and methods applied to enhance the HEMS
efficiency.

HEMSs reduce or shift the load demand by monitoring
the consumption of home appliances and coordinating the
operation of various devices to increase energy efficiency.
Recently, the comfort of the residents is considered the most
popular factor in residential buildings [9].

A. OBJECTIVES OF HEMS
Over the past decade previous, several studies focused to
enhance the HEMS using traditional methods by reducing
energy consumption, However, this reduction in energy cost
may lead a discomfort for the users, which prevents residents
from participating in the DR program [35]. Recently, the inte-
gration of RERs, ESSs, EVs, and DR, and the diverse applica-
tions of home appliances enable HEMS to acquire a broader
architecture and functionality to deploymore effective energy
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TABLE 4. Comparison of typical wireless communication technologies
used in HEMS.

management. Fig. 6 presents the common optimization objec-
tives and constraints used in the HEMS. These objectives
are based on the types of home appliances and are subject
to uncertain conditions such as weather, user behavior,
electricity price, load consumption, and load diversity.

1) COST
Cost is the most common objective in the HEMS because
it is the primary motivation for residents to use HEMSs to
manage household appliances by minimizing the electricity

FIGURE 5. The typical schematic diagram of a HEMS.

FIGURE 6. Objectives and constraints of a typical HEMS.

costs while considering available electricity prices and
renewable micro-generation. As shown in Table 5, the
objective of cost refers to any financial term related to energy
management mainly including electricity costs minimization
[63], [77], [98], [103], [79], [91], [97], the self-scheduling
between the grid, renewable energy generators and loads
[104], [105], retailer’s profit maximization [102], total profit
maximization [62], [106], [107], the start-up costs of the
home system [108], and the maintenance cost [109].

2) LOAD PROFILING
Load profiling is one of the most common objectives
that has been applied in HEMS in terms of changing the
peak-to-valley structure and modifying the consumption
method for electricity. It can make the household microgrid
beneficial to not only the HEMS users but also the public
utilities [110]. There are six different strategies of load
profiling which are peak shaving, valley filling, strategic
conservation, load shifting, strategic growth, and flexible
load shape [13], [98], [111], [112] Compared with the
first three strategies, load shifting, strategic growth, and
flexible load shape provide more systematic and large-scale
changes in load management. Table 6 represents the objective
function of the load profiling, which mainly includes load
peak minimization [98], [113], peak-to-average ratio (PAR)
reduction [91], [103], [114], self-consumption [106] and
energy balance [115].

3) USER COMFORT
Recent studies mainly focus on user comfort which is
considered the primary focus of minimizing the energy
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TABLE 5. Objective functions for minimization of cost.

consumption cost and promoting user comfort for consumers’
emotions and tendencies [53]. And the discomfort of users

TABLE 5. (Continued.) Objective functions for minimization of cost.

caused by unwanted interruptions, long waiting time, and
strict usage timetable has an influence on the limited
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TABLE 5. (Continued.) Objective functions for minimization of cost.

participation in the DR programs of residents [116]. Different
environment variables constitute the user comfort e.g., indoor
temperature, outdoor temperature, humidity, etc. Therefore,

TABLE 5. (Continued.) Objective functions for minimization of cost.

to efficiently utilize the benefits of DR incentives while
maintaining user comfort, there is a need to consider more
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TABLE 5. (Continued.) Objective functions for minimization of cost.

parameters that directly affect the user. In order to improve
the participation of DR projects, there are several methods
to enhance user comfort by using HEMS for example

TABLE 5. (Continued.) Objective functions for minimization of cost.

maximizing the comfort factor, including the thermal comfort
of heating, ventilation, and air conditioning (HVAC) system
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TABLE 5. (Continued.) Objective functions for minimization of cost.

[91], [116], visual comfort of the lighting system [116],
suitable load shifting [77], and quick response [93], and
discomfort minimization including thermal discomfort of
air conditioner and domestic hot water [117], waiting for
time [91] and unreasonable load shifting [92].

TABLE 6. Objective functions for power profiling.

Table 7 represents the different methods applied to enhance
the comfort of the user by using HEMS.
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TABLE 6. (Continued.) Objective functions for power profiling.

4) OTHER OBJECTIVES
To improve the reliability of HEMS, reliance is placed on
other objective functions such as energy loss, environmental
impact, and social welfare. Energy loss is the energy that
is lost in the process of delivering electricity from the
power plant to the end user due to electrical resistance in
the power lines and equipment. Since this energy loss is
associated with the use of local production, most of the
studies focused to obtain the optimal energy planning for
HEMS to reduce the energy loss such as the authors in [107]
proposed a novel strategy to reduce the power loss in the
AC/DC converters. The environmental impact of energy
consumption can be represented as an objective function
for the optimization of HEMSs by reducing the level of
GHG emissions. The mitigation of GHG emissions is slightly
increasing by using clean energy [87] and imposing penalties
on consumers based on the emissions rate [107]. Social
welfare is a type of auction structure that allows users to
bid on the electricity separately, with bidders receiving bids
and allocating shares in proportion to the value of the bid.
This bidding mechanism canmaximize the overall benefits of
the participating users, which is realized through an effective
auction [96]. Therefore, the main optimization means to
solve the problem of energy management by maximizing
the total profit for the users. To achieve this, there have
been many studies using different strategies such as in [118]

TABLE 7. Objective functions for maximization of user comfort.

proposed distributed load scheduling algorithms for a global
incentive mechanism in residential networks to respond to
and adjust loads. Table 8 represents the different objective
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TABLE 7. (Continued.) Objective functions for maximization of user
comfort.

functions that have been included to improve the reliability
of HEMS.

TABLE 7. (Continued.) Objective functions for maximization of user
comfort.

5) SINGLE OBJECTIVE FUNCTIONS AND MULTI-OBJECTIVE
FUNCTIONS
Table 9 lists the references related to single and multi-
objective optimization. Among these articles, the single
objective approach is presented in [51], [53], [62], [63], [79],
[87], [94], [97], [99], [101], [104], [105], [109], [113], [115],
[118], and [119]. The single objective formulations mainly
include electricity costs minimization [63], [79], [94], [97],
[99], [101], self-scheduling [104], [105], total profit max-
imization [62], maintenance cost minimization [109], load
peak minimization [113], PAR reduction [114], energy
balance [115], user’s satisfaction maximization [53], energy
consumption minimization [51], [119], and multi-home
coordinated load scheduling [118].

The multi-objective method is considered [77], [91], [92],
[93], [98], [103], [106], [108], [116], [117]. In [77], the
authors present a multi-objective to minimize the electricity
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TABLE 8. (Continued.) Objective functions for others.

cost and maximize user satisfaction. In the work of [98], the
authors describe a multi-objective framework of electricity

TABLE 8. (Continued.) Objective functions for others.

cost and load peak minimization and compare the bill and
load peak reduction efficiency between the home-equipped
photovoltaic energy storage system and the home without
a photovoltaic energy storage system. Customer’s electricity
cost minimization and retailer’s profit maximization are dis-
cussed in [102]. The authors use a multi-objective framework
in [103] to minimize electricity cost, PAR, and resident
discomfort. A multi-objective optimization framework has
been considered in [91] to minimize the electricity cost, PAR,
waiting time, and BES degradation separately and maximize
thermal comfort. In [92], the authors present theminimization
of electricity bills and user discomfort costs. Electricity cost
and load responsiveness are combined in multi-objective
optimization in [93]. Electricity cost is minimized while
load responsiveness is maximized. Langer and Volling [106]
propose a multi-objective optimization methodology to max-
imize total profit while keeping the house self-consumption
and self-sufficiency. Total cost (installation and operation
cost) and total loss of the AC/DC converters are minimized
in the work of [107]. A multi-objective problem to minimize
running costs and maximize the green factor is proposed
by [108]. In [116], the author presents a multi-objective
approach to maximize thermal comfort and visual comfort in
a smart home. Thermal discomfort of the air conditioner and
domestic hot water is discussed in [117].

B. CONSTRAINTS OF HEMS
The constraints are fundamental in realizing the overall
behavior of the appliances in the HEMS, including inter-
dependence, and interaction with other agents and devices
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TABLE 9. References with objectives.

for optimization and scheduling problems. The constraints in
the HEMS can be divided into three groups load constraints,
user comfort, and additional constraints. The users can set
the constraints and also make it easier to update or adapt
to changes. With the scenarios, specifying what the system
should do, on one hand, and the constraints restricting them
on the other, the objective is thus to ensure that no specified
scenario can lead to violation of a constraint.

1) LOAD CONSTRAINTS
Load constraints are applied in the HEMS to set optimal
load schedules based on device information, user settings,
and pricingmechanismwhichmainly refer to commonly used
appliances like air conditioners, washingmachines, andwater
heaters, are modeled. Due to the lack to obtain information
on the consumption curve for some electrical appliances,
and considering the computational efficiency, the established
model also needs to be simplified, therefore the average
constant consumption profile is applied to model the load,
as described in the study [93] and [104]. In other studies,
the classification method has been applied to categorize load
constraints by the pattern of the appliances [101], loads
are classified into four types according to the equipment

patterns utilization, and the study in [120] has divided the
load constraints into three categories according to appliance
characteristics.

2) USER COMFORT CONSTRAINTS
The existing findings on comfort are inconsistent and often
based on experimental setups not applicable to conditions
resulting from load shifting in residential buildings. Further-
more, prevailing sophisticated concepts for the structure of
comfort activation have limited applicability to the residential
sector, since simple and inexpensive control is required.
Therefore, the comfort constraints are applied to easily
adaptable to a large diversity of dwellings. User comfort
constraints aim to increase consumer comfort iteratively up
to a level that minimizes the electricity bill below a specified
one to improve comfort [94] and reduce inconveniences
[79], [96], [104], [106].

3) OTHER CONSTRAINTS
Other constraints include the external household equipment
except for the normal smart appliances, which compressed
different distributed renewable energy (DRE) such as PV
panels and wind turbines, the energy storage system (ESS),
and plug-in EVs. These kinds of constraints can be sum-
marized into characteristic limitations [104], technology
limitations [93], operation mode limitations [104], [113],
[119], algorithm-based constraints [77], and GHG emission
penalty [107].

C. OPTIMIZATION METHODS USED IN HEMS
After designing and modeling the HEMS using proper
objectives and the corresponding constraints, the optimal
scheduling of home appliances can be achieved by apply-
ing the optimization approach in HEMSs. Typically, the
optimization approach can be divided into mathematical
methods and intelligent methods according to the objective
function and the set constraints of the HEMS. In the following
subsections, the critical review of common optimization
approaches used is presented.

1) MATHEMATICAL METHODS
The mathematical optimization method is the most com-
monly used classical optimization method. Basically, math-
ematical optimization is a deterministic optimization method
that can deal with optimization systematically by selecting
input values to obtain the optimal scheduling. Several
approaches based have been applied in the literature such
as Linear Programming, Non-linear Programming, and
Dynamic programming.

a: LINEAR AND NONLINEAR PROGRAMMING METHODS
Linear Programming (LP) is the simplest form of mathemat-
ical optimization and has become the most important method
due to its lower computational burden and the availability
of commercial and non-commercial problem solvers such
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as CPLEX [121] and GLPK [9]. For optimization and
implementation in HEMS, binary integer linear program-
ming(BILP) and mixed integer linear programming (MILP)
is still the most predominant method since it contains dis-
continuable variables in modeling for additional flexibility,
which requires objectives and constraints represented by a
linear relationship.

On other hand, non-linear programming (NLP) and mixed
integer nonlinear programming (MINLP) is used for opti-
mization problems where the objectives and/or constraints
are all nonlinear. Compared with LP, NLP is more powerful,
but the computational burden is greater. The comprehensive
analysis of HEMSs based on LP and NLP approaches is
summarized in Table 10. Most of the previous studies have
focused on electricity cost optimization in HEMSssuch as in
[100]. However, many studies are still limited to simulation
experiments rather than real experiments using NLP, MINLP,
LP, and NLP. Moreover, the modeling of some appliances is
complicated such as the battery degradation, SoC levels, and
the charging/discharging status.

b: DYNAMIC PROGRAMMING METHODS
In the optimization scheduling methods applied to HEMSs,
the disadvantage of the deterministic optimization methods
above is that these approaches do not consider uncertain
factors such as residential electricity demand, power gener-
ation, and grid electricity prices. Although the problems of
HEMS can be solved using the LP or NLP, However, the
optimal solution is complicated to obtain, especially when the
uncertain future realization matches the forecast.

Dynamic programming (DP) is proposed to solve large
and complex optimization problems through recursion
[123], [124]. The DP can simplify and decompose large and
complex problems into smaller and simpler sub-problems
and recursively solves the problems by storing the optimal
solutions to the sub-problems.

Table 11 lists the contributions and limitations of HEMS
based on dynamic programming approaches. Compared
with LP and NLP methods, the DP-based HEMS approach
considers the uncertainty of PV power, load demand, battery
degradation, and weather conditions. However, the limita-
tions of the DP approach are the designing and modeling of
smart loads, PV, and BEE systems.

2) NATURE-INSPIRED META-HEURISTIC METHODS
Nature-inspired meta-heuristic algorithms refer to a class
of optimization algorithms that imitate the development of
natural phenomena or the behavior patterns of organisms and
have randomization and local search characteristics [129].
For example, a genetic algorithm (GA) was proposed based
on the law of ‘‘survival of the fittest’’ in the biological
evolution mechanism of nature [103], [108], [130]. particle
swarm optimization (PSO) was proposed based on the simu-
lation of biological group social behaviors [93], [102], [113].
The butterfly optimization algorithm(BOA)was derived from

TABLE 10. Critical analysis of HEMS based on LP and NLP methods.

the foraging process of butterflies [77]. The artificial bee
colony (ABC) algorithmwas inspired by the honey collection
process of bees [131].
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TABLE 10. (Continued.) Critical analysis of HEMS based on LP and NLP
methods.

Table 12 presents the analysis of HEMS based on nature-
inspired meta-heuristic methods. Many objectives here were
explored such as energy cost reduction, PAR improvement,
free charging of EVs, and self-scheduling of offline mode.
It is worth noting that more studies here take into account
uncertainty information, such as weather conditions than the
previously introduced mathematical optimization.

3) ARTIFICIAL INTELLIGENT METHODS
Artificial Intelligence(AI) is a subset of computer science
that has become popular in recent years to solve optimization
problems inHEMS. InHEMS,AI has significant applications
allowing to make effective utilization of available data and
assisting to make optimal decisions in complex practical
circumstances for safer and more reliable control and less
operation cost for the appliances that are connected with
HEMS. The improvements in AI-based algorithms and
computational capability with a large scale of data processing
abilities are well enough to exploit the one operation in
the HEMS to multiple controlling environments. Machine
learning and artificial neural network(ANN) are the most
important subsets of AI. This section presents the application
of the AI method in HEMS using machine learning, ANNs,
and multi-agent systems (MAS).

a: MACHINE LEARNING
Machine learning is one of the branches of AI, and can
enhance the operation and control of HEMS. Generally,
machine learning is classified into four types according to the
method of learning namely: supervised, unsupervised, semi-
supervised, and reinforcement learning. The operations of
these categories including some examples of research work
on their implementation in the HMES are shown in Table 13.

b: ARTIFICIAL NEURAL NETWORK
As discussed in the previous sections, several optimization
objectives can be considered when modeling a HEMS.
To optimize an objective function of the different appliances
of a massively interconnected HEMS, it is important to solve
large-scale linear/non-linear programming problems in real-
time. However, the existing sequential algorithms may not be
efficient when the computing time needed to obtain a solution

TABLE 11. Critical analysis of HEMS based on DP methods.

depends on the type of the proposed problem, which may
become complicated in real applications. A neural network
presents inherent parallelism and thus can solve large-scale
problems in real-time based on prediction. Generally, ANNs
have beenmainly used to predict user comfort [51], recognize
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TABLE 12. Critical analysis of HEMS based on nature-inspired
meta-heuristic methods.

energy consumption patterns of household appliances [56],
and speculate future load demands [120].

TABLE 13. Critical analysis of HEMS based on machine learning methods.

The developed neural networks for predicting the
solutions, and implementing other control strategies
neural network techniques for HMES are summarized
in Table 14.
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TABLE 14. Critical analysis of HEMS based on ANNs methods.

c: MULTI-AGENT SYSTEM
MAS consists of multiple intelligent agents that acted to
solve problems that may be beyond the capabilities of
simple computations. Multi-agent systems create an effective
approach for decomposing complex problems into many
simplified sub-problems. By modeling each section as an
autonomous agent, each agent pursues to promote its solution
based on the maximizing individual [136], [137]. Over the
last decade, MAS-based algorithms have been proven as
effective solutions for HEMS and various types of load agents
have been applied including agents for different household
appliances, EV agents, energy storage agents, distributed
generation agents, HEMS agents, and central coordinator
agents. The classifications of the applications of the multi-
agent system to HEMS are illustrated in Fig. 7. The summary
of different MAS methods with their main contributions to
HEMS is plotted in Table 15.

4) MODEL PREDICTIVE CONTROL METHODS
Model predictive control (MPC), also known as receding
horizon control, is a promising approach that has recently
been widely applied in different sectors such as power
converters, microgrids, SG, control, and optimization in
HEMS [141]. In this context, the optimal control behaviors or

FIGURE 7. Categories of the applications of the multi-agent system to
HEMS.

TABLE 15. Critical analysis of HEMS based on MAS methods.

scheduled commands are determined according to predefined
cost functions or objective targets under different con-
straints. Typically, the MPC approach has many advantages
in HEMS applications such as: including different and
complex constraints which can be involved in a simple
formula, excellent dynamic performance with the robust
control system, generating a simple straightforward signal
for control, and open access is enabled to interface various
solving algorithms, making complex optimization problems
solvable and convenient. While the MPC approach has
already been reported in different studies, they are seldom
detailed from the perspective of HEMS. Besides, in HEMS,
researchers need some challenges to enhance the MPC
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TABLE 16. Critical analysis of HEMS based on MPC methods.

model with the consideration of different constraints and
objective functions including the load-sharing accuracy, and
circulating currents [108]. Table 16 summarized a different
application of the MPC approaches that have been used in the
HEMS.

5) OTHER METHODS
Besides the above approaches, several optimization meth-
ods including stochastic algorithms [95], [144], heuristic
algorithms [80], [145], [148], fuzzy logic [49], [149],
load-priority-based algorithms [150], [151], Load shedding
algorithm [87], and backtracking search algorithm [152] have
been proposed to improve the HEMS as given in Table 17.
In these methods, not only the self-regulation of the system
is considered, but also the multi-objective optimization of
HEMS is more involved, and a variety of effective uncertainty
quantification methods are used. However, much work still
needs to be done in terms of battery modeling in EVs
and ESSs, especially regarding battery degradation and
maintenance costs increase due to the depth of discharge
(DoD) of batteries.

V. DISCUSSION ABOUT APPLICATIONS AND
CHALLENGES
In recent years, household SGs have been widely accepted,
DR programs such as TOU tariffs for residents have been
implemented in many countries, and countries around the

TABLE 17. Critical analysis of HEMS based on other methods.

world have begun to conduct in-depth research on HEMSs to
optimize the dispatch of household appliances, reduce energy
consumption, and minimize greenhouse gas emissions. With
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TABLE 17. (Continued.) Critical analysis of HEMS based on other
methods.

the continuous consumption of energy and the intensification
of environmental pollution, HEMS technology will become
more and more important for occupants, utilities, and society.

In the real world, the promotion of AMI and the devel-
opment of BHC technology further expand the architecture
and functions of HEMS. However, unlike municipalities and
public utilities, the choice of communication technology for
individual residences mainly depends on coverage areas,
data rates, and deployment costs due to their limitations.
Therefore, wireless communication technologies such as
ZigBee, Bluetooth, and Wi-Fi are better choices. On the
other side, with the integration of DERs and HESS and the
extensive application of EVs, the architecture and functions
of HEMSs are becomingmore andmore livable. In addition to
the wider scope of optimization scheduling, the optimization

objectives and constraints that need to be considered in
modeling are also increasing day by day.

Besides architecture and infrastructure challenges, HEMSs
also face many challenges in experimental and numerical
optimization. First, the ownership rate, power consumption,
and usage of appliances diversify in each family. The devices
considered in HEMS in the existing literature also vary
significantly [55]. Therefore, it is important to classify
and model the loads properly for future HEMS designs so
that each HEMS can compatibly dispatch multiple unique
devices. Second, the objectives assigned to HEMSs alter
widely with multi-objective nature [55]. It is better to
make a trade-off between multiple objectives. Last but not
least, mathematical optimization methods are accurate in
modeling and time-saving in the calculation. But also because
of this, mathematical optimization algorithms have many
limitations in modeling and it is difficult to solve some NP
problems. The intelligent optimization algorithm can solve
some NP problems, and some algorithms do not depend on
the model, which makes algorithms more versatile. However,
most intelligent optimization algorithms can only obtain
approximate solutions, and some algorithms rely heavily on
initial parameters. Thus, to manage the energy utilization of
a house effectively and efficiently, it is best to choose an
appropriate optimization algorithm according to the specific
HEMS architecture.

As described in Section IV, these HEMS optimization
methods in the current literature are mainly based on
the achievement of optimizing different objective functions
such as reducing the degree of electricity costs and the
computational time complexity to evaluate their optimization
performance. Robustness, sensitivity, and responsiveness are
also evaluation standards in the literature. Experimental
implementations of HEMS are also validated using various
optimization methods, such as LP [100], GA [108], machine
learning [47], and search algorithm [152].

VI. CONCLUSION
HEMSs improve the overall energy production and consump-
tion of houses by optimizing and appropriately scheduling
the use of household appliances, and their research and
promotion can simultaneously benefit residential users,
utilities, and society. This paper reviews the development
history of HEMS architecture, discusses the characteristics of
several major communication technologies in current HEMS
infrastructure, reveals the trend of HEMS architecture and
functions from simple to complex, and the better choice
of wireless technology than wired technology. The sum-
mary of optimization objectives and constraints highlights
that electricity cost reduction is still the most important
objective in HEMSs, while recent studies are focusing
on the maintenance of user comfort and user preferences,
which have a direct impact on participation in DR energy
conservation projects. The comparative and critical analysis
of optimization methods shows the development prospects
and potential of novel intelligent methods and combinatorial
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algorithms applied in HEMSs, which improve the modeling
fidelity and optimization effects of various home appliances.
It is noted that there is an increasing amount of research
that begins to consider uncertainties such as home appliance
ownership, user preference, weather conditions, PV power
generation, and load demand in the optimization algorithms.
However, efforts still need to be made including the impact
of DoD selection on battery and grid performance, battery
degradation cost, and the environmental impact of GHG
emissions. The computational complexity of the methods
and the robustness of the systems both in simulation and
reality can also be considered in future research, which will
have a long effect on the study of HEMSs. Finally, the
discussions and recommendations of research applications
and challenges about HEMSs recently can help readers have
a comprehensive understanding of current research trends
in HEMS, gain insight into the trade-off between optimal
solutions and computational complexity, and lay a foundation
for future research.
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