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ABSTRACT This paper proposes a path planning method for a nonholonomic mobile robot that takes
turnabouts on a narrow road. A narrow road is any space in which the robot cannot move without turning
around. Conventional path planning techniques ignore turnabout points and directions determined by
environmental data, which might result in collisions or deadlocks on a narrow road. The proposed method
uses the Deep Q-network (DQN) to obtain a control strategy for path planning on narrow roads. In the
simulation, the robot learned the optimal velocity commands that maximized the long-term reward. The
reward is designed to reach a target with a smaller change in robot velocity and fewer turnabouts. The success
rate and the number of turnabouts in the simulation and experiment were used to evaluate the trained model.
According to simulation and environmental data, the proposed strategy enables the robot to travel on narrow
roads. Additionally, these outcomes demonstrate comparable performance on a number of roadways that are
not part of the learning environments, supporting the robustness of the trained model.

INDEX TERMS Mobile robot, path planning, turnabout, reinforcement learning.

I. INTRODUCTION
Through the development of robotics and computer tech-
nologies, autonomous mobile robots have greatly impacted
numerous fields. Urban transit, industry, public health, and
domestic settings all use mobile robots [1], [2], [3]. Recent
studies on the autonomous control of robots include dynamic
obstacle avoidance [4], [5], swarm robotic systems [6], [7],
and autonomous parking systems [8], [9]. These studies were
carried out to guarantee safe and efficient transportation in
various residential areas [3].

Residential areas include several restrictions on road
widths due to obstacles and crowds. In this work, two types
of robots—holonomic mobile and nonholonomic—are used
to categorize the ways for moving over restricted roads. The
holonomic mobile robot can move in any direction regard-
less of its configuration. Numerous mechanisms have been
reported, such as an omnidirectional wheeled robot [10],
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an omnidirectional crawler robot [11], a ballbot [12], and a
floor tiling robot [13]. However, the exorbitant expense of the
sophisticated structures restricts the application of holonomic
robots.

For holonomic robots, a variety of path planning tech-
niques have been suggested, including the artificial potential
fieldmethod (APF) [14], velocity obstacle (VO) [15], and bug
algorithm [16]. APF in particular has seen widespread appli-
cation [17], [18], [19]. Using a potential field, this technique
creates routes that direct the robot to the destination while
dodging obstacles. A nonholonomic mobile robot, on the
other hand, may not be able to go along the potential field’s
gradient; hence, the APFmay generate infeasible trajectories.

Most mobile robots today are subject to nonholonomic
restrictions. The smallest turning radius of the nonholonomic
mobile robot, which determines the width of the road on
which it can travel, was determined based on its specifica-
tions. We focus on a narrow road defined as any space in
which the robot cannot move without turning around. On nar-
row roads, the robot cannot pass an obstacle if the total length
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FIGURE 1. Path planning on narrow road using proposed method.

of the obstacle and robot exceeds the road width. Therefore,
this research does not assume general environments in resi-
dential areas such as dynamic environments.

This study examines path planning on narrow roads with
regard to turnabouts. Numerous works have been published
on path planning for nonholonomic robots [20], [21], [22],
[23]. However, a large majority of these studies addressed
forward motion alone from an efficiency standpoint. There
have been reports of conventional path planning approaches
that generate forward and reverse motions, such as the
dynamic window approach (DWA) [24] and Reeds-Shepp
curve [25]. The DWA calculates real-time translational and
angular velocities based on the robot’s configuration and
obstacle data, making the robot move backwards whenever
the translational velocity is negative. The Reeds-Shepp curve
generates the shortest path using line segments and arcs.
The path planning method using Reeds-Shepp curve and
Rapidly-exploring Random Tree (RRT) [26] algorithm was
reported [27]. But these methods may not be able to reach
a goal because they don’t take environmental information or
turnaround points into account.

In traditional approaches, such as the DWA and Reeds-
Shepp curve, the control strategy is planned ahead of
time with information like the system model of the
robot and its environment. Modern works have, however,
developed path planning methods by the learning-based
approach [28], [29], [30], [31]. This approach obtains the
control strategy by repeatedly learning using machine learn-
ing (ML). Reinforcement learning (RL) is an area of ML.
When using RL to plan a path, the control strategy is deter-
mined by how the robot interacts with its environment. Farias
et al. came up with an algorithm to control the position of
the robot using RL [32], by manipulating velocities based
on the error between the target direction and heading angle.
Chang et al. used RL to tune the DWA parameters [33]. Deep
reinforcement learning (DRL), which combines RLwith deep
learning, has been used in many studies recently to plan
paths [34]. Using DRL and imitation learning, Pfeiffer et al.
came up with a way to plan a route for navigation without a

map [35]. This method changes the speed of the robot based
onwhat the sensorsmeasure andwhere the target is in relation
to the robot. Wen et al. wrote about path planning using
DRL and simultaneous localization and mapping (SLAM)
framework [36]. Yao et al. made the APF better by adding
DRL [37]. But as far as we know, no studies on learning-based
approaches have looked at moving backward when planning
a path on a narrow road.

This paper suggests a method to plan a path that takes
turnabouts into account and is based on learning. This study
assumes that the proposed method can be used with a mobile
robot that is not holonomic and travels on narrow roads. The
proposed method lets the robot move on a narrow road with
turnabouts, as shown in Fig. 1(a). Based on a trained model,
the proposed method changes how fast a robot moves in both
directions. A Deep Q-network (DQN) [38], which is a DRL
method, is used to get a trained model for path planning that
takes turnabouts into account.

As shown in Fig. 1(b), the proposed method selects veloc-
ity commands from six candidates based on sensor data and
previous velocities. The reward is designed to achieve a goal
with fewer turnabouts and a smaller change in robot velocity.
The robot learns the best control strategy for maximizing the
long-term reward. As a result, the proposed method gener-
ated paths that included turnabouts that corresponded to the
surrounding environment.

The contributions of this study are summarized as follows.
• To allow the robot to travel on narrow roads, a path
planning method that takes turnabouts is proposed for
a nonholonomic mobile robot.

• Using RL, the proposed method generates a trained
model for path planning on narrow roads. In real time,
the trained model determines velocity commands with
negative values based on environmental data.

• The proposed method enables the robot to travel on
narrow roads, as evidenced by simulation and envi-
ronmental results. The trained model’s robustness was
confirmed by performing path planning on several roads
that differed from the learning environments.
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FIGURE 2. Coordinate system of mobile robot.

The rest of this paper is structured as follows.
Section II describes the mobile robot’s modeling. The DWA
and Reeds-Shepp curves are presented as traditional path
planning methods in Section III. Section IV proposes a
path planning method that incorporates turnabouts by RL.
Sections V and VI present simulation and experimental
results to validate the proposed method’s validity. Section VII
concludes the paper and discusses future research.

II. MODELING OF MOBILE ROBOT
This section describes the modeling of the mobile robot.
The global coordinate system

∑
GL and the local coordinate

system
∑

LC are defined in Fig. 2. The robot has two driving
wheels on the X -axis in

∑
LC . The center of the wheels is

defined as the origin in
∑

LC . The Y -axis in
∑

LC corresponds
to the traveling direction of the mobile robot, whereas (x, y)
denotes its position in

∑
GL . θ represents the angle between

X -axes in
∑

GL and
∑

LC .
The kinematics of the robot in

∑
GL is described as fol-

lows [39]. ẋẏ
θ̇

 =

− sin θ 0
cos θ 0
0 1

 [
v
ω

]
(1)

where v and ω are the translational and angular velocities of
the mobile robot in

∑
LC .

III. CONVENTIONAL METHOD
This section describes the conventional methods of DWA and
the Reeds-Shepp curve.

A. DYNAMIC WINDOW APPROACH (DWA)
This subsection discusses DWA [24]. DWA accounts for
circular paths calculated from translational and angular veloc-
ities. The robot specifications first define the search space for
the robot velocities. For the robot to stop before the closest
obstacle on the circular path, velocity pairs were considered.
If the search space contains negative translational velocity
values, the robot can move backward.

Second, by maximizing objective function J , the optimal
velocity pair is chosen from the dynamic window.

J = W1 · ehead +W2 · edist +W3 · evel (2)

where ehead , edist , and evel represent evaluations of the angle
along the target direction, the distance from the closest obsta-
cle, and the translational velocity of the robot, respectively.
W1,W2 andW3 are weighting coefficients. The details of the
DWA are further elaborated in [24].

B. REEDS-SHEPP CURVE
The Reeds-Shepp curve [25] is presented in this subsection.
If the initial and final positions and directions are specified,
the Reeds-Shepp curve finds the shortest path. The minimum
turning radius of a robot is constrained by this method. This
method divides paths into nine categories where arcs and line
segments fit smoothly: C|C|C, CC|C, CLC, CCu|CuC,

C|CuCu|C, C|Cπ/2LC, C|Cπ/2LCπ/2|C, C|CC , and
CLCπ/2|C . C and L denote an arc of the minimum turning
radius and a line segment, respectively, while | indicates a
turnabout. The subscript ⃝u represents the length of L or
the curvature angle of C . These categories have 48 paths,
among which the shortest was selected. The details of the
Reeds-Shepp curve are explained in [25].

IV. PROPOSED METHOD
This section proposes a path planning method that takes turn-
abouts into account. The traditional method, which generates
forward and backward motions, is incapable of determin-
ing turnabout points and directions based on environmental
data. Using a learning-based approach, the proposed method
obtains a control strategy. The proposed method is called
NT-DQN, which represents path planning on narrow roads
considering turnabouts by DQN. The DQN is an RL method
that employs a deep neural network (DNN) to estimate the
state-action value function known as the Q-value. We imple-
mented the DQN in the proposed method for two reasons.

• It is difficult to design a control strategy or obtain
training datasets in advance when considering a path
planning method with turnabouts based on environmen-
tal information. The RL-based path planning method
obtains the control strategy through the interaction of
the robot and its surroundings, with no prior training
datasets.

• Using neural networks, the DQN can handle high-
dimensional input data. As input data, the proposed
method employs continuous values comprised of sensor
data and robot velocities.

A. PROBLEM STATEMENT
The goal of this research is to generate paths that include turn-
abouts that correspond to the surrounding environment. The
proposed method expresses velocity command u as follows:

uk = [vk , ωk ]T = f (dk ,uk−1) (3)
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FIGURE 3. Diagram of path planning method using RL.

FIGURE 4. Model architecture.

where d represents the set of sensor data measured using a
laser range finder (LRF), while the subscript ⃝k denotes the
time step and the function f represents the DQN learning
model that determines the velocity command from sensor
information and previous velocities.

The RL-based path planning method was divided into two
phases, as illustrated in Fig. 3. During the learning phase, the
robot used trials to update the learning model. The ϵ-greedy
method [40] was used to determine velocity commands. The
random action is chosen with probability ϵ, and the action
that maximizes the Q-value among all velocity candidates is
chosen with probability 1−ϵ. This study simulated the learn-
ing process. The robot performs actions during the operation
phase based on the trainedmodel acquired during the learning
phase. At each time step, the action with the highest Q-value
is chosen.

B. DESIGN OF LEARNING MODEL
1) MODEL ARCHITECTURE
Fig. 4 depicts the NT-DQN model, which determines the
state-action value function Q(s, a; 2) for each action. Here,
Q is the expected value of the long-term rewards for taking

FIGURE 5. State observation.

action a in state s, while 2 is the weight of the model. Adam,
an optimization method, was used to update the weights of
each layer [41]. The following are the definitions of state,
action, and reward.

2) STATE DEFINITION
The state sk at time step k is defined as follows.

sk =

[(
d fwdk

)T
,
(
dbwdk

)T
, vk−1, ωk−1

]T
(4)

where d fwd and dbwd represent the sensor data in the forward
and backward directions of the robot, respectively.

As shown in Fig. 5(a), 2M datapoints were measured
around the robot. di (0≤ i≤2M−1) is the distance to the
obstacles, as measured by the sensor. d fwd is defined as
follows:

d fwd = [d0, d1, · · · , di, · · · , dM ]T (5)

In addition, the minimum value of the sensor data is defined
as follows.

dmin = min
i

{di | i ∈ Z, 0 ≤ i ≤ 2M − 1} (6)

Concerning the data in the backward area of the robot
di (M≤ i≤2M), the amount of data is compressed from
M+1 to N by the following equation:

d∗
j = min

i

{
di

∣∣∣∣ i ∈ Z,
M
π

βj−1 ≤ i ≤
M
π

βj

}
(7)

βj =

(
1 +

j
N

)
π (8)

where M and N satisfy the relationship M > N . As shown
in Fig. 5(b), the angular range of ±π/2 [rad] to the negative
in the negative direction of the Y -axis in 6LC is divided into
N areas at equal intervals. The sensor data’s minimum value
for each divided area is extracted. Using compressed data,
d∗
j (1≤ j≤N ), dbwd is defined as follows:

dbwd = [d∗

1 , d∗

2 , · · · , d∗
j , · · · , d∗

N ]
T (9)

As shown in (4), the state sk also contains velocity data
vk−1 and ωk−1, which are the robot velocities at the previous
time step.
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3) ACTION DEFINITION
The action ak at time step k is defined as al(1≤ l ≤V×W ),
with al denoting a pair of translational and angular velocities.
The translational and angular velocities are divided into sets
V and W , respectively. Thus, the number of actions is given
by their Cartesian cross-product, V×W . One pair from al was
selected for each time step.

4) REWARD DEFINITION
The reward Rk+1 for action ak is defined by the following
equation to avoid obstacles and reach the target position:

Rt+1 =


Kgoal, if (xk+1, yk+1) ∈ G
−Kcoll, if dmin ≤ B
rdist + rturn + ract , otherwise

(10)

where Kgoal and Kcoll are the positive constants. G is the
determined region to reach the target position. The collision
check is carried out by comparing the minimum value of the
sensor data dmin with the robot’s radius B. If the robot arrived
at the target position or collided, the robot position was reset
and the next episode began. In addition, the following reward
functions are provided to evaluate the episode’s path planning
process.

rdist = −Kdist
(
∥xgoal − xk+1∥ − ∥xgoal − xk∥

)
(11)

rturn =

{
−Kturn, if vk < 0 and vk−1 > 0
0, otherwise

(12)

ract =

{
Kact , if uk − uk−1 = 0
0, otherwise

(13)

whereKdist ,Kturn andKact are positive constants. The vectors
of the robot position at time step k and the target position
are given by xk and xgoal , respectively. rdist is the distance
from the target position evaluation function. If the robot
approaches the target position faster than the previous time
step, a positive value is obtained. rturn is a function for
minimizing the number of turnabouts. When the participant
returned, a negative value was obtained. ract is the velocity
change evaluation function. The higher the evaluation, the
smaller the velocity change.

V. SIMULATION
This section presents the simulation results used to train the
model and validate the proposed method’s effectiveness. The
DWA and Reeds-Shepp curves were used as the conventional
methods in the comparison between the proposedmethod and
the conventional methods. Path planning was performed in
several environments using the proposed method to evaluate
its robustness.

A. SIMULATION SETUP
Gazebo with Robot Operating System (ROS) Melodic was
used to run the simulations. TurtleBot3 Burger [42], a ROS
standard platform robot, was used in this study. The robot’s
minimum turning radius was set to 0.5 m.

FIGURE 6. Gazebo simulator.

TABLE 1. Hyperparameter Settings.

TABLE 2. Action options.

Table 1 shows the NT-DQN model hyperparameters man-
ually set prior to training. We set the hyperparameters con-
sidering the calculation cost and performance of the learning
model (success rate and number of turnabouts). The LRF was
used to measure 72 sensor data points around the robot. The
sensor data’s maximum value was set to 1.0m. The sensor
data in the robot’s backward area were compressed into five
data points using (7). As a result, the NT-DQN model’s input
layer had 44 nodes, with 42 sensor data and two velocity data.
The velocity candidates for the proposed method are shown
in Table 2. At each time step, the robot chooses one of the
six velocity pairs shown in Fig. 7. As a result, the NT-DQN
model’s output layer had six nodes. There were two hidden
layers in the NT-DQN model, each with 50 nodes.

The simulation environment used during the learning phase
is depicted in Fig. 8. (xinit , yinit ) = (0, 0) and θinit = 0
are the initial position and angle. The target position in
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FIGURE 7. Movement direction.

FIGURE 8. Simulation environments (learning phase).

Environment 1 was set to (xgoal, ygoal) = (−1, 1), as shown
in Fig. 8(a), where (xgoal, ygoal) denotes the target position in
6GL . When xk ≤ −1, the robot was thought to have reached
the target. The target position in Environment 2 was defined
as (xgoal, ygoal)= (1, 1) in Fig. 8(b). When xk ≥ 1, the robot
was thought to have arrived at its destination.

During the learning phase, the simulation was carried out
as follows: During each episode, the robot moved from its
starting point. If the robot arrived at the target position or col-
lided, its position was reset and the next episode began. Fur-
thermore, the time step limit in each episode was set to 200.
The learning procedure was divided into three steps. In the
first step, only Environment 1 was used in the simulation.
The width of the road, l, was set to 0.4 m. In the second step,
the simulation was run using Environments 1 and 2, with l set
to 0.4 m. The learning model was updated as a result of these
steps to generate turnabouts at road corners. Furthermore, the
third step was carried out using Environments 1 and 2, with l
set to 0.4 or 0.45 m to improve the robustness of the learning
model. The simulation environment was chosen at random at
the start of each episode in the second and third steps.

The simulation environment used during the operation
phase is depicted in Fig. 9. (xinit , yinit ) = (0, 0) and θinit =0
are the initial position and angle. The target position was
determined to be (xgoal, ygoal)= (1, 2).When yk ≥2, the robot
was thought to have reached the target.

There were two types of simulations in the operational
phase. First, the proposed method was compared to con-
ventional methods for path planning. The simulations were
split into three groups: DWA (Case 1), Reeds-Shepp curve

FIGURE 9. Simulation environment (operation phase).

FIGURE 10. Simulation results in Cases 1-2 (conventional method).

(Case 2), and NT-DQN (Case 3). These simulations were run
in a trained environment with the road width l and bending
angle α set to 0.4 m and 90◦, respectively. The road condition
in a trained environment is the same as that in a learn-
ing environment. Second, path planning using the proposed
method was performed in untrained environments to validate
the trained model’s robustness. The road conditions in an
untrained environment differ from those in a learning envi-
ronment. The simulations were run with 12 road conditions
(l, α), where l and α were chosen from 0.35, 0.4, or 0.45 m,
and 75, 90, 105, or 120◦, respectively.

B. SIMULATION RESULTS
1) COMPARISON OF PATH PLANNING METHODS
The simulation results for Cases 1–3 are shown in Figs. 10-11.
The robot’s path is indicated by green circles. In Case 1, DWA
was used to plan the path. The robot repeated the forward
and backward motions around (0.498, 0.035), as shown in
Fig. 10(a). As a result, the robot does not reach the road’s
corners.

The Reed-Shepp curve was used to plan the path in
Case 2. The two subgoals were set as [xsub1, ysub1, θsub1] =

[0, 1, −π/2] and [xsub2, ysub2, θsub2] = [1, 1, 0] between the
initial and target positions. The positions of the subgoals are
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FIGURE 11. Simulation results in Case 3 (proposed method).

TABLE 3. Time to goal or collision.

represented by (xsub1, ysub1) and (xsub2, ysub2). The angles of
the subgoals are denoted by θsub1 and θsub2. In Fig. 10(b),
the red line represents the shortest path generated by the
Reeds-Shepp curve. The robot moved along the path at
0.1m/s. The robot, however, collided with the obstacles at
(0.332, −0.086).

Path planning was carried out in Case 3 using the pro-
posed method. The NT-DQN model was used to confirm the
effectiveness of the proposed method under the same road
conditions as the learning environments after 20000 episodes
in the first and second steps of the learning phase. The robot
movedwith a turnabout at each corner of the road, as shown in
Figs. 11 and 12(a). Figs 11(b)-(c) show the robot’s path when
turning back at each corner. As a result, the robot arrived at the
desired location on the narrow road. Furthermore, as shown
in Fig. 12, the velocity responses vres and ωres followed
the velocity commands vcmd and ωcmd . The superscripts
⃝

cmd and ⃝
res mean the command value and the response

value.
The simulation times for Case 3 are listed in Table 3.

Tgoal is the amount of time required to reach a specific
position. Tcoll is the time required to collide or come to a
halt. As shown in Table 3, the trained model for path planning
with turnabouts was obtained through the DQN learning pro-
cess. Furthermore, as the number of trials increased, the time
required to reach the target position decreased. As a result,
the robot achieved path planning by taking turnabouts into
account.

FIGURE 12. Velocity response in Case 3.

FIGURE 13. Simulation results in untrained environments.

2) PERFORMANCE EVALUATION OF PROPOSED METHOD
The simulation results for several untrained environments
are shown in Fig. 13. The NT-DQN model developed from
30000 episodes during the learning phase was used to validate
the proposed method under road conditions that differed from
the trained environment. The road width in Fig. 13(a) was set
to 0.35 m, which was narrower than the trained environment.
The bending angle of the road in Fig. 13(b) was set to 120◦,
which was greater than in the trained environments. Under
these road conditions, the trained model generated paths to
the target position, including turnabouts, as shown in Fig. 13.
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FIGURE 14. Transition of Q-value regarding result in Fig. 13(a).

Fig. 14 depicts the Q-value transition for each action in
relation to the simulation results in Fig. 13(a). The time
step is represented by the horizontal axis, and the Q-value
is represented by the vertical axis. As shown in Table 2,
al (1≤ l≤6) denotes the velocity candidate. The red hatched
areas represent the time when the robot retreated. The trained
model exhibits the following tendencies in Fig. 14.

1) Except when turning back, the forward motion had a
higher Q-value than the backward motion. As illus-
trated in Fig. 14(a), the trained model preferentially
selects forward motion.

2) As shown in Figs. 11(b)-(c), the relationship between
the Q-value for a backward motion and the Q-value for
a forward motion was reversed just before the robot
collided with the wall, as shown in Figs. 14(b)-(c).
This implies that the trained model chooses to move
backward to avoid collisions.

3) As shown in Figs. 14(b)-(c), the Q-value for backward
motion was consistently greater than that for forward
motion while turning back. This means that the trained
model will continue to choose a backward motion
based on sensor data in the backward area in order to
reduce the number of turnabouts.

Fig. 15 depicts the transition of the Q-value in relation
to the simulation result in Fig. 13(b). The same tendencies
described in sections I)-3) are seen in Fig. 15. Furthermore,
the results in Fig. 15 indicate that the trainedmodel adapted to
an environment with a steep bending angle when compared

FIGURE 15. Transition of Q-value regarding result in Fig. 13(b).

TABLE 4. Evaluation of simulation result for trained model.

to the learning environments. The trained model generated
backward motion for a greater number of time steps than
the result depicted in Fig. 14. According to road conditions,
the number of turnabouts increased. We confirmed that the
features of the trained model for path planning on narrow
roads can be extracted using DQN based on these results.

Table 4 displays the average success rate and number of
turnabouts for 50 trials per road condition. The grey hatched
areas represent the trained width (0.4 m, 0.45 m) and bending
angle (90◦). The success rate and number of turnabouts on the
road with the untrained width (0.35 m) were the same as in
trained environments when α was set to 90◦. This means that
the NT-DQN model learns features to account for variations
in road width. Furthermore, as the bending angle of the road
increased for each road width, the trainedmodel increased the
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FIGURE 16. TurtleBot3 burger.

FIGURE 17. Experimental environment.

number of turnabouts. This means that the trained model can
generate paths, including turnabouts, based on the bending
angle. When α was set to 120◦, however, the success rate
decreased when compared to the other road conditions of the
bending angle. This was due to missing the target direction
from the road’s corner. This paper does not discuss the results
for road conditions where α is less than 75◦ because the robot
traveled on roads without turnabouts.

VI. EXPERIMENT
This section displays the experimental results, which confirm
the efficacy of the proposed method.

A. EXPERIMENTAL SETUP
The experiment was carried out with the trained model
obtained from 30000 simulation episodes. For the experi-
ment, the simulation parameters listed in Table 1 were used.
The mobile robot used in this experiment is depicted in
Fig. 16 as the TurtleBot3 Burger. The LRF was attached to a
robot. Fig. 17 depicts the experimental settings. The environ-
mental settings were identical to those used in the simulation
environment, as shown in Fig. 9. The road conditions (l, α)
for the trained environment were set to (0.4, 90), while for the
untrained environments it was (0.35, 90), (0.4, 120).

The proposed method’s performance was experimentally
validated. To the best of our knowledge, providing a the-
oretical explanation of path planning performance using
a learning-based approach is difficult. As a result, the
majority of papers on the learning-based approach that
have been published have experimentally evaluated trained

FIGURE 18. Experimental results in trained environments.

FIGURE 19. Velocity response regarding result in Fig. 18.

models [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37]. The success rate and number of turnabouts were used
as indexes in this study to assess the robustness of the trained
model.

B. EXPERIMENTAL RESULTS
The experimental results for the trained environment are
shown in Fig. 18. The green circles and blue spots represent
the LRF’s measurements of the robot’s trajectory and envi-
ronment. Fig. 19 depicts the velocity response in relation to
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FIGURE 20. Experimental results in untrained environments.

the results in Fig. 18. The robot traveled with a turnabout
at each corner of the road, as shown in Figs. 18 and 19(a).
Furthermore, as shown in Fig. 19, the translational and angu-
lar velocity responses followed the velocity commands. The
average success rate and number of turnabouts for the five
trials were 1.00 and 2.20, respectively.

The experimental results for the untrained environments
are shown in Fig. 20. The road width in Fig. 20(a) was set
to 0.35m, which was narrower than the trained environment.
As shown in Fig. 20(a), the robot traveled with a turnabout
at each corner of the road. The average success rate and
number of turnabouts for the five trials were 1.00 and 2.20,
respectively. The bending angle of the road was set to 120◦,
as shown in Fig. 20(b), which was greater than that in the
trained environments. As shown in Fig. 20(b), the robot
traveled four times with turnabouts. For the five trials, the
average success rate and number of turnabouts were 0.60 and
3.60, respectively. Based on these findings, the trained model
implements path planning by incorporating real-world turn-
abouts. Furthermore, other road conditions not depicted in
this study confirmed results that were similar to the simula-
tion. The experimental results confirmed the validity of the
proposed method.

VII. CONCLUSION
This study proposed a path planning method for a nonholo-
nomic mobile robot that takes turnabouts on narrow roads
into account. Using a learning-based approach, the proposed
method generates a trainedmodel for path planning on narrow
roads. In real time, the trained model determined the velocity
commands based on sensor data and previous velocities. Sim-
ulations and experiments were used to validate the proposed
method’s effectiveness.

The future works are summarized as follows.

• The robot may be unable to travel in environments that
differ significantly from the learning environment, such
as branching and blind roads. These are environments
where the LRF cannot detect a road. Future work will

improve the architecture of the learningmodel and learn-
ing process to improve performance even further.

• Because the proposed method used a discrete veloc-
ity command, the velocity command changed abruptly.
In the future, RL algorithms designed for learning con-
tinuous actions will be used to control robot velocities
continuously.

• The proposed method can be improved to avoid losing
the target at a road bend. The target data is combined
with a map-based path planning method.
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