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ABSTRACT Modern production lines for molded plastic parts often have automated inspection systems
to detect defective parts reliably and efficiently. However, these conventional inspection systems have low
flexibility and versatility, leading to difficulties when dealing with complicated requests such as when small
quantities of many different parts are manufactured on the same production line. The proposed system can
be implemented quickly using low-cost off-the-shelf components and does not require accurate alignment
of production parts, reducing the need for manual inspections and increasing work efficiency when handling
complex workloads. The inspection algorithm combines higher-order local auto correlation (HLAC) features
with one-class support vector machine (one-class SVM) and principal component analysis (PCA) to extract,
transform, and classify the differential feature vector between conforming and nonconforming plastic parts.
To verify its validity and effectiveness, we compared defect detection accuracy and speed between the
developed inspection system and manual inspection experimentally. Extremely high accuracy (Recall =

0.93, Specificity = 1.00) and speed (10 inspections in 30[sec]) was obtained with 7 types (1 conforming
type, 6 nonconforming types) of sample parts (30 samples each). We demonstrated a 400 % increase in
speed can be gained relative to manual inspection.

INDEX TERMS Higher-order local auto-correlation feature, interactive, one-class support vector machine,
plastic parts, rough alignment, visual inspection.

I. INTRODUCTION
In order to meet the continuous pressure to increase
production, reduce costs, and improve quality, production
facilities have to be able to inspect products as fast as
possible. This is made more challenging by the increasing
heterogeneity of products on production lines; wider array
products are being produced in ever smaller quantities due
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to increasingly diverse consumer taste and demand for
customized products. This has led to extremely high burdens
on manufacturing staff as they attempt to cater to their
customer’s increasingly complex and diverse requests. For
example, it often happens in actual production sites that
different products are produced on the same production line
in the mornings and afternoons, and sudden changes in the
production schedule often occur. There is a need for an
automatic image inspection system that is highly versatile
and flexible that can handle wide ranges and variations of
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plastic parts made from different production processes. This
paper proposes an automatic inspection system that does not
require accurate alignment of the plastic parts for it to work.
By removing time-consuming alignment and preparation
work, high-speed and high-accuracy automatic image-based
defect inspection that is also easy to use can be realized.

When image-based defect inspection was first introduced
on production lines, most inspection algorithms for detecting
anomalies were using pixel-based or histogram-based image
comparisons [1], or methods based on statistical features
such as image texture [2]. However, precise alignment and
controlled lighting conditions of the parts were necessary for
these algorithms to be accurate. Achieving these inspection
conditions required a lot of time, and placement and lighting
conditions varied from product to product, limiting these
algorithms’ versatility and usefulness for multi-product lines.
Our research group is also applying deep learning to detect
black spots on components

With recent dramatic improvements in computing power,
deep convolution neural networks composed of extremely
large numbers of layers have been proposed and have been
shown to have revolutionary high performance for image
recognition [3], [4]. A feature of this method is that the
models are trained in an end-to-end manner using large
amounts of sample data, and specific features do not need
to be manually determined for anomaly detection to be
achieved.

For instance, the algorithms of YOLO [5] and AWS
Rekognition [6] do not need alignment of the recognition
target. In both these algorithms, the class recognition and
position estimation of objects in the image are realized at
the same time. Anomaly detection algorithms based on these
deep learning models have the great advantage of being
highly flexible and versatile, like human inspectors. However,
deep learning models have a fatal disadvantage in that they
require large amounts of sample data to train. Collecting
anomalous data samples is extremely difficult, since they
are rarely observed. Furthermore, the process of anomaly
detection by these end-to-end methods becomes a black box,
making it hard to backtrace and determine the reason why a
part was deems to be anomalous by the model.

As will be explained in more detail in Section II, higher-
order local auto-correlation (HLAC) [7] features refer to
the integral values of local auto-correlations in the image.
This can be obtained with relative ease using minimal
calculations. One advantage of HLAC features is the shift
invariance of its output. Additionally, the relatively simple
calculation reduces computing load, which makes high-speed
processing achievable, even without using a specialized
computing unit, for example the GPU (Graphics Processing
Unit). HLAC features have been applied to many studies
thus far. In the medical field, HLAC feature was used for
detecting bleeding and tumors from image data measured
with a capsule endoscope [8], evaluate liver cirrhosis from
an ultrasonic B-mode image [9], and extracting blood

vessels from a retinal image [10]. Many researchers have
also applied HLAC features to human motion analysis and
man-machine interfaces (e.g. identification of gestures). For
example, individual identification of gait movements and
motion recognition of hand gestures have been attempted so
far [11]. There have also been few applications in industrial
production. There was a study [12], [13] that attempted to
detect hot spots that caused defects at the pattern transfer
to a semiconductor wafer. In [14], general objects were
recognized from satellite image data.

Generally, training of a classifier requires large numbers of
nonconforming samples, which can be difficult to acquire in
practical applications due to the rarity of defective products.
To solve the problem, we propose using a support vector
machine (SVM) [15], which enables the model to be trained
using only conforming samples. In one-class support vector
machine (one-class SVM) [16], the model is trained only
from conforming samples, and the outlier is detected as an
nonconforming sample based on the trained model.

Similar discriminators include Isolation Forest [17], [18],
Local Outlier Factor (LOF) [19], and Elliptic Envelope [20],
which perform outlier detection using decision trees, density
of the data distribution, and elliptical boundary of around
a normal distribution, respectively. Isolation Forest assumes
that the characteristics of conforming and nonconforming
data are far apart. Therefore, it is considered unsuitable for
detecting minute abnormalities such as those that occur at
manufacturing sites. LOF is a robust discriminator for outlier
detection, but it requires arbitrarily setting the number of
points in the neighborhood of conforming data, and the
definition of outliers is unclear. Therefore, while it is possible
to detect outliers with conforming data only, it was difficult
to set a threshold when classifying those with feature points
in the neighborhood. This is because nearby points contain
feature points of abnormality. Therefore, it is considered
difficult to introduce LOF into a visual inspection system at
a manufacturing site, where changes in minute abnormalities
need to be detected. Finally, an Elliptic Envelope assumes that
the data follows a normal distribution. One-class SVM was
chosen because it does not have the disadvantages of the other
discriminators mentioned and does not make assumptions of
the distribution of the underlying data, allowing for a more
flexible discriminant curve.

The primary objective of this paper is to clarify the
effectiveness of the proposed HLAC features and their
preprocessing. The chosen discriminator, One-class SVM,
was compared to the Elliptic Envelope, which has a different
decision boundary mechanism.

This study proposes a novel automatic image inspection
algorithm that combines HLAC-based feature extraction
and SVM classifier. The proposed method calculates the
difference between the HLAC features extracted from the
target plastic part and that of the reference conforming part,
then transforms the principal axes of the feature space based
on principal component analysis (PCA) [21] to enhance the
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anomalous features of the target part. After transforming
the principal axes, the extracted features are modeled using
the SVM. Then, the model incorporates the normal variations
in the features of the product, and the sample with outlier
feature is detected as an nonconforming sample.

To make the best use of HLAC features, the effec-
tive preprocessing according to the target application is
essential. However, if the HLAC features used without
any preprocessing, high anomalous detection performance
cannot be achieved. The performance can be maximized by
optimizing the entire system (dynamic range and resolution
of the image, preprocessing such as difference extraction and
normalization, HLAC and SVM parameters). In the paper,
we examine and report on the technologies, procedures,
as well as the evaluation results achieved when applying
HLAC features to anomaly inspection of plastic molded parts.

The paper is organized as follows: Section II explains
the idea of the proposed method, and Section III shows
the system configuration. Experiments conducted on the
developed system and the results are presented in Section IV.
We then draw some conclusions and outline the future work
in Section V.

II. IDEA OF VISUAL INSPECTION OF A
ROUGH-ALIGNMENT PLASTIC PART
The proposed defect inspection system has the following
advantages.

• Highly efficient inspection without precise alignment of
the parts

• Model training with only a small amount of conforming
samples

• High-speed processing on a non-GPU computer
• Interactive inspection while monitoring the results in
real time

• No need to collect defective samples
This section briefly explains the ideas of the algorithm.

A. MEASURING ENVIRONMENT AND INSPECTION TARGET
An overview of the image inspection system developed is
shown in Fig. 1.
Unlike traditional defective inspection systems, where

precise placement or alignment of plastic parts are required,
our system allows the plastic parts to be placed roughly.
In traditional systems, this requirement is achieved either
using jigs or through software processing to compensate
for misalignment. However, jigs can be difficult to replace
or make on short notice, and expensive hardware and
software that can detect and process minute changes is
required to correct for misalignment. Our system removes
this requirement by accounting for minor misalignment in our
inspection model.

Furthermore, traditional systems often require a special
environment such as a dark room to be effective. This is
because small changes in brightness often occur, for example,
due to people walking by or by the opening and closing doors.
Our system also attempts to account for these variations, so it

FIGURE 1. Overview of the visual inspection of a rough-alignment plastic
part.

FIGURE 2. Example of the inspection target.

can be used in normal everyday lighting environments. This
can substantially reduce the operational burden and improve
the usability of the defect inspection system.

This study focuses on underfill and burr defects, which are
typical in molded plastic parts. An example of a conforming
and nonconforming part is shown in Fig. 2. These defects
can be easily observed through a silhouette by illuminating
the plastic part with a backlight. (a), (b), and (c) show the
underfill defects, while (d) and (e) show the burr defects.

Although these kinds of defects may seem relatively easy
to detect by a human inspector, they are also often overlooked
when a large number of parts need to be inspected quickly.
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FIGURE 3. Flow of visual inspection.

B. INSPECTION PRINCIPLE
Fig. 3 shows the outline of the algorithm. The processing is
divided into two phases: modeling and testing.

1) MODELING
In the modeling phase, the features of conforming parts are
extracted and modeled using HLAC. Specifically, the HLAC
features of the conforming sample is first calculated from
a captured image of the reference plastic part. It is noted
that the first sample is carefully set to the measuring place
so that there is no deviation and rotation of the sample.
The HLAC features are calculated, and these features are
used as the reference. The HLAC is defined as a following
Eq. (1). Considering a N th-order autocorrelation with a set
of displacements {a1, . . . , aN }, the value of a feature H is
obtained through the following function:

H (r, {a1, . . . , aN }) =

∫
f (r)f (r + a1) . . . f (r + aN ) dr (1)

Here, f (r) corresponds to a list of intensity values of the
pixels forming the processed image r . Based on the equation,
the HLAC features are calculated as the integral of the local
autocorrelation in the image.

The local patterns used are shown in the Fig. 4. In this
study, we consider up to the second-order shift patterns.
35-dimensional features are obtained excluding the equiva-
lent patterns.

As described in Section II-A, this research assumes that
the target part will be roughly placed on the inspection place
by human hands and the room brightness can be changed
slightly due to accidental conditions. Because the captured
image is affected by these inspection conditions, a large
dataset with all the potential variations would typically be
needed.

However, in our proposed system, only a small number
of real samples are required. The influence of ambient light
is reduced by maximizing the illumination intensity of the
lighting illuminating the target part and the exposure time
of the camera parameters. In addition, a number of images
of conforming parts are taken to respond to minute changes
in brightness that occur in this environment. To account
for orientation variations, these images are augmented by
random rotations to create a large number of artificial
samples. Positional variations were not required because
it does not affect HLAC features due to its shift-invariant
property.

Next, the difference between the HLAC features of the
conforming parts and that of the reference image is calcu-
lated. The means and standard deviations of these differences
for these HLAC features are then calculated and the z-score
normalization was performed for each HLAC feature. Even
though HLAC features vary with rough alignment and slight
brightness changes, many elements in the feature are highly
correlated with each other. Therefore, a principal component
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FIGURE 4. Local pattern for HLAC (Higher-order Local AutoCorrelation)
feature.

analysis is performed to obtain the eigenvectors. Using the
obtained eigenvector matrix, each factor can be uncorrelated,
and orientation information and anomalous information can
be separated into different component. Each PCA component
is then once again z-score normalized based on the means
and standard deviations for that PCA component of the
training data. A one-class SVM model is then trained using
these normalized principal components calculated from only
conforming parts. No nonconforming parts are used to train
the model.

2) TESTING
In the testing phase, an image of target part is captured
and the HLAC features are extracted from it. Then, the
difference between the HLAC features of target part and
that of the reference part is calculated. This difference
features are then normalized and then transformed using the
PCA eigenvector matrix derived in modeling phase. After
obtaining the principal components, the features are further
normalized based on the mean and standard deviation of the
PCA components in the modeling data. Then, the one-class
SVMmodel trained in the modelling section is used to detect
nonconforming samples.

The concept diagram of the preprocessing is shown
in Fig. 5. (a) Reference HLAC features, (b) HLAC fea-
tures extracted from a rough-aligned nonconforming part,
(c) difference features, (d) Normalized features after PCA
transformation are shown. The gray bars indicate the HLAC
features that reflect the shape of the plastic part, and
they occupy most of the feature components. On the other
hand, the yellow bars show the changes in features due
to rough-alignment, and the blue bars show the changes
in features due to defects such as underfill, burr, and etc.
The yellow and blue bar can be extracted as the difference

FIGURE 5. Concept diagram of the preprocessing.

FIGURE 6. System components.

between the anomalous and reference features. However,
the yellow bars are highly correlated. So, their principal
axes are transformed with the eigenvector matrix, and each
factor is uncorrelated and compressed into a few principal
components. After normalizing the features based on the
mean and standard deviation of themodeling data, anomalous
feature is emphasized as shown in (d).

III. SYSTEM COMPONENTS
Fig. 6 shows an overview of the experimental system.
As shown in the picture, the defect inspection is performed
in a tabletop environment. A ring light (manufactured by
Aitec System Co., Ltd., TR50 × 18-16WD-4) and a Board
light (MUTOH INDUSTRIES LTD., SLT-B4C) are installed
in the system. A CMOS color camera (manufactured by
Logicool Co Ltd., C270) is used to capture images of the
sample.

The CMOS color camera has a resolution of 720p and
frame rate of 30[fps], the maximum view range is 55◦,
and the minimum focal length is 300[mm]. The brightness
of the board illumination is about 2,700[lx]. The target

VOLUME 11, 2023 19583



T. Eguchi et al.: Interactive Visual Inspection of a Rough-Alignment Plastic Part

FIGURE 7. Software design.

plastic part can be roughly placed directly under the camera
within the range of 80[mm] × 80[mm]. The distance
between the camera and the target part is 300[mm]. The
CMOS camera is connected to the computer via a USB
interface.

The software configuration is shown in Fig. 7. The
algorithm consists of four parts: image acquisition, HLAC
feature extraction, PCA analysis, and model construction and
defect detection. From image measurement is implemented
using LabVIEW development environment (version 2018,
National Instruments Corporation), and to PCA analysis to
model construction of one-class SVM and defect detection
are codedwith Python program (version 3.8, Python Software
Foundation). LabVIEW excels at building user interfaces
to handle hardware control and data visualization. As for
the development in Python, we adopt Scikit-learn module
(version 1.0.2, Python Software Foundation) [22], which is
capable for a machine learning.

The automatic parameter adjustment function of the
CMOS camera is not used, and exposure time, gain, and
focus is fixed at 0.8[sec], 0, 300[mm]. The images are
continuously processes on the computer at the camera’s
frame rate of 30[Hz]. The images are first acquired as 32bit
color image, and are then converted to a 8bit grayscale
images. The brightness and contrast are adjusted in order to
observe features of the plastic part in detail. As described
in Section II-B, before the testing, the model has to be
trained with conforming samples. 30 images of the same
reference sample were captured all at once and these
were augmented by randomly rotating them from −5 to
5 degrees to artificially generate 215 additional artificial
samples.

HLAC features, we consider up to the second-order shift
patterns. 35-dimensional features are obtained excluding
the equivalent patterns. The HLAC features extracted from
a conforming plastic part contains two linearly combined
components. One is the feature derived from the shape of
the part, and the other is derived from the measurement
conditions such as part orientation light brightness, and
etc.

The component components of the characteristic caused
by the measurement conditions can be extracted by
subtracting the reference characteristics of the conforming
part. Each element of 35-dimensional vector is normalized
N (0, 1) based on the mean and standard deviation. In the
35-dimensional features, factors such as orientation, bright-
ness, etc. are highly correlated each other. Therefore, PCA
analysis is performed to uncorrelated each factor, and
the changes in features due to rotation, brightness, etc.
are aggregated into several principal components. After
performing PCA, each element is normalized N (0, 1) again
based on the mean and standard deviation. The above
calculation is not complicated and can be processed at high
speed. The algorithm is implemented using LabVIEW, and
the preprocessed features can be graphically observed on the
monitor in real time.

The calculated 35-dimensional feature vectors are used
for modeling/testing with one-class SVM. One-class SVM
is a method that applies support vector machine (SVM) to
one-class classification without supervised learning, which is
a classification algorithm for machine learning [16]. In the
method, all conforming samples are set to Cluster 1, and
samples are mapped to a high-dimensional feature space
based on the technique called Kernel trick so that only
the origin of the feature space belongs to the anomalous
cluster. Thus, the conforming samples are mapped far from
the origin, and nonconforming samples are mapped near the
origin. By training one-class SVM with only the conforming
samples, the outlier sample can be detected based on the
discrimination boundary. Even though almost no defect
occurs and hardly any nonconforming samples are available,
the anomaly detection can be performed. It is the remarkable
feature of one-class SVM. The defining equations for a
one-class SVM are Eq. (2)-(4), where α is a relative variable.
K represents the kernel function and xi, xj are arbitrary
features. Anomaly detection is performed based on Eq. (2).
n represents the number of conforming sample data, and ν is
a hyperparameter that determines the percentage of training
errors. f (xi) ≥ 0 indicates conformity, and f (xi) < 0 indicates
anomaly.

f (xi) = min
α∈Rn

1
2

∑
i∈[n]

∑
j∈[n]

αiαjK (xi, xj) (2)

s.t. 0 ≤ αi ≤
1
nν

, ∀i ∈ [n] (3)∑
i∈[n]

αi = 1 (4)

The radial basis function (RBF) function was used for
the kernel of one-class SVM. The RBF function is defined
by Eq. (5). The hypersphere boundary of the model is
generated based on Eq (5). Here x represents a feature.γ is
a hyperparameter.

K (xi, xj) = exp(−γ ||xi − xj||) (5)
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FIGURE 8. Violin plots showing the distribution of the original and preprocessed samples.

TABLE 1. Data set profile.

The parameter ν, which determines the ratio of outliers,
was set to 0.02. Python program (version 3.8, Python
Software Foundation) and Scikit-learn machine learning
module (version 1.0.2, Python Software Foundation) was
used to implement the algorithm of one-class SVM.

IV. EXPERIMENTS
An experiment was conducted to verify the validity and
usefulness of the proposed method. This section introduces
the experimental conditions and results.

A. EXPERIMENTAL CONDITIONS
Fig. 9 shows the conforming and nonconforming samples
made to simulate manufacturing defects. The samples were

FIGURE 9. Conforming and nonconforming samples highlighting
simulated manufacturing defects.

made of black acrylic resin and the nonconforming parts
were made by imitating actual defects commonly found
in the plastic molded parts. Six types of nonconforming
samples, I to VI, were used to simulate the typical defects
found in injection molding. For nonconforming samples III
and IV, the differences were enlarged to better highlight
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TABLE 2. Comparison of inspection accuracy based on number of dimensions.

the defective areas. Parts I and II simulated burr defects
caused by overfilling, while parts IV, V, and VI simu-
lated poor filling defects caused by insufficient filling.
Finally, part III simulated both filling and burr defects
simultaneously.

The data set used for modeling/testing is shown in Table 1.
245 conforming images were artificially augmented based on
some images of the conforming part taken using the CMOS
camera. The image was augmented by randomly rotated
within the range of −5 to +5 degrees.
These 245 images of conforming parts were used for

training of one-class SVM. Images of 30 conforming parts
and 30 of each type of nonconforming parts I to VI were
captured to be used for testing. While capturing the test
image, the parts were repeatedly placed roughly by human
hands, similar to the actual expected operation of the
system.

B. VALIDITY OF THE PROPOSED ALGORITHM
To evaluate the effectiveness our algorithm, the proposed
preprocessing and discriminator are compared with two other
basic preprocessing procedures (A, B) and a discriminator
(Elliptic Envelope). Thirty samples each of conforming,
nonconforming III, and nonconforming IV (90 samples in
total) were used for this validation testing. Fig. 8 shows
violin plots of the features computed using two basic
preprocessing procedures A and B as well as that for the
proposed preprocessing. A in Fig. 8 shows the distribution
of HLAC features without any processing while B in Fig. 8
shows the distribution of the difference in HLAC features
between the test samples and the reference sample. Proposed
in Fig. 8 shows the distribution of the features computed
using the proposed method. The larger variance of the violin
plots observed in Proposed in Fig. 8 shows the effect of
the proposed preprocessing method to feature separation.
It is difficult to feature separation because the defects
in nonconforming parts III and IV are small, with only

1[mm] difference between them and the references sample.
In addition, it is often difficult to identify nonconform-
ing part III because multiple defects are mixed together.
However, as shown in Fig. 8, the proposed method is even
able to make the features of these nonconforming parts
distinct.

The proposed discriminator was verified by comparing its
accuracy for the three types of preprocessed features shown
in Fig. 8 (A, B, and Proposed) with that of Elliptic Envelope.
The boundary condition parameters of the Elliptic Envelope
and the one-class SVM are determined by trial and error for
each feature. Table 2 shows the One-class SVM accuracy
for each feature when the number of dimensions is reduced.
The confusion matrices showing True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN)
percentages are reported and the recall, specificity ratios are
shown for each feature and selected number of dimensions.
The proposed method is always able detect nonconforming
products because specificity does not decrease with a change
in the number of dimensions. In other words, the proposed
method can achieve the same inspection performance for a
small number of dimensions as it does for a high number of
dimensions. Based on the above, the results of the comparison
in five dimensions are shown in Table 3. For each feature,
it shows the percentage of conforming and nonconforming
samples identified. The results in Table 3 confirm that the
proposed method can detect anomalies that could not be
detected by no prepossessing. For comparison, anomaly
detection using Elliptic Envelope was performed on the same
data set as in Table 3. Table 4 shows the discrimination
results using Elliptic Envelope. As shown in Table 3, the
method using one-class SVM performed better for A and B.
Therefore, we decided to use 5-dimensional features in
our subsequent experiments. In addition, to confirm the
appearance of the boundaries in each feature, two features
were selected from the lower dimensions and illustrated in
Fig. 10. For comparison, the same dataset as in Fig. 10 was
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FIGURE 10. Boundary visualization by 2D distribution(One-class SVM).

FIGURE 11. Boundary visualization by 2D distribution (Elliptic Envelope).

used to test for anomaly detection using the Elliptic Envelope.
The results are shown in Fig. 11. As shown in Fig. 10, the
method using one-class SVM shows that the discriminant
curve is better fitted to the distribution in B. The ROC curve
in Fig. 10 also shows that the performance is better when one-
class SVM is used.

C. PRACTICAL CHALLENGE
Finally, an experiment was conducted to prove the effec-
tiveness of the method in practical operation. A total
of 300 samples (270 samples for conforming parts and

5 samples for each of the 6 types of nonconforming
parts I -VI] were prepared. Three conditions were investi-
gated, namely, (a) visual inspection by human operators and
(b) automated inspection requiring precise alignment, and
(c) defect inspection by the proposed system. In (b), the
inspection is performed by specifying the position of the
parts in detail and requiring the participant to align them
manually. In (c), the inspection is performed with rough
alignment, where the part is allowed to be placed roughly in
the inspection area, taking advantage of the features of the
proposed method.
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TABLE 3. Comparison of discriminator (one-class SVM) performance for A, B and Proposed preprocessing procedures (5 PCA-dimensions).

TABLE 4. Comparison of discriminator (Elliptic Envelope) performance for A, B and Proposed preprocessing procedures (5 PCA-dimensions).

FIGURE 12. The results of the comparison are practical challenges.

The results of the experiment are shown in Fig. 12.(a), (b),
and (c) correspond to the respective inspection conditions.
It was observed that (c) the proposed system (rough
alignment) was the fastest and (a) human visual inspection
was the slowest. There is a four-fold difference in efficiency
between (c) and (a). The difference between (b) and (c) is the
accumulated difference in time spent aligning the parts; On
average, alignment of the inspection parts takes an extra of
30[sec].

Recall, an indicator of false positive detection of con-
forming products, was inferior to that of the proposed
system compared to human inspection. However, Table 3
shows that the proposed system does not mistake any

FIGURE 13. Repetitive True Positive.

nonconforming product for a conforming product. The false
positive detection of conforming products is caused by
problems with slight changes in brightness and timing of
image capture. Therefore, it may be possible to reduce the
false positive rate of conforming products by repeating the
inspections of those deemed nonconforming. Based on this,
we prepared 30 conforming products that were judged to be
nonconforming and one each of kind of six nonconforming
products. If a product is determined to be conforming at
least once during repeated inspections, it is considered to
be conforming. Fig. 13 shows the results. The results show
that all of the conforming products were correctly judged as
conforming in nine trials in this experiment. These FP values
also indicate that nonconforming products were always
judged as nonconforming in the nine trials. In other words,
repeated inspections are effective in solving the problems of
this system.
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V. CONCLUSION
The paper validates the effectiveness of rough alignment for
rapid and interactive anomaly inspection in a manufacturing
line. We demonstrated that a system using HLAC features
with PCA and pretreatment maximizes the benefits of the
features and clarified its effectiveness.

In this research, an automatic defect inspection system was
developed to meet the needs of the practical manufacturing
site. The system can detect nonconforming parts with
high accuracy in an extremely short time, helping human
operator inspect various types of parts in small quantities
while maintaining extremely high quality of products. The
developed system does not require accurate alignment of the
target parts, so it has the advantage of reducing the work load
on the human operator.

The method proposed in this paper has the following nov-
elties and usefulness. As a novelty, the proposed method pro-
vides robust anomaly detection in rough alignment. HLAC
feature has the outstanding feature of being feature-invariant
with respect to parallel shifts of the target. However, it has
been extremely difficult to detect anomalies with high accu-
racy from rough-aligned (e.g., rotating) objects. The proposed
method solves this problem by effectively combining HLAC,
computation of differences, PCA, and one-class SVM.
Another academic contribution is the example of detecting
anomalies such as burrs and chips of less than 1[mm]. The
usefulness of this system lies in the fact that it can be
quickly applied tomanufacturing sites using only inexpensive
cameras, and that it can extract only the necessary feature
components without compromising the characteristics of the
HLAC features. We conducted experiments using samples
to verify the validity and usefulness of the proposed
algorithm.

The experimental results showed that defects can be
detected with high efficiency and high accuracy. In the future,
wewould like to extend the developed abnormality inspection
system based on 3D data using a depth camera. We would
also like to try to introduce deep learning techniques into the
classifier to improve detection accuracy.
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