
Received 31 January 2023, accepted 19 February 2023, date of publication 23 February 2023, date of current version 22 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3248067

An Efficient Low Complexity Region-of-Interest
Detection for Video Coding in Wireless
Visual Surveillance
AHCEN ALIOUAT 1, (Student Member, IEEE), NASREDDINE KOUADRIA 1,
SALIHA HARIZE 1, AND MOUFIDA MAIMOUR 2
1Laboratory of Automatic and Signals of Annaba (LASA Laboratory), Faculty of Technology, Department of Electronics, Badji Mokhtar–Annaba University,
Annaba 23000, Algeria
2CNRS, CRAN, Université de Lorraine, 54000 Nancy, France

Corresponding author: Ahcen Aliouat (ahcen.aliouat@ieee.org)

This work was supported in part by the Campus France under Grant 46082TB, and in part by the PHC TASSILI Program under Grant
21MDU323.

ABSTRACT Moving object detection (MOD) has become a popular topic in video analysis due to its use
in several applications, including video coding in wireless surveillance. However, implementing MOD in
constrained sensors is challenging due to their high complexity and energy consumption. Therefore, there
is a great need to address the trade-off between the accuracy and the energy efficiency of MOD approaches
for video coding in constrained systems. In this work, an energy-efficient region-of-interest (ROI) detection
algorithm as a pre-encoder for wireless visual surveillance (WVS) is proposed. The algorithm ensures a
trade-off between detection accuracy and computational complexity. To this end, we propose constructing
an activity map by measuring each block activity between successive frames. The map scores are processed
using a combination of a fast Gaussian smoother and a rank-order filter to improve accuracy. Only the blocks
in motion are coded and counted for transmission. The accuracy of our approach has been evaluated on a
large dataset using key performance metrics. It has been found that our algorithm outperforms other state-of-
the-art techniques in terms of true positive rate (TPR), with 80.84% on sensitivity metric, while exhibiting a
well-balanced accuracy for all categories. A careful examination of the computational complexity confirms
the low overhead. The energy and bitrate savings could achieve nearly 90% and 98%, respectively.

INDEX TERMS Region-of-interest, object detection, image compression, WVS, video surveillance,
energy-efficiency.

I. INTRODUCTION
Video Content Analysis (VCA) techniques involve automat-
ically analyzing video to detect and determine spatial and
temporal events. VCA is used in a wide range of domains,
including video browsing and retrieval [1], image and video
coding [2], [3], and video surveillance, etc. The analyze-then-
compress (ATC) paradigm employs VCA to first analyze the
content before compressing it. As a result, feature extraction
is carried out before the compression and the transmission
of the visual data captured from a visual sensor node (VS).

The associate editor coordinating the review of this manuscript and

approving it for publication was Kaigui Bian .

This paradigm has been put forth as a substitute for the
conventional compress-then-analyze (CTA) paradigm, which
compresses the entire captured video before transmitting it
to be processed further upon receipt. The CTA paradigm
typically employs highly complex video coding standards [4],
such as MJPEG [5], H264 [6], and HEVC [7]. Therefore,
ATC can streamline this process and enable video coding
within limited-resources devices [2].

The ATC paradigm [8] is well-suited for many applica-
tions [9], [10], [11] because it only compresses and transmits
a few parts of the frame, known as the region-of-interest
(ROI). In such applications, the end-user is only interested
in the ROI, so it is relevant to extract those regions before
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FIGURE 1. Image analysis by ROI detection for video coding in WVS.

encoding. This allows for the development and use of very
low-bitrate encoders, and can result in significant savings in
energy and bandwidth. Moreover, the energy consumed by
the sensor node during transmission is often greater than the
energy used for compression [12]. Therefore, by sacrificing
some image quality and transmitting only the ROI, the
bitstream can be reduced, leading to further savings in
bandwidth and energy. Figure (1) illustrates the framework
of this paradigm.

Despite the increased advancement in new video coding
standards involving high video quality with very low
bitrates, they are still not adopted for WVS [13], [14]. The
unsuitability is due to the high complexity of the used coding
modules, either in the intra or inter-coding modes. New
approaches and paradigms have emerged to overcome this
problem. They aim to code the frames based on the ROI
and the difference between successive frames [15], [16].
Correspondingly, the moving object is the salient zone in
the frame that must be coded, whereas non-ROI could be
omitted to save bandwidth and energy in anROI-based energy
optimization approach. ROI is an important element in this
context; therefore, accurate ROI detection is a crucial step that
must be well-studied.

Making the tradeoff between accurate object detection
and very low complexity is an important subject to be
addressed and studied to advance the ROI-based video coding
paradigm. To minimize contextual loss, this tradeoff must
address the detection of the entire ROI (high sensitivity),
but with a moderate energy budget [17], [18], [19]. Indeed,
the benefit of using those approaches in video surveillance
is that the cameras deployed are relatively stable, and there
are few insignificant background changes. Accordingly, this
topic has received a lot of attention in recent years, with
numerous pre-encoder approaches proposed for video and
image compression in WVS [20], [21], [22], [23].

In this work, we propose an energy-efficient pre-encoder
for WVS. We combine and evaluate simple but efficient
techniques that have not been addressed previously within the
scope of object-based video coding for WVS. Our contribu-
tion is a proposed energy-efficient method and its detection
efficiency, which we validate on a large dataset containing
nearly all surveillance conditions classified into 11 cate-
gories [24]. Additionally, we validate the energy efficiency
through detailed modeling of computational complexity and
energy cost, to demonstrate that any neglected extra cost is
outweighed by the saved energy. By avoiding unnecessarily
processed and compressed blocks, the proposed pre-encoding
scheme significantly reduces computational complexity.

A Block-based movIng Region Detection (BIRD) tech-
nique is proposed. BIRD detects the difference created
between frames using a kind of Sum of absolute Frames
Difference (SFD) [11] to address video coding in resource-
constrained systems. The SFD operation is followed by heavy
yet efficient morphological filtering to enhance the accuracy
of the moving-region detection. A threshold is used to extract
the binary mask of the moving region. The framework
is considered an efficient first step in an ATC paradigm.
Contrary to compressing and transmitting the whole frame
(i.e., CTA), the proposed approach enables compression and
transmission of only the activity blocks. This method will
drastically decrease the processing and transmission energy
budget in a WVS while maintaining an acceptable quality of
service (QoS) and a high frame rate. The main contributions
of the proposal are as follows:

• A low complexity ROI detection method dedicated
to video coding in constrained wireless surveillance
systems.

• The detection accuracy is improved through a combina-
tion of a fast Gaussian smoother and a rank-order filter.

• The algorithm is assessed using several metrics to
evaluate the detection performance and confirm its
superiority compared to the state-of-the-art techniques
in constrained wireless surveillance systems.

• Bitrate and energy savings are achieved using the algo-
rithm as a pre-encoder of a baseline JPEG compression
chain.

• Based on an energy/memory consumption modeling,
using ARM Cortex M3 characteristics, the viability of
the algorithm is demonstrated for implementation in
WVS.

The remainder of this paper is organized as follows.
A background and related work review is presented in
Section II. The proposed algorithm is presented in detail
in Section III. Section IV shows the results and evaluation
of the proposed method in terms of detection accuracy,
complexity, energy, speed, andmemory performance. Finally,
a conclusion is drawn in Section V.

II. BACKGROUND AND RELATED WORK
The literature has extensively discussed and analyzed the
design of energy-efficientWireless Sensor Networks (WSNs)
[30], [31], [32], [33]. The approaches vary depending on
whether the contributions are in the processing, the transmis-
sion, or the network itself. The recommended solutions often
focus on identifying resource allocation techniques that use
the least amount of energy. The resource under consideration
can comprise memory usage, data compression algorithms,
data routing, and transmission power in the radio part.

A Wireless Multimedia Sensor Network (WMSN) inte-
grates a camera sensor and, therefore, uses resources exten-
sively due to the amount of multimedia data (e.g., images
and video).WMSN’s resources are exhausted extensively due
to the amount of multimedia data (i.e.: images and video).
There is a real need to reduce the amount of captured data
intelligently with a minimum loss to enhance the efficiency
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TABLE 1. Summary of the related work on ROI-based video coding.

ofWMSN. It is essential tomake a tradeoff between the added
energy cost of the data reduction technique, the final gain in
energy from its implementation, and the QoS degradation.
Many approaches have been proposed in this context to
achieve the intended target, including low-cost and classical

techniques, as well as advanced techniques based onMachine
Learning (ML) and deep learning [34].

One research direction in WMSN is to utilize feature
extraction as a data reduction technique [35]. In [36], the
authors employ the FAST and BRIEF algorithms for image
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feature extraction and matching. Similarly, [8] proposes a
visual feature compression method for WMSN based on the
ATC paradigm. However, due to the high complexity of visual
feature extraction, it is still a major drawback that the video
content cannot be fully reconstructed in the pixel domain
using this approach.

Movement detection is another approach used for visual
data compression, where the extraction of moving objects
is a crucial step. One common method involves building
a background model through background subtraction (BS)
to detect moving objects. Various methods are used to
obtain background models, such as GMM [37], Histogram
of Gradian (HoG) [38], codebook [39], ViBe [40], and
deep learning-based techniques [41], [42]. However, deep
learning-based techniques may not be suitable for certain
special scenarios and systems, especially those with limited
computing capabilities. Although the aforementioned tech-
niques perform well in moving object detection tasks, they
can be energy-intensive, making them unsuitable for use in
embedded nodes.

An alternative to the aforementioned techniques is to
employ simple yet efficient MOD methods, such as frame
difference (FD) and BS [43], [44]. FD has been used
for MOD and offers advantages such as low complexity,
minimal memory usage, and fast processing speed. However,
its accuracy is compromised when dealing with noisy
backgrounds [31]. Edge detection (ED) has also been used
to improve the efficiency of MOD algorithms, but it can be
computationally expensive due to the calculations involved
in the edge detection operator. Therefore, a low-cost ED
operator is necessary [26], [27].

In [22], the authors proposed an ROI-based image coding
technique, where only the moving blocks in the frame are
detected, compressed, and sent using a low-cost compression
technique involving the integer discrete Tchebichef trans-
form. Another method has been proposed by Rehman et al.
in [25], which involves dividing the frame into four main
blocks and detecting the moving object in each block using
a probabilistic approach. The transmission is subsequently
limited to the moving segments after compression using a
wavelet transform-based compression approach. In [29], the
authors proposed a surveillance video compression method
based on motion detection and segmentation, utilizing a
JPEG-like chain for data compression.

In [16], the authors proposed an ED-based ROI detection
technique using the Sobel edge detector to extract the edges
of the moving regions and create an activity map based on
those detected edges. In [26], the Canny ED is used as a
low-cost edge detection method to extract the ROI prior
to compression. ROI detection has also been a solution to
control the memory usage [45], the bitrate [46], and the
quality of the video encoder, accomplished by managing the
bit allocation mechanisms as shown in [47]. The authors
in [28] have provided a more accurate and energy-efficient
strategy, in which a good trade-off between energy efficiency,
image quality, content awareness, bitrate, and effective
machine-based monitoring tasks at the destination have been
reached. The strategy seeks to create a new pre-processing

method, named Successive Sum of Absolute Differences
(S-SAD) to identify the ROI and divide it into many classes
based on their importance. Table 1 summarizes the related
work on ROI-based video coding for WVS.

While the works mentioned above provide effective
energy-saving solutions for WVS systems, many of them
did not fully evaluate the efficiency of the used moving
object detection methods due to limited evaluation metrics
and small datasets. The presented works did not provide
evidence of the effectiveness of the ROI detection techniques
used. Furthermore, some methods are less efficient under
WMSN constraints due to the high amount of data that must
be transmitted [12]. The accuracy of the detection of the
object is crucial. A lack of high detection accuracy can result
in complex distortions during frame reconstruction.

The previously mentioned brief review reveals that
numerous researchers are devoted to investigating ROI-based
video coding in WMSN, and the techniques used produce
varying degrees of accuracy and complexity. However,
to the best of our knowledge, no literature validates a
good accuracy-complexity tradeoff of the moving object
detection techniques for ROI-based video compression in
WVS. In this article, we achieve a tradeoff between accuracy
and complexity through the proposed BIRD. We validate the
assumptions through an application on a large dataset and an
energy and memory consumption model.

III. PROPOSED METHOD
The main purpose of the BIRD method is the exploitation of
the successive changes between two frames Fn and Fm, with
m < n, where n and m are respectively the current and a
previous frame in the captured video. The frame difference
method is of very low complexity and simple to implement,
which makes it an appropriate choice to suit the constrained
resources in a WSN. Meanwhile, it suffers from low region
detection accuracy [27]. To overcome the low accuracy of
pixel-based detection of the frame difference method, the
blocks of the resulting difference are summed up to create an
activity map that represents the level of the activity in each
region.

A. DIFFERENCE DETECTION
Let φn and φm be the intensity map of the frames Fn and Fm
of the size M × N . Based on the SFD technique [11], the
summation of the non-overlapping blocks of size 8×8 for Fn
is provided by Equation(1)

φn(x, y) =
1
w2

w−1∑
u=0

w−1∑
v=0

Fn(wx + u,w y+ v), (1)

while for the frame Fm, φm is calculated using Equation(2)

φm(x, y) =
1
w2

w−1∑
u=0

w−1∑
v=0

Fm(wx + u,w y+ v), (2)

where x ∈ 0 · · ·M/w − 1 and y ∈ 0 · · ·N/w − 1 are block
indices. The resulting intensity maps φn and φm are w2 times
less than the input frame sizeFn. To create the activity map1,
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FIGURE 2. Block diagram of the proposed algorithm (BIRD).

the SFD operation is completed by computing the absolute
difference between the two intensity maps, as in Equation(3)

1(w, y) = |φn(x, y)− φm(x, y)| (3)

In view of this, the scores in 1 indicate the level of activity
created between the two frames. The blocks that contain high
movement are represented by high score values in 1, which
indicates the moving regions. However, lower scores values
indicate the non-moving regions. The complete scheme of the
proposed method is shown in Figure (2).

B. DIFFERENCE ENHANCEMENT
To avoid the false negative problem and improve the accuracy,
an enhancement of the scores of 1 is needed. We propose
the combination of a smoothing and rank maximization of
1. Therefore, we propose to take the advantage of both
the efficiency and rapidity of the Gaussian smoother the
fast global smoother (FGS) [48]. As depicted in Figure (2),
FGS is applied on the 1 map to smooth the details and
noisy part resulting from the SFD operation. Contrary to the
convolution filters, FGS is characterized by a low complexity
and rapidity estimated to be over 30 times faster than other
filters. FGS uses a parameter σ to control the variance around
the mean value and another parameter λ to define the amount
of regularization during filtering.

Subsequently, the resulting smoothed map (χ) is filtered
by the maximum rank order filter (ROF). The ROF belongs
to a class of filters easy to implement [49]. The maximum
rank order filter calculates the envelope of the smoothed
map. It is a fast and cost-effective solution due to its
simple arithmetic operations [23]. Let Q = l1, l2, · · · lk
be the set of input samples to the filtering process within
the predefined observation window. The result of ordering
the samples l1, l2, · · · lk is obtained by the logical ordering
l(1), l(2), · · · l(N ) where l(i) ∈ Q, for i ∈ 1 · · ·N represents
the ith order statistic. The ROF filter uses l(N ) the maximum
order statistic. The obtained filtered map is noted �.
Figure (3) illustrates the impact of the used filters to

Algorithm 1 The Proposed BIRD Algorithm
Input:
m selected previous frame
N SFD blocks size
K ROF window size
p rank order of the ROF
T threshold value
λ regularization of FGS
σ variance around the mean of FGS
Output:
Mask binary mask of ROI
blockind vector of ROI blocks indexes
for Each New frame Fn do

Apply Equations (1)(2) and (3);
1← SFD(Fn,Fm);
Apply Fast Global Smoother ;
χ ← FGS(1, λ, σ );
Apply 1-D Rank order filter ;
�← ROF(χ,K , p) ;
Set T;
for all scores in � do

if Score(x, y) ≥ T then
Set mask(block)← 1;
Set blockind ∈ Sa ;

else
Set mask(block)← 0 ;

end
end
Report ROI mask to encoder ;
Report blockind vector to receiver;

end

enhance the ROI classification performances while Figure (4)
summarizes the impact of each filter as used in this order.

The binary mask is then created by comparing the� scores
to a threshold. Where scores higher than the threshold value
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FIGURE 3. Impact of the combination of FGS and ROF on the ROI classification.

FIGURE 4. FGS eliminates unnecessary activities and ROF enhances the
non-zeros scores prior to thresholding.

TABLE 2. Used parameters for the conducted simulations.

indicate activity in the associated block, whereas scores lower
than the threshold value indicate inactivity.

Following the threshold operation, a set of block
indices (Sa) composed of the indexes of the activity blocks
is constructed. Based on the proposed strategy, only the ROI
blocks will be compressed and sent to the destination. The
algorithm 1 further summarizes the above steps.

IV. RESULTS AND DISCUSSION
To validate the proposed method, we present the Change
Detection 2014 Dataset (CDnet) [50] results. CDnet 2014 is
a very challenging dataset composed of 51 video sequences
from 11 categories ( more than 150000 frames+ their ground
truths). Since each category is associated with a specific
change detection problem, e.g., dynamic background, shad-
ows, CDnet enables an objective identification and ranking of
methods that are most suitable for a specific problem as well
as competent overall. The experimental values for each used
parameter are summarized in Table 2.
We consider first a qualitative assessment based on visual

observation of the obtained binary mask for the moving
regions compared with ground truth masks.

A. PARAMETERS AND EVALUATION METRICS
Seven metrics are used for assessment. These are calculated
using the confusion matrix that contains the classification
characteristics in terms of quality and quantity.

1) EVALUATION METRICS
TP: True positives, the number of pixels correctly labeled as
foreground.

FP: False positives, the number of pixels incorrectly
labeled as foreground.

TN: True negatives, the number of pixels correctly labeled
as background.

FN: False negatives, the number of pixels incorrectly set as
background.

Seven measures are substituted for the preceding four in
order to more accurately assess the classification results. The
metrics are given by Equations (4)-(11).

Recall:

Re =
TP

TP+ FN
(4)

Specificity:

Sp =
TN

TN + FP
(5)

Precision:

Pr =
TP

TP+ FP
(6)

F-measure:

Fm = 2
Pr

Re+ Pr
(7)

False-positive rate (FPR):

FPR =
FP

FP+ TN
(8)

False-negative rate (FNR):

FNR =
FN

TP+ FN
(9)

Percentage of wrong classifications (PWC):

PWC = 100
(FN + FP)

(TP+ FN + FP+ TN )
(10)

Balanced-Accuracy (BAC):

BAC =
Re+ Sp

2
(11)

For PWC, FNR, and FPR metrics, lower values indicate
higher accuracy, but for Recall, Specificity, Precision,
BAC and F-Measure, higher values indicate better per-
formance [35]. Recall gives the percentage of necessary
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TABLE 3. Samples of ROI extraction mask results.

positives via the compared total number of true positive
pixels in the ground truth. Precision gives the percentage of
unnecessary positives through the compared total number of
positive pixels in the detected binary objects mask.

Among these metrics, we are specifically interested in
the recall and balanced-Accuracy metrics (BAC). ROI-based
video coding needs a high TP with a minimum FN. Advanced
analysis is performed by exposing the TPR-FPR curve
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TABLE 4. Detection results of the proposed algorithm over CDnet 2014 dataset.

TABLE 5. Comparison of BIRD with classical techniques over CDnet 2014 dataset.

(ROC curve) for sample sequences with an analysis of the
optimum threshold.

B. PERFORMANCES OF BIRD OVER THE CDnet 2014
Table 3 shows the performance of BIRD indicating the algo-
rithm’s visual accuracy in detecting all the ROI candidates for
compression and transmission. The presented sample frames
from all categories of the benchmark dataset in Table 3 show
that the algorithm successfully detects the blocks in which
a high movement occurs. Objects are entirely detected in
most videos, which could be a good enabler for a variety of
applications, especially as a pre-encoder for ROI-based video
coding [23].

It should be noted that, for some video scenarios (like the
Office video sample), the algorithm is unable to detect the
target object for some time due to the object’s stability. Even
though the object information has already been delivered to
the destination, the reported numerical results are reduced.

Table 4 shows the quantitative results on CDnet
2014 dataset. The results indicate the good performance of
the proposed algorithm in the detection of the whole object
with high TP values for different categories. The algorithm
shows high detection results for some categories and
moderate detection performances for others. For example,
the recall metric is high for almost all the categories but
shows exceptional performance for night video and dynamic
background, PTZ, and camera jitter categories despite their
difficult scenarios. The algorithm presents some weaknesses
in detecting the complete object in some categories like
intermittent object motion category.

C. COMPARISON WITH OTHER TECHNIQUES
Table 5 shows the overall results of our method on CDnet
2014 dataset compared with the state-of-the-art techniques,
namely KNN in [51], GMM in [52], KDE in [53],
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TABLE 6. Category-wise comparison of BIRD with the state-of-the-art on CDnet 2014 dataset.

Mahalanobis Distance and Euclidean Distance techniques
presented in [54], and another GMM-based technique in [55].
The proposed method exhibits good results in the recall and
FNR metrics with the best results against other techniques
and shows competitive results for the specificity metric.
The weaknesses of the algorithm in the precision and
F-measure values (0.1893 and 0.2678) can be explained
by the adopted block-based techniques, which allow the
detection of additional pixels with the moving object,
resulting in high FPR. According to 4, the results of BIRD
are considered very high in the context of studies that aim to
integrate object detection as a pre-processing step for WVS
in very low-complexity platforms.

D. METRICS OF INTEREST: RECALL, SPECIFICITY AND BAC
A balance between the TP and FN is important to measure
the performance of BIRD in detecting the complete object
while avoiding the drawback of non-detection of regions
inside the moving objects and with a minimum FP possible.
We compare BIRD to two methods, one method uses Neural
Networks for object detection [24]. The second method uses
block-based object detection [56] same as our proposed
method.

As presented in Table 6, the BAC and recall metrics
of BIRD show higher values than in [56] for most of the
sequences. While [24] shows superior BAC and specificity
values compared with BIRD and [56]. Results of BIRD
are still very competitive to that of [24]. With an overall
BAC of 82%, BIRD can ensure high detection accuracy

of the moving object regions for different categories and
conditions.

E. THE IMPACT OF THRESHOLDING ON DETECTION
We have selected three sequences from the used dataset
to empirically validate the accuracy and low-overhead
assumptions of BIRD. the Highway sequence with a size of
(320× 240) contains high activity with a number of moving
vehicles, while the pedestrians sequence of size (360 ×
240) is of low activity with relatively high stability in the
background. The Snowfall sequence of size (720 × 480) is
a long sequence that contains moving objects with very high
activity in the background ( Snow and winter).

In Figure (5) we plot the TPR against the FPR when
varying the threshold value from 0 to 10. The obtained ROC
curves show that low thresholds imply a high true positive
rate, but this adversely affects the specificity of the detection
since more data is wrongly labeled as activity blocks, which
means that more data is to be considered for delivery. The
optimum threshold that allows the best tradeoff between TPR
and FPR could be achieved, as shown by the orange dots in
each ROC curve. It is defined by calculating the minimum
Gaussian distance between the results of TPR and FPR:
min(

√
(1− sensitivity)2 + (specificity− 1)2).

Figure (6) shows the impact of varying the threshold value
on the mean value of the detected blocks. In the case where
high stability characterizes the background (for example
pedestrians sequence), a high threshold is generally preferred
since there is a low risk of wrongly including background
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TABLE 7. Statistics of the energy gain under threshold variation.

FIGURE 5. ROC curve and the optimum threshold for pedestrians,
Highway and Snowfall sequences.

FIGURE 6. Number of blocks belonging to the ROI according to the
threshold value.

blocks in the ROI. Meanwhile, a high number of background
blocks is classified as ROI in the case of noisy and dynamic
background (the Snowing scene in the Snowfall sequence
for example). A higher number of the ROI detected blocks

may enhance the quality of the reconstructed frames at the
destination. But, at the cost of higher energy and bitrate.

Table 7 shows the impact of the threshold value on the
energy gain expressed by the number of skipped blocks.
From the table, it can be seen that the mean number of ROI
blocks is inversely proportional to the threshold value. As a
result, the energy gain is lowwhen the chosen threshold value
is low. A borderline case is when the threshold value is 0
(i.e.the activity score is absolutely greater than 0), which
gives the lowest energy gain. The row that begins with MAX,
indicates that all the frame’s blocks will be compressed and
transmitted (i.e.including the blocks in which the activity
score is equal to 0). In this case, all the frame’s blocks
are taken into account for compression and transmission,
rendering the method ineffective. According to the accuracy
results shown in Figure 5, for the pedestrians sequence,
the optimum threshold for good detection accuracy is 9.
Consequently, this threshold value enables a saving of about
96% of the processing and transmission energy compared
to the CTA approach (Table 7). Choosing a low threshold
value is without benefit to the surveillance system, while
an optimum threshold could significantly save the energy
consumption in the sensor node and the bitrate needed for
transmission. Furthermore, an optimum threshold enables the
optimum ratio of the activity blocks and could be used as a
rate controller, which is an interesting subject for future work.

F. METHOD COMPLEXITY
To evaluate the energy consumption on embedded sensor
conditions, we have considered a sensor node equipped with
an ARM Cortex M3 micro-controller [57]. Table 8 shows the
characteristics of the processor.

Using MATLAB 2020a and C++ running on a PC intel
Core i7-2670QM2.2Ghz, with 8GBRAMonWindows 7OS,
2.6 ms to process one frame of 320240 is recorded allowing
processing of 384 frames per second (fps).
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TABLE 8. ARM cortex M3 characteristics.

1) ENERGY BUDGET FOR CHANGE DETECTION
The total energy budget of the proposed BIRD algorithm
is directly proportional to its computational complexity and
could be expressed as follows:

EDetection = ESFD + EFGS + EROF + EThreshold (12)

The total computational budget of the method is presented
in Table 9. The number of operations for FGS is reported
in [48], while the ROF budget is R = K (K − 1)/2, where
K is set to 4 for the proposed method and represents the size
of the sliding vector. The filter uses the sliding vector over
the columns. After each calculation step, the vector is shifted
by one position down, and the operation is executed till the
end of the line vector. This process is performed along all the
columns. For K = 4, the ROF performs 6 comparisons for
each score value in the map.

Since the number of operations performed is proportional
to the frame size and the block size (8 × 8, 16 × 16 · · · ),
a generalized model of the number of arithmetic operations
should be presented. We present in Table 9 the number of
operations for each step in terms of frame size (N ,M ) and
block size(w). Table 9 also shows the energy budget of each
step and the total energy budget of the BIRD. Table 10
shows a comparison of the energy budget of the proposed
object detection method against state-of-the-art techniques
for 240 × 320, namely MoG [52], CS-MoC [58], CoSCS-
MoG [59], EBSCAM [60] and the basic FD technique. The
proposed technique shows the lowest energy consumption
records in both its minimal and maximal cases. While energy
consumption recorded an increase of about 38% compared to
FD when extreme cases are considered.

2) ENERGY DISSIPATION FOR COMPLETE COMPRESSION
CHAIN
Considering a complete compression chain, the total in-node
processing budget could be expressed as follow:

Etotal = EDetection + Ecompress, (13)

where EDetection is the energy cost of the object detection part
as presented by Equation (12), Ecompress is the energy cost
of the compression part. For the calculation of Ecompress, the
model has been studied and provided in [61] under the same
conditions.

The compression cost for each frame includes the DCT
compression, the quantization cost and the Huffman coding
cost. Three implementations of the JPEG-based compression
are shown in [61], namely float IJG, slow IJG, and fast IJG.
In this work, the slow IJG implementation is adopted with an
energy cost of 192.28µJ for each 8× 8 block.
Since Nblocks represents the number of activity blocks

detected that will be coded for each frame, the compression

FIGURE 7. Per-frame energy dissipation of BIRD for Highway,
pedestrians and Snowfall.

cost is proportionally related to Nblocks. For example, the
Highway sequence incurs an overhead of the object detection
step EDetection equal to 0.6891 mJ/frame.

Figure (7) illustrates the per-frame energy consumption of
the proposed method compared to ROI-based compression
methods, namely, [26] referred to as EMP’22, [16] referred to
as SSD’22 and the forward baseline compression (MJPEG).
Since the algorithm is applied to each frame, constant energy
is spent for each frame, while the total energy curves oscillate
based on the number of blocks to compress. BIRD shows
the best results as the lowest energy budget for all the
scenarios.

The energy dissipation of the BIRDmethod is proportional
to the frame size. About 79.29% of blocks are skipped for the
Highway sequence compared to the standard coding (MJPEG
for example), while more than 98% of the blocks are skipped
for SnowFall sequence and 86.89% for pedestrians sequence.
The level of energy consumption at the processing step is
correlated with the number of skipped blocks.

Although the other techniques have good ROI detection,
they are hindered by the high energy cost of the detec-
tion step. This is because of the use of computationally
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TABLE 9. Computational budget of each step of BIRD algorithm.

TABLE 10. Per-frame Edetection cost of the method compared to state-of-the-art for size (240 × 320).

expensive edge detection and automatic thresholding tech-
niques in [16], [26], respectively, which involve arithmetic
convolution and histogram calculation. However, optimizing
the design of edge detectors and Otsu’s threshold can help
optimize their energy cost.

Figure (7) demonstrates that the algorithm is highly
efficient in conserving processing and transmission power,
saving more than 90% of energy most of the time. The
proposed method strikes a good balance between energy
savings and detection accuracy.

3) MEMORY REQUIREMENTS
We analyze here the memory requirement of the proposed
region detection method. The method requires storing the
previous grayscale frame of 8-bit depth and updating every
frame, corresponding to a memory of N × M bytes. Two
score maps are to be stored which requires a memory of

2 × N × M/w2 bytes. The ROF and the FGS filters are
performed locally on the stored activity map. Thus, the
needed memory for these operations is ignored (window
of 4 Bytes for ROF and short vectors for FGS). For w = 8,
the total memory consumption is about 1.031 bytes per
pixel.

V. CONCLUSION
In this study, we proposed an energy-efficient approach
for detecting moving regions as a pre-encoder for WVS.
The suggested approach is based upon a low-complexity
SFD operation followed by morphological filtering and
thresholding. The proposed method’s overall efficiency was
evaluated using a standard dataset as a benchmark. The per-
formance assessment shows a satisfactory balance between
the proposed method’s detection accuracy, energy efficiency,
and memory. In these respects, our approach effectively
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relieves the burden of processing and compressing video
sequences for resource-constrained surveillance devices.
However, the proposed method has two main drawbacks:
(1) It has only been tested on fixed cameras, and (2) In some
cases, it produces poor results using certain performance
metrics, like F-measure, due to its commitment to meeting
the constrained of WVS. Future studies should focus on
improving the algorithm’s performance and implementing
it in an embedded WVS system, taking into account
channel/network conditions.
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