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ABSTRACT Glaucoma is one of the most common reasons for blindness worldwide, especially in elderly
people. Glaucoma can be monitored using visual field (VF) tests. Therefore, predicting the future VF to
monitor progression of glaucoma is important. In this paper, we proposed a deep learning model to predict
future VF based on previous VF and optical coherence tomography (OCT) images (including thickness map,
vertical tomogram, and horizontal tomogram). The image data were analyzed using a ResNet-50 model.
Image features and previous VFs were combined, and a long short-term memory (LSTM) network was used
to predict future VF. A weighted method was used to detect noisy data. The proposed method was improved
when applying weighted loss. The mean absolute error (MAE) was 3.31 ± 1.37, and the root mean square
error (RMSE) was 4.58 ± 1.77. The model showed high performance when combining VF data and OCT
image data. Furthermore, the model was useful for detecting and re-weighting noisy data.

INDEX TERMS Deep learning, glaucoma, OCT, visual field.

I. INTRODUCTION
Glaucoma is a progressive optic neuropathy that can lead to
blindness. The visual field (VF) test is one of the important
methods for monitoring the progression of glaucoma. Based
on the VF report, early treatment can be given to reduce the
damage and decrease the progression rate [1]. VF defects
in glaucoma patients usually occur in the peripheral VF,
although defects can present in the central VF in some
glaucoma patients. Because central VF is important to
maintain visual acuity and quality of life in glaucoma
patients, detecting and predicting theVF defect pattern is very
important [2].

Studies about predicting glaucoma progression and VFs
have been conducted to help doctors in monitoring the
disease. Since the VF test can reveal the functional defects
directly. Many of them utilize the serial of previous VFs to
predict the next VFs [3], [4], [5], [6]. However, collecting
serial VF data can be difficult because a long period of time
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might be required, and inconsistent results can be obtained
based on the condition of the patients. Thus, unreliable VF
reports and noisy samples can be obtained. Therefore, it is
essential to detect noisy samples during the training of deep
learning models.

In addition to the VF test, optical coherence tomography
(OCT) can provide structural information regarding optic
nerve head damage associated with glaucoma. Compared
with the VF test, OCT is faster and more dependable. The
OCT device offers various types of reports regarding the
optic nerve head such as thickness maps and tomograms
(horizontal and vertical). The thickness map in the OCT
usually provides information on the thickness of the retinal
nerve fiber layer (RNFL) around the optic nerve head that
is directly associated with glaucomatous damage, and the
tomogram can provide information on structural features in
the optic nerve head as well as the extent of glaucomatous
damage (Fig. 1) [7].

In this paper, we proposed a deep learning model to
predict future VF defect patterns in glaucoma patients using
previous VF test data and OCT image data such as thickness
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FIGURE 1. The image data from OCT test: (a) thickness map,
(b) horizontal tomogram, and (c) vertical tomogram.

maps and tomograms. We exploited both CNN and RNN to
extract features from image data and serial data. Furthermore,
to manage the noisy data, an efficient training mechanism
is applied. A regression model is made to detect noise and
obtain the weight of samples. Then, the main model is trained
with a new weighted loss. To the best of our knowledge, this
is the first study attempting to deal with noisy data directly
for the future VF prediction task. Based on quantitative
results, these contributions can improve the performance of
our proposed model.

II. RELATED WORK
A structure-function relationship exists between the VF map
and the structure of the optic nerve head and can be captured
on the OCT thickness map [8], [9], [10] (Fig. 2). Thus, OCT
images can be used to analyze VF. Tsai et al. [11] proposed
a parametric linear model to learn the structure-function
relationship between the OCT thickness map and VF. They
showed that the OCT thickness maps were associated with
VF defect patterns in glaucoma patients.

Compared with the principal component analysis (PCA)-
based coupled parametric model in a previous study [11],
deep learning models are mainly applied to OCT images.
For predicting VF from OCT images, convolutional neural
network (CNN) models were mainly used in previous
studies [12], [13]. To manage the image data, 3D CNN
models were introduced in several studies [5], [14]. However,
the structure-function relationships are different for each
individual [9]. Consequently, without knowing the specific
relationship for each patient, the prediction ability of the
models is limited. Thus, a model with multi inputs (OCT
images and VF tests) can help to learn the structure-function
relationships better.

Previous VF data are commonly used to predict glaucoma
because the VF usually progresses based on the initial defect
pattern. Therefore, in many studies, previous VFs were used
for learning the progression patterns [5], [6]. However, most
of the studies only focus on the binary classification task,
which detects whether there is a glaucoma progression or
not [4], [6]. Yousefi et al. used a linear regression model
to predict glaucoma progression based on previous VFs
in [4] while a CNN model is applied in [15]. Kouros et al.
exploited both VFs and thickness measurements from OCT
for prediction [6].

To predict future VF, many researchers applied deep
learning models [3], [14], [16]. A variational autoencoder

(VAE) was used to estimate future VF in [3]. To manage the
time series data, a recurrent neural network (RNN) model
was used in [17]. In order to improve the performance,
a linear regularization method is introduced to combine both
previous VFs and OCT images in the same latent space
[14], [18]. Although those recent researchers are able to learn
the glaucoma progression. However, there are no previous
studies that can handle noisy data efficiently.

III. METHOD
A. DATASET AND DATA AVAILABILITY
A retrospective study was conducted on the patients in the
Department of Ophthalmology at Samsung Medical Center
between January 2018 and December 2019. All consecutive
patients were selected for medical record review. This study
was approved by the Institutional Review Board (IRB) at
Samsung Medical Center (IRB No. 2020-08-040). Informed
consent was waived due to the retrospective nature of the
study, and the waiver was provided by the IRB. All study
protocols adhered to the tenets of the Declaration of Helsinki.

Our private dataset included VF data and OCT image
data from 266 patients. The glaucoma patients in the study
were open-angle glaucoma. Each patient had 2–11 tests
(including both VF and OCT tests, mean = 5.74). In our
dataset, since glaucoma is a bilateral disease, one eye per
patient was included. For the VF test, we extract the raw
Humphrey VF (HVF) 30-2 from automated perimetry using
a central 30-2 Humphrey Field Analyzer (HFA model 640;
Humphrey Instruments, Inc., San Leandro, CA, USA) with
the Swedish interactive threshold algorithm standard. For the
OCT test, we extract the retinal nerve fiber layer (RNFL)
thickness map, vertical tomogram, and horizontal tomogram
from the Cirrus OCT (Carl Zeiss Meditec, Dublin, CA,
USA) using the customized program. VF tests were repeated
once or twice per year, depending on the patient’s condition.
Reliable VF analysis was defined as a false-negative rate
of <15%, a false-positive rate of <15%, and a fixation loss
of <20%. Unreliable VF test results were excluded from
the analyses. If the error in the automated segmentation
of OCT that might induce the wrong outcome in the
analysis was confirmed, then the results were also excluded.
Overall, 1,502 pairs of VF and OCT image samples were
included in the dataset. Participant information is shown in
Table 1. For more information, the source code is available at
https://github.com/QuangBK/future_VF_prediction.

Furthermore, we also collect an external dataset for testing.
The study for external validation was approved by the
Institutional Review Board of Yeungnam University Hospital
(IRB No. 2022-04-045). For the VF test, we use 30-2 HFA
model 840 with the Swedish interactive threshold algorithm
standard. For the OCT test, we extract the RNFL thickness
map, vertical tomogram, and horizontal tomogram from the
Cirrus OCT 500 (Carl Zeiss Meditec, Dublin, CA, USA). The
external dataset included 50 patients with both eyes. Each
patient had an average of 2.3 tests (including both VF and
OCT tests).
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FIGURE 2. The regional relationship between VF map (a) and optic nerve head (b) in thickness map.

TABLE 1. Participant demographics and clinical characteristics.

B. MODEL
Information from previous report tests was extracted and
included past VF maps, thickness maps, tomogram images,
and enhanced depth imaging (EDI) OCT images. However,
since the EDI data is only available for a few patients in our
dataset. We decide not to use EDI data in this research. Based
on the inputs, the model, shown in Fig. 3, will predict the
future VF.

First, information was extracted from image data and
included thickness maps, horizontal tomograms, and vertical
tomograms. Before feeding to the deep learning model, all
images were normalized (pixel value from -1 to 1) and resized
to 224 × 224. A CNN model was applied for analyzing
image data (Fig. 4). The pre-trained ResNet-50 [19] was used
as the extractor and fine-tuned with the dataset. For each
image as an input, the CNN extractor provides a feature
vector. Notably, the thickness map provides information
regarding the entire VF, while the vertical and horizon-
tal tomograms only provide useful information regarding
specific regions in the VF. We decided to focus on the
thickness map features. The output vectors of the thickness
maps, vertical tomograms, and horizontal tomograms were
512-d vector, 128-d vector, and 128-d vector, respectively.
Because the dataset was limited, several common aug-
mentation techniques (shift, scale, rotate) were applied
to avoid overfitting. Next, the three feature vectors were
concatenated into a 768-d vector. Then, a convolution layer

was applied to create a final 128-d feature vector of the image
data.

The previous VFs were reshaped to 76-d vectors and
normalized with a mean of 0 and a standard deviation
of 1. Furthermore, the time information was added as an
input in the proposed model. There are two types of time
information: timeline and interval. The timeline information
of a chosen image is the time between the chosen image
and the first image. The interval information of a chosen
image is the time between the chosen image and the previous
image. Overall, for each time step, the images, VF, and time
information were concatenated to create a 206-d vector. For
each patient, a series of 206-d vectors were created, with
each vector corresponding to a test date. This series of 206-d
vectors was the input of a Long Short-TermMemory (LSTM)
network [20]. The output of LSTM was a 128-d vector.

Finally, the LSTM output was used to predict the future
VF. Although a structure-function relationship exists between
the VF and thickness map, the relationship differs by person.
In addition, though glaucoma develops in one of several
common patterns, each patient has specific characteristics.
To solve this customization problem, the previous VF (only
the last one) was used as a reference for predicting the
future VF. Based on the LSTM output and the reference
VF, the prediction accuracy can be significantly improved.
In this case, the LSTM output contained the direction of
glaucoma development, and the referenceVFwas responsible
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FIGURE 3. The overview of our model (FC: Fully-Connected layer, LSTM: Long Sort-Term Memory layer). The main model is used to
predict future VF. The regression model is used to detect noise and calculate the weights of samples to train the main model.

for calibrating the prediction. Therefore, the LSTM output,
the previous VF, and time information were combined to
predict the future VF.

C. TRAINING
The VF test report is not stable because it depends on the
current status of the patient, often producing a noisy VF map.
To address the noisy data, a training method re-weighting
the samples was introduced (Fig. 5). The OCT test was more
stable than the VF test. Because the thickness maps provide
consistent and reliable results, they were used for the noisy
VF test, and the output was used to train the main model.

First, a regression model was built to predict VF based
on the thickness map. The input was a thickness map, and
the output was its corresponding VF. The backbone of the
regression model was a pre-trained ResNet-50 [19]. After
extracting features from the image data, fully-connected
layers were added to predict 76-d vectors as VF. The
loss function was mean square error (MSE loss), and data
augmentation was applied simultaneously as in the main
model. The regression model allows the structure-function
relationship to be learned. After training, the model can
predict the common pattern of glaucoma based on the
thickness map.

Because the thickness map is more consistent than the VF,
the noisy VF can be detected by comparing the prediction
and the ground truth. A large difference indicates a noisy
sample, in which the values were re-weighted. Algorithm 1
shows how the weight of VF samples was calculated based
on difference. First, for each patient, the mean absolute

Algorithm 1 Calculate Weight of VFs
TH = 1.5
for each patient i do

for each time step t do

d ti =

∑75
k=0

∣∣∣xti,k,pred−xti,k,GT ∣∣∣
76 ▷ Calculate error

between prediction and ground truth
end for
Di = [d0i , .., d

T
i ]

Dmin = min(Di)
D′
i = Di − Dmin

D′
mean = mean(D′

i)

D′
i =

D′
i

D′
mean

▷ The error array D was normalized to D′.
for each time step t do

if d ′t
i ⩽ TH then
wti = 1

else if d ′t
i > TH then

wti = eTH−d ′t
i

end if
end for

end for

error (MAE) between the ground truth and predicted VF was
calculated to obtain the list D. However, the mean error value
varied by patient. Therefore, D was normalized to obtain D′.
Next, the normalized error D′ was used to identify the noisy
samples. The threshold (TH) was set at 1.5, and samples with
errors smaller than TH were considered good samples, while
the others were labeled as noisy. The weight of good samples
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was 1. For noisy samples, a larger error led to greater noise,
and less attention should be given to those samples. Thus,
the weight of a noisy sample was calculated based on an
exponential function.

After obtaining all weights, the main model with weighted
loss was trained to reduce the effect of noisy data. The loss
function used to train the main model is weighted MSE as
below:

loss =

N∑
i=1

wi(xi,pred − xi,GT ) (1)

IV. RESULTS AND DISCUSSION
A. IMPLEMENTATION
The metrics we used for evaluation are Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and
R2 score.

RMSE =

√√√√∑75
i=0

(
x iGT − x ipred

)2
76

(2)

MAE =

∑75
i=0

∣∣∣x iGT − x ipred

∣∣∣
76

(3)

R2 = 1 −
RSS
TSS

(4)

where x iGT and x ipred are the i-th point in the ground truth
and predicted VF, respectively. RSS is the sum of squares of
residuals and TSS is the total sum of squares.

First, the regression model was trained to detect noisy
samples. The ResNet-50-based model was trained with
25 epochs; only the last layer (regression module) in the first
seven epochs was trained. Next, the last five layers were
unfrozen and fine-tuned with a smaller learning rate. The
optimizer was Adam. The initial learning rate was 1e-3 and
decreased to 1e-4 and 1e-5 after the seventh and 15th epochs,
respectively. After the regression model was trained, it was
used to detect noisy samples and obtain wi with Algorithm 1.
The main model was trained with weighted MSE. The
number of epochs was 15. The optimizer was Adam. The
initial learning rate was 1e-3 and decreased to 1e-4 after
the seventh epoch. Because the dataset was small, cross-
validation was applied (5 folds). Moreover, to guarantee that
there is no overlap between partitions and series data from a
patient is on the same partition, we split our data based on
patient ID. To ensure fair evaluation, for each iteration, the
regression and main models were trained on the same dataset.
For our model and compared models, we use the same dataset
for training and testing. The same pre-processing and cross-
validation methods are applied for all experiments.

B. RESULTS
Table 2 shows the performance of the main model. When
only using VFs, the MAE and RMSE were 3.60 ±

1.50 and 4.91 ± 1.84, respectively. The reference module
significantly increased the performance of both MAE and

RMSE. Furthermore, the use of image data improved the
performance, as evidenced byMAE of 3.36±1.36 and RMSE
of 4.61 ± 1.75. The final model combined VFs and image
data as input and applied a weighted loss to provide the
best performance of MAE of 3.31 ± 1.37 and RMSE of
4.58 ± 1.77. The results show an adequate performance of
the proposed model with the reference module. Furthermore,
training with the re-weighted sample managed the noisy data
and improved both metrics (MAE and RMSE). In addition,
the effect of the follow-up period and age on the performance
of our model was analyzed. Fig. 6 shows the MAE for
each follow-up period. A shorter follow-up period resulted
in a more accurate prediction. For the proposed model, the
MAE for a period shorter than six months was 3.19, and
for longer than 18 months was 3.48. In Fig. 7, we analyze
the MAE by three age groups: 0-40, 41-65, and over
65 years old. As we can see, the older group shows a higher
MAE.

The results of comparison with other methods are illus-
trated in Table 3 and Fig. 8. Our dataset and the external
dataset are used for evaluation. Berchuck et al. applied
VAE to estimate the future VF based on previous VFs [3].
Conversely, an RNN model was used to predict future VF
based on previous VFs [17]. In the compared models, only
previous VFs were used as input. Significance was calculated
using one-sided Wilcoxon test. The present study results
showed that our proposed model significantly outperforms
the compared methods (p < 0.001). The VAE-basedmodel [3]
predicts the futureVFs from the latent code (which is in a low-
dimensional space), illustrating the main trend of glaucoma.
However, a detailed prediction cannot be made. In particular,
the 30-2 HVF test, which contains 76 test points, was used in
the dataset and is more detailed than the 24-2HVF test (which
contains only 52 test points) used in the compared methods.
Park’s method using an RNN-based model can provide better
performance than the VAE-based model. However, Park’s
model cannot manage a noisy dataset and can result in
overfitting.

In our proposed model, without using image data,
re-weighted training can provide better performance com-
pared with other models. The proposed model showed
re-weighting to be beneficial in cases with noisy data. Since
the medical data contains noise, especially the VF data.
As the result, re-weighting can increase the performance
significantly. In addition, the OCT images can be helpful
with the structure-function relationship between the VF and
thickness map. The final model, which combines re-weighted
training and image data, achieved the best performance in all
metrics (MAE, RMSE, and R2).

C. DISCUSSION
Overall, the best result in the proposed model was obtained at
MAE of 3.31, RMSE of 4.58, and R2 of 0.76 as shown in the
point-wiseMAEmap in Fig. 9. As we can see, the paracentral
area has a higher MAE in several points. The macular area is
consisted of multiple layers of retinal ganglion cells, whereas
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FIGURE 4. The ResNet-50 based model.

FIGURE 5. An example of detected and weight noisy samples.

TABLE 2. The ablation study with MAE and RMSE (dB).

other areas usually consist of one retinal ganglion cell
layer [21]. Though there were retinal ganglion cell damages

in themacula, the paracentral VFmight be normal. Therefore,
when the structural changes in OCT occurred, the associated
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FIGURE 6. The MAE for each follow-up period.

FIGURE 7. The MAE for each age group.

TABLE 3. The comparison of MAE and RMSE results (dB).

VF changes might be less predictable in macula than in other
areas.

Glaucoma is a progressive optic neuropathy with accompa-
nying glaucomatous VF defects [22]. Glaucoma has several
types of VF defect patterns such as accurate defects, nasal
steps, and other patterns associated with RNFL defects.
Although glaucoma patients can have good visual acuity,
some might have difficulties in activities of daily life due to
VF defect pattern [23], [24], [25]. Thus, predicting the final
VF pattern is important [26], [27].

In several previous studies, only previous VFs were
used to predict the future VF because they show the
development of glaucoma over time. Yousefi et al. [4] used
a Gaussian mixture model to predict glaucoma progression
using previous VFs. However, our proposed model showed
that the addition of OCT images can help improve the
performance.

In previous studies, the common technique for analyzing
VF was to transform it into a typically low-dimensional
latent space and study glaucoma progression. Since glaucoma
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FIGURE 8. The MAE of the proposed and compared methods.

FIGURE 9. The MAE (± standard deviation) in a point-wise map.

progression can be divided into several common patterns, the
goal of transformation to latent space is to group patients
based on patterns. Then, progression can be determined in

the latent space. Consequently, the complexity of data is
reduced, the linear model is strengthened, and overfitting
is reduced [13]. This method was used with deep learning
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models in several studies [5], [28]. However, patients are
unique even if they have the same pattern, leading to incorrect
predictions. Although reducing dimensions with latent space
can manage overfitting, it fails to provide detailed results.

In previous studies, HFA 10-2 [28] or 24-2 VF maps [3]
(with 68 or 54 test points, respectively) was mainly used.
In contrast, the dataset of HFA 30-2 VF maps with 76 test
points was used in the present study. With additional test
points, reconstructing a detailed HFA 30-2 VF map from
latent space is difficult. In the present study, the VF
was directly analyzed only using a deep learning model.
Furthermore, a reference module was applied to refine the
predicted results.

In the latent space, the common method is to use a linear
model for exploring the data. Yuhui et al. [14] used a linear
regression method in latent space for predicting glaucoma
progression. Furthermore, a deeply regularized latent-space
linear regression model was applied in another study [5].
However, due to the noisy data, the linear models failed to
capture the correct glaucoma progression, especially when
only a short series of previous VF was provided.

Recently, the deep learning models were applied for VF
analysis. For estimating future VF, Berchuck et al. [3] used
a VAE model, and an RNN model was applied in another
study [17]. The RNN model is good at handling sequential
data. Although linear models often perform poorly in cases
with noisy data, the RNN model can handle a non-linear
trend. Furthermore, because Garway-Heath [8] showed a
relationship between OCT image and VF map, the use of
retinal thickness images for predicting VF was investigated
in numerous studies. The 3D CNN model was used in other
studies [5], [14].

Although deep learning can be promising, the overfitting
problem should be considered because medical data are usu-
ally limited and noisy. To handle noisy data, Yuhui et al. [14]
used a regularization method with matrix factorization.
However, the method only showed the difference between
the ground truth and the common patterns, and detailed
results cannot be provided because the model attempted to
predict VFs that follow common patterns. In the present
study, the simple ResNet-50 model was used instead of other
complicated models to reduce the number of parameters.
Since our dataset is relatively small, the simple ResNet-50 can
reduce the overfitting problem. Moreover, the weighted loss
was used to handle the noisy data. Because stable data (OCT
images) were used to detect noisy samples, the proposed
model can train on noisy data without losing individuality.
In addition, data augmentation was applied.

V. CONCLUSION
In this paper, a deep learning model to predict future VF
based on multiple inputs using previous VF and OCT images
(thickness maps, vertical and horizontal tomograms) was
introduced. We developed a CNN-RNN model to analyze
both series data (previous VF) and image data (OCT images).
To handle noisy data, a mechanism to detect and re-weight the

samples was introduced. The quantitative results showed that
a re-weighting method can improve the performance in cases
with or without OCT images.

The main limitation was the size of our dataset. The
deep learning technique can benefit from a larger dataset.
In the present study, only 266 patients with 1,527 samples
were available for training and validation, 50 patients with
225 samples were available for testing. Although, many
regularization methods are used such as data augmentation,
cross-validation, and re-weighting, increasing the size of the
dataset is more advantageous. In addition, information other
than that of the VF and OCT tests was ignored, although
non-image factors (gender, age, or treatment information) can
be helpful in such analysis. These factors should be further
explored in future studies.
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