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ABSTRACT Spurred by the worldwide concern for forest protection and the increased log sales, most
countries have standardized log volume calculations to avoid excessive timber and protect buyers. However,
log volume is currently manually measured, suffering from high labor costs, low measurement progress,
and imposing significant measurement errors. Thus, automatically obtaining the volumetric data of logs is a
convenient and quick solution. Therefore, this work proposes aMask Region Convolutional Neural Network-
based (R-CNN) algorithm for Logs volume measurement, named Wood Mask (WM) R-CNN. Specifically,
we employ the Res2Net structure as the backbone to obtain receptive fields that exceed the input feature
size, thus improving our model’s multi-scale information fusion ability. Additionally, WM R-CNN relies
on the Path Aggregation Feature Pyramid Network’s (PAFPN’s) path enhancement structure, shortening the
low-level feature map’s propagation path and improving the wood contour segmentation accuracy. Extensive
experiments on the Vehicle-mounted Dense Logs (VMDL) dataset demonstrate that WM R-CNN affords a
highly appealing segmentation accuracy for small, medium, and large wood, improving the corresponding
mAP indicators against current methods by 2.0%, 1.2%, and 4.4%, respectively. Furthermore, a quantitative
method based on TensorRT compresses the proposed model to deploy the WM R-CNN to mobile embedded
devices. However, to compensate for the quantization loss, we introduce the expansion convolution operation
method to manipulate the mask map and control the volume calculation error of all logs on a vehicle
within 1%. The experiments reveal that the proposed method offers an appealing performance, verifying
the algorithm’s effectiveness and implementation ability on mobile terminals.

INDEX TERMS Embedded device, improved mask R-CNN, logs volume measurement, TensorRT.

I. INTRODUCTION
Countries worldwide aim for carbon neutrality and control
their carbon peaking, with this dual carbon issue becoming a
hotspot for global social and economic development [1]. Sev-
eral studies have demonstrated a positive correlation between
economic growth and carbon dioxide emissions [2]. Thus
reducing carbon emissionswhile developing the economy has
become a major global challenge. Studies have revealed that
forestry is an important option for emission reduction [3], as it
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can help mitigate climate change by storing carbon in trees,
forest soils, and wood products [4]. Hence, forest protec-
tion is mandatory to alleviate global warming, and therefore,
humans must increase the protection of forests by improving
the maximum rational utilization of forest resources.

A log is a piece of wood cut into a certain length according
to the standard or special regulations of size, shape, and
quality [5]. Currently, log sales mainly consider log vol-
ume as a measurement standard, with log processing and
usage depending on the log volume measurement results.
To standardize log volume, China has formed a complete
set of standards to calculate Log volume (Log Volume table,
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GB/T 4814-2013), which require obtaining the inspection
length and diameter of the logs and calculating their actual
volume based on a formula. Therefore, measuring the log
diameter is an important process, where log diameter subtle
differences determine the grade of logs and affect the price
and economic losses of the industry. Currently, in the produc-
tion enterprises of logs [6], the monthly log diameter class is
determined manually, with workers using various measuring
tools, such as tape measure or caliper, to measure the length
and diameter of logs in Figure 1. Then, these measurements
are input into the volume calculation formula to calculate the
actual volume of logs. Nevertheless, such a labor-intensive
process fatigues the inspectors affecting the measurement
accuracy, which cannot be guaranteed to exceed 70-80%
[7], [8]. Additionally, manual measurement is subjective,
time-consuming, and deviates from the latest development
trend of modern log processing and sales. Opposing manual
measurement techniques, automatically obtaining the volu-
metric data of logs is a convenient and quick solution, reduc-
ing the risk of errors during manual measurements.

FIGURE 1. Manual measurement.

Recently, computer vision and deep learning methods have
progressed significantly, developing state-of-the-art solutions
in various tasks such as object detection, classification, and
analysis, which have been employed in several domains,
including medicine, agriculture [9], autonomous driving,
robotics [10], and security [11], [12]. Currently, in object
detection, the You-Only-Look-Once (YOLO) object detec-
tion family of algorithms has proven its appealing detection
capabilities. Specifically, the YOLOv4 [13] and YOLOv5
[14] versions are gaining significant attention from the com-
munity due to their exceptional object detection performance.
Furthermore, the Transformers [15] neural network archi-
tecture, which completely relies on Attention modules and
neglects Convolutional layers, achieves superior detection
quality at a significantly lower computational complexity.

Existing computer vision, digital image processing, and
deep learning methods have been used to identify log end
faces through log images, obtain the diameter of the logs,
and calculate log volume. Some scholars have made some
progress in intelligent log detection, where the existing

methods can be categorized into computer vision, image
processing, statistical analysis, and deep learning.

A. IMAGE PROCESSING METHODS
Yella et al. [8] utilized photos acquired by drivers and
exploited color information and geometric operators in mul-
tiple color spaces to segment images and extract relevant
information for automatic detection, counting, and classifi-
cation of wood based on a Circular Hough Transform (CHT)
algorithm. This algorithm is robust to external factors such
as lighting conditions and camera differences due to mud or
snow cover. Similarly, [16] combined CHT, Local Circularity
Measure (LCM), and Graph Cut to estimate the weight of a
wood stack. However, this method suffers from sensitivity to
object distortions and noise, computational complexity, and
unknown a priori object size. To solve the diameter measure-
ment problem. Budiman et al. [17] built a simple handheld
device using a fixed-length iron rod, a camera, and a raspberry
PI. Specifically, they put an iron rod against the end face of
the measured log and used the camera to collect images. Then
the image was transferred to a Raspberry PI for compression,
gray transformation, contour search, and circle fitting, and
performed several operations to measure the wood diameter.
This scheme has portability advantages and is easy to operate,
with the measurement error controlled within 3%. However,
this method requires a LED light source, as the system’s
robustness is insufficient under natural lighting conditions.

Moreover, Kruglov et al. [18], [19] identified the spatial
structure of logs by modeling them in three dimensions and
obtaining their volume. The authors combined various image
processing schemes involving mean-shift clustering, Delau-
nay triangulation, Boruvka’s minimum spanning tree algo-
rithm, watershed algorithm, and Boykov-Kolmogorov graph
cut algorithm. Although this method attains some appealing
results, the computational complexity is high and is affected
by lighting conditions. In [20], the authors introduced an
improved fast radial symmetry algorithm for log detection.
The watershed algorithm and Stoer-Wagner algorithm were
applied on the identified log edges to discard wrong targets
and realize wood counting and segmentation. Compared with
manual measurement, the average final log volume calcula-
tion error is 9.2%, and the error rate of volume detection is
higher.

B. COMPUTER VISION METHODS
Besides, [21] automatically detected logs by combining the
Histogram of Gradients (HoG) features with a Random Deci-
sion Forest scheme. However, the log shape is constrained
to highly round-shaped logs, and the HoG features are sig-
nificantly affected by illumination conditions. In [22], the
authors developed a multi-view Structure from a Motion
(SfM) photogrammetry scheme to create 3D models for
automated volumetric measurement of truckloads. The log
images are acquired using a small UAVflying around logging
trucks transporting Eucalyptus nitens pulplogs. Although this
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method presented a low error of approximately 3%, it is
complex, requires a flying UAV, and is affected by illumina-
tion conditions. An ensemble of weak classifiers comprising
rectangular Haar features has also been proposed [23].

C. STATISTICAL ANALYSIS METHODS
The literature also suggested an iterative classification and
segmentation strategy that relied on Gaussian mixture mod-
els [24]. However, this method is limited to log detection and
does not afford log volume estimation.

D. DEEP LEARNING
Spurred by the advantages of deep learning, Tang et al. [25]
detected logs in natural scenes based on the Single Shot
MultiBox Detector (SSMD) deep learning model. Specifi-
cally, this scheme employs the annotation information of the
log face image to learn the features of the log face area,
reduces the background interference during target recogni-
tion, and enhances themodel’s learning ability. This method’s
accuracy is 94.87%, and the recall rate is 91.34%. Compared
with traditional methods, this strategy reduces the influence
of ambient light on the log recognition rate, solves the log
face detection and recognition problem under complex back-
ground conditions, and lays a foundation for intelligent vol-
ume calculation of logs.

Furthermore, Samdangdech et al. [26] introduced a deep
learning architecture that combines the SSD model with a
Fully Convolutional Network (FCN) semantic segmentation
model for vehicle eucalyptus image segmentation. The SSD
model detects the location of logs on the truck, extracts the log
area, and then the FCN network completes the segmentation
of logs. Finally, the segmentation mask map output by the
FCN model undergoes morphology processing, and the logs
are counted. The experimental results reveal that the correct
wood segmentation rate is 94.45%, but some logs with no
obvious features are not properly segmented, and the missing
segmentation phenomenon is severe.

Table 1 summarizes the existing works on log detection,
highlighting their capabilities and limitations. Although the
existing literature suggests several methods for log detec-
tion and volume estimation, these present the following
deficiencies.

a. Poor log recognition, as existing methods are affected
by lighting conditions, noise, distortions, and clutter objects
posing a high error rate and thus demonstrating poor robust-
ness.

b. Require a controlled lighting environment to overcome
their influence on lighting conditions, posing an additional
constraint on cost and hardware complexity setup.

c. Few methods can calculate the log volume, while most
only conduct log detection.

d. The influence of the shooting distance between the target
and the camera on the final log end diameter estimation is not
considered.

e. Existing deep learning-based methods that calculate log
volume focus on the algorithm’s recognition effect without
focusing on execution efficiency.

f. To our knowledge, there is no mature model for actual
deployment and application.

To overcome these problems, this paper proposes a deep
neural network-based scheme for log volume estimation
(overcoming limitation (c) of the existing methods), which
relies on the Mask Region Convolutional Neural Network
(R-CNN). However, in this work, Mask R-CNN has been
improved by employing the Res2Net module and the Path
Aggregation Feature Pyramid Network (PAFPN) structure
to enhance the detection performance of logs. Indeed, the
developed architecture is robust to varying lighting condi-
tions and other external distortions, overcoming limitations
(a) and (b) of the current methods. Considering the actual
stratified detection requirements, we suggest an adaptive
stratified log diameter estimation method that combines
K-means and depth information, solving the limitation (d) of
current log volume estimation methods. Finally, regarding
execution efficiency, we quantize and compress the model
by adopting the existing deep learning quantization strategies
(overcoming limitation (e)). The recognition accuracy of the
quantized model is challenged on float32, float16, and int8
data types while deployed on an embedded edge device (over-
coming limitation (f)).

The remainder of this article is organized as follows.
Section II briefly introduces the basic structure of the Mask
R-CNN network model and describes improvements to the
original Mask R-CNN network model. Section III mainly
introduces the deployment strategy of the model, the fitting
method of the target mask, and the concrete implementation
of the self-adaptive stratified log diameter estimation method
combining K-means and depth information. Section IV
mainly introduces the source of experimental data sets, the
configuration of model training parameters, and evaluation
indicators. Section V further presents the results and discus-
sion. Finally, the paper summarizes and proposes the research
directions. Table 2 summarizes the notations used.

II. MATERIALS AND METHODS
A. DATASET
This work aims to achieve independent segmentation of the
wood contour, so the team using the polygonal annotation
method can effectively label the boundary between the bark
and tree core of each wood within the image and label the
wood category as ‘‘wood’’. We consider pictures of logs
loaded on vehicles, typically between 50 and 300, with the
inspection ruler diameter randomly ranging from 4 cm to
40-50 cm. We use industrial and mobile phone cameras to
collect 150 images of logs, including clear images under
different lighting conditions, wood end backgrounds, and
shooting angles. All images are labeled using the Labelme
image annotation tool, with the annotation effect illustrated in
Figure 2. This data set is named the Vehicle-mounted Dense
Logs (VDL). The labeled images are divided into training,
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TABLE 1. Log measurement methods.

validation, and test sets according to a 4:1:1 ratio [27](see
Table 3).

A common method to improve a model’s generalization
ability is to expand the data set through data augmentation.
Here, we apply horizontal flipping, enhance the image’s red,
blue, and green channels, enhance the image’s pixel values,
apply Gamma correction, salt and pepper noise, contrast
enhancement, sharpening, and blurring, and cut and scale the
training images. Finally, the enhanced dataset is increased by
16 times.

B. IMPROVED MASK R-CNN NETWORK
1) COLOR/GRAYSCALE FIGURES
Kaiming et al. [28] extended the Faster R-CNN [29] target
detection model and introducedMask R-CNN. By adding the

mask segmentation network, Mask R-CNN achieves pixel-
level independent segmentation of targets belonging to the
same category. The Mask R-CNN structure is illustrated in
Figure 3 and mainly comprises the Backbone, Region Pro-
posal Network (RPN), RoI Align, and R-CNN network.

The backbone network comprises ResNet [30] and FPN
(Figure 4). Specifically, the log image is input into the model,
with ResNet extracting the log contour features and outputs
five feature maps of different scales C1, C2, C3, C4, and C5.
Then, the feature pyramid establishes connections between
the five feature maps with different scales and outputs the
effective feature layers P2, P3, P4, P5, and P6 after feature
fusion. The effective feature layer obtained here has two
applications, as it can be directly used in combination with
the ROI Align layer, and it is input into the RPN network
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FIGURE 2. Log outline annotation effect.

FIGURE 3. Structure diagram of Mask R-CNN model (FC denotes the fully connected layer).

TABLE 2. List of symbols.

to generate a target candidate box by using a non-maximum
suppression algorithm. Then the ROI Align layer will use
these candidate boxes to intercept the effective feature layer.

TABLE 3. Annotate the image dataset log statistics table.

After that, the proposed network has two branches: the upper
is responsible for classification and regression, and the lower
for generating the corresponding mask.

2) IMPROVED RESNET NETWORK
In order to improve the ability of network feature extraction
and the detection performance of large and small woods,
this paper introduces Res2Net [19] module to replace the
Bottleneck residual block in the original Mask R-CNN
[16] backbone network. The original Bottleneck resid-
ual block and Res2Net [19] structure block are shown
in Figure 5.
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FIGURE 4. Schematic diagram of backbone network structure.

Compared with the original Bottleneck residuals, the
Res2Net block introduces a new dimension called ‘‘scale’’,
which modifies the original 3∗3 convolution kernel of the
residual block. Besides, after the 1∗1 convolution, the feature
map is no longer a 3∗3 convolution but is replaced with
a more complex structure. Specifically, the feature map of
n channels is evenly divided into s feature subsets after a

1∗1 convolution with a step size of 1 denoted by xn, where
n = [1, s] and the number of channels per feature subset is
n/s. The direct output of x1 is y1, the output of the x2 feature
subset is y2 after connecting a 3∗3 convolution kernel Kn(),
and the subsequent feature subset xn is first added with the
convolution result of the previous feature subset, and then
the output is yn after a 3∗3 convolution. The mathematical
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FIGURE 5. Comparison of Res2Net and bottleneck block.

expression of the Res2Net structural block operation process
is [31]:

yn =


xn, i = 1;
Kn(xn), i = 2;
Kn(xn + yn−1), 2 < n ≤ s.

(1)

Finally, the output result of each feature subset is concate-
nated along the channels and then added to the input feature
map after a 1∗1 convolution. In this way, Res2Net involves
receptive fields that exceed the input feature size by perform-
ing scale segmentation on the feature map channel dimension
and then conducting several operations on each small feature
map to improve the model’s multi-scale information fusion
ability.

3) IMPROVED FPN NETWORK
The FPN [32] structure in the Mask R-CNN network is
associated with the C2-C5 feature map output after the
ResNet network feature extraction process, and the informa-
tion fusion among each feature map is realized from top to
bottom. However, ResNet is a bottom-up structure, opposing
the FPN’s top-down structure [33], and thus increases the
information path of the low-level feature map when propagat-
ing toward the high-level and reducing the target’s positioning
accuracy and segmentation accuracy. To solve the problem of
low-level information Path propagation, this paper replaces
the original FPN network with the Path Aggregation Fea-
ture Pyramid Network (PAFPN) [34]. Figure 6 illustrates the
PAFPN network.

Considering N2 = P2, from N3 to N5, each feature map
Ni is first compressed by a 3*3 convolution with step size 2
and then added to the feature map Pi+1 output by the FPN to
undergo a feature fusion process. Then, another 3*3 convo-
lution with a step size of 1 is used to process the feature map
output Ni+1 after the feature fusion process. Based on N5,
we obtain N6 by connecting a maximum pooling layer with
a step size of 2. In this way, the original FPN network output
feature graph P2, P3, P4, P5, and P6 is replaced by N2, N3,

N4, N5, and N6, respectively. Thus, the PAFPN path, which
has a reinforced structure for its information fusion layers,
significantly reduces the lower figure propagation paths to the
top, preventing low-level information from traveling back-
ward and thus neglecting the multiple convolution layer loss
in ResNet due to the target location information. This strategy
further improves the wood contour segmentation accuracy
and the quality of the output mask.

C. POST-PROCESSING
1) THE FITTING METHOD OF LOG END FACE ELLIPSE BASED
ON THE LEAST SQUARE METHOD
Compared with circle fitting, the elliptical fitting of a log
contour is more in line with the log diameter measurement
standard described in the Log volume table GB/T 4814-2013.
Thus, to obtain the inspection ruler diameter of the log end
face, this paper adopts the Least SquareMethod(LSM) ellipse
fitting method to fit the log contour.

The LSM is a commonly used mathematical optimization
algorithm that minimizes the sum of squares of ellipse fitting
errors by optimizing the objective function to find the best
match between the input target contour and the ellipse con-
tour [35]. For any ellipse, its inhomogeneous equation is:

x2 + Axy+ By2 + Cx + Dy+ E = 0 (2)

In this case, the coordinates of the center of the ellipse can be
xc =

2BC − AD
A2 − 4B

yc =
2D− AC
A2 − 4B

(3)

In this case, the deflection Angle θoffset is:

θoffset = −
1
2
arctan

(
A

B− 1

)
(4)

The long and short axes can be expressed as:
a =

√
x2c + Axcyc + By2c − E

cos2 θofffset − A sin θoffset cos θoffset + B sin2 θoffset

b =

√
x2c + Axcyc + By2c − E

sin2 θoffset + A sin θoffset cos θoffset + B cos2 θoffset

(5)

A series of points Pi(xi, yi) can be obtained by identifying the
log contour from the mask diagram obtained by model infer-
ence. According to the principle of the least square method,
the objective fitting function is assumed to be:

F(A,B,C,D,E)

=

n∑
i=1

(x2i + xiyiA+ y2i B+ xiC + yiD+ E)2 (6)

In order to find the best match between the ellipse and the
target contour, F should be minimized. That is, the partial
derivatives of F are 0:

∂F
∂A

=
∂F
∂B

=
∂F
∂C

=
∂F
∂D

=
∂F
∂E

= 0 (7)
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FIGURE 6. Schematic diagram of PAFPN network.

FIGURE 7. Diagram of a car log layout in a real scene.

After solving A,B,C,D,E, according to (3), (4), and (5), the
relevant parameters of the ellipse can be obtained, namely the
center coordinate (xc, yc), deflection Angle θoffset , major axis
a, and minor axis b.

2) AN ADAPTIVE STRATIFIED LOG DIAMETER ESTIMATION
METHOD BASED ON K-MEANS AND DEPTH INFORMATION
We obtain the fitting ellipse parameters of the log end mask
profiles using the least squares method, including the coordi-
nates of the ellipse center point (xc, yc), major axis a, minor
axis b, and rotation angle θoffset . However, these parameters
are given as image pixels, but we require the actual log short
diameter length when checking the log ruler. Nevertheless,
converting pixel parameters to actual dimensions is an open
problem.Moreover, considering the real application scenario,
during log transportation and due to driving safety and sta-
bility factors, the loading of logs should be divided into two
layers according to the specification requirements. The latter
suggests that the head of the lower logs faces inside, the small
head face outside, and the upper and the lower logs are in the
opposite direction, as illustrated in Figure 7.
We use a ZED 2 binocular camera to acquire the log images

for the experiments. By calling the camera’s API, we acquire

the photos, obtain the depth images, and read the inside and
outside parameters from the camera: fx and fy. The center
point coordinates of the ellipse fitted to each log end face
are the ones presented in Section I, and the distance z from
the center point of each log to the camera was obtained by
combining the depth image. Two endpoints A(x1, y1) and
B(x2, y2) on the minor axis of the fitting ellipse were taken,
and their coordinates were calculated based on the center
coordinate (xc, yc), deflection Angle θoffset , major axis a, and
minor axis b. The corresponding formula is:

x1 = x0 −
1
2

· b · sin θoffset

y1 = y0 −
1
2

· b · cosθoffset

(8)


x2 = x0 +

1
2

· b · sin θoffset

y2 = y0 +
1
2

· b · cosθoffset

(9)

The actual length ofthe los’ face minor axisis:

lAB = z ∗

√
(x1 − x2)2

f 2x
+

(y1 − y2)2

f 2y
(10)

Due to the actual loading specifications, the upper and
lower layers are not divided, and thus a conventional hier-
archical idea measures the distance between the upper and
lower layers and then manually sets the threshold. When
the distance between the logs is less than this threshold,
we consider the logs belonging to the lower logs and calculate
the diameter of the lower logs class. This method required
manual measurement and threshold setting, which is rela-
tively tedious.

To reduce manual interference, this paper proposes an
automatic stratification method based on K-means further
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to improve the convenience of the onboard log measure-
ment scale. The K-means algorithm means that the cluster-
ing involves k clusters, and the mean value of the data in
each cluster is taken as the cluster’s center. The K-means
algorithm operates as follows: First, k samples are randomly
selected from the sample set as the cluster center, and the
distance between all samples and these k ‘‘cluster centers’’
is calculated. Each sample is divided into a cluster where
the nearest ‘‘cluster center’’ is located. This paper takes the
depth information corresponding to the center points of all
logs identified as the sample set. For the task to be solved,
as long as logs are divided into upper and lower layers, the
number of clusters is K=2. Once the K-means algorithm
completes its calculations on the sample set, two cluster
centers are obtained, where one belongs to the upper log and
the other to the lower log. The average of the two clustering
centers is the threshold for stratification, and then each log
is traversed to judge the depth information of the log. When
the depth information is less than the threshold, the log is
considered to belong to the lower layer, and then its diameter
can be estimated. The stratification algorithm is presented in
Figure 8.

D. QUANTITATIVE DEPLOYMENT OF NETWORK MODELS
Quantization refers to the process of transforming continuous
values into multiple discrete values. In deep learning, model
quantization is a model compression technique that trans-
forms the model parameters’ floating point storage (opera-
tion) form into the shaping storage (operation) form. Existing
deep learning frameworks often use FP32 data to represent
weights and bias values. Meanwhile, many neural networks
often use the deepening method to increase the depth of
the convolution neural networks and improve their perfor-
mance. Nevertheless, increasing the network’s size imposes
great challenges to deploying the models on edge computing
platforms with strict power and computational requirements.
Thus, reducing the power and delay of model inference
becomes a key issue. Therefore, it is mandatory to make the
model lightweight, speed up the reasoning speed, and reduce
the model’s power consumption, with model quantization
being one of the most simple and effective ways to meet these
requirements.

TensorRT is a high-performance deep learning model
inference application optimizer that provides high through-
put and low latency deployment inference for deep learn-
ing model applications on embedded platforms. Combin-
ing TensorRT and NVIDIA GPUs enables fast and efficient
deployment reasoning in almost all frameworks, with Ten-
sorRT being the main tool for model quantization inference
deployment in this paper. The quantization process of Ten-
sorRT is presented in Figure 9 and operates as follows:.(1)
The activation value and weight are converted from FP32 to
INT8 by linear mapping. (2) The convolutional layer obtains
the INT32-bit activation value. If the INT8 is directly used
to save, excessive cumulative loss will be caused. (3) It is
converted back to INT8 as the input of the next layer by

FIGURE 8. Flow chart of log stratification algorithm based on K-means.

re-quantization. (4) When the network operates at its last
layer, reverse quantization converts back to FP32.

III. RESULTS AND ANALYSIS
A. TRAINING ENVIRONMENT AND HYPERPARAMETER
SETUP
This paper uses GPU to speed up the network’s training. Then
the trained network model is deployed on Nvidia’s embedded
mobile device Xavier NX. Table 4 lists the experimental and
platforms’ hardware setup.

Specifically, we adapt MMDetection [36] to train the net-
work model. For thetraining process, we utilize the initializa-
tion parameters ofthe pre-training weights of the ImageNet
public dataset. At the same time, theother hyperparameters
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FIGURE 9. Schematic diagram of the TensorRT quantization process.

TABLE 4. Hardware platform configuration.

TABLE 5. Backbone network improvement and original model
comparison experiment configuration.

are configured as follows: thenumber of detection categories
is set to 1, the detection category is ‘‘wood’’, and the Rectified
Linear Unit (ReLU) [37] is the activation function. Moreover,
the BatchSize is set to 1, the number of data loading threads
is 2, we consider 36 epochs, the gradient optimizationmethod
is the Stochastic Gradient Descend(SGD) [27], with an initial
learning rate of 0.01, and the learning rate changes linearly
from lr/3 to lr in the first 500 training iterations to stabilize
the parameter gradient at the beginning of the training.

In addition to these general parameters and based on our
previous work [38], the optimal parameter configuration is
adopted, i.e., the RPN in the Mask R-CNN network and
the positive sample sampling number of the R-CNN module
are set to 512 and 1024. Moreover, the multi-scale training
method is used, and the parameters are configured separately
for the improved backbone network and the competitor mod-
els. Among them, the Backbone parameters of the origi-
nal Mask R-CNN model include ResNet and FPN, and the
improved Backbone model parameters include Res2Net and
PAFPN(Table 5).

It should be noted that due to property concerns, the dataset
employed and the developed algorithm are not yet publicly
available. However, reproducing the code based on our paper

is possible, and our code can be applied to a wide range of
log datasets beyond the one presented in this paper.

B. MODEL IMPROVEMENT EXPERIMENT AND RESULT
ANALYSIS
The image-enhanced wood data sets were used to complete
the Backbone network improvement comparison experiment.
Once themodel was successfully trained on themodel’s train-
ing universal parameters described in Section III-A, we calcu-
lated the competitor’s mean Average Precision(mAP) index
on the test dataset. Additionally, the average IoU score of the
mask, the number of model parameters of each experimental
group, and the corresponding inference speed are reported in
Table 6.
In Table 6, group 1 was taken as the control group and

the other groups as the experimental groups. By compar-
ing groups 1 and 2, we found that:When the fixed feature
extraction network was ResNet50 and the feature extrac-
tion module was replaced from FPN to PAFPN, the PAFPN
structure was relative to the FPN structure, although the
mAPS index decreased by 0.3%. However, the mAP0.5:0.95,
mAPM, mAPL, and mIoUmask increased by 0.3%, 0.2%,
0.4%, and 0.21%, respectively. The comparison experiment
between PAFPN and FPN verified the ability of PAFPN
to strengthen feature fusion and improve the performance
of large object detection. By comparing groups 1 and 3,
while preserving the feature extraction module unchanged,
the feature extraction network deepens from ResNet50 to
ResNet101 for mAP0.5:0.95. We observed that the mAP index
of a small, medium, and the large target is improved by 0.2%,
0.7%, and 3.1%, respectively. At the same time, the mask
segmentation quality improved by 0.62%. By deepening the
neural network, the feature extraction ability of the network
can be further improved, and the higher the model’s accuracy,
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FIGURE 10. Backbone network improves model segmentation results of comparison experiments.

TABLE 6. The score of each group on each index in the test set.

the more layers of the neural network are deepened. How-
ever, increasing the layers sharply increase the number of
model parameters from 43.75M to 62.74M (43.41%), and
the model’s inference speed decreased to 3.2FPS. Regarding
group 4, logs’ detection and segmentation performance is
improved most obviously when the Res2Net structure and
PAFPN structure are introduced simultaneously. Compared
with the original Backbone structure of ResNet50+FPN, the
segmentation accuracy of the improvedmodel test set reached
81.8%, presenting a significant improvement of 1.6%. The
segmentation accuracy of small, medium, and large woods
is significantly improved, i.e., mAPS, mAPM, and mAPL
were improved by 2.0%, 1.2%, and 4.4%, respectively. Addi-
tionally, the mIoUmask scores also improved by 2.6%. The
improved model combined with Res2Net and PAFPN further
improves the wood detection and segmentation performance.

We uniformly adopted the classification confidence=0.6
threshold when visualizing the model segmentation results.
The model segmentation results of the improved Backbone
network and the competitors are illustrated in Figure 10,

revealing that in the inference results of the ResNet50+FPN
model (Figure 10(a)), the recognition frame and mask could
not completely cover the log end face area, and the obtained
mask edge effect was jagged, presenting the worst perfor-
mance. The inference result after replacing the FPN struc-
ture with the PAFPN structure is illustrated in Figure 10(b),
which, compared with Figure 10(a), has a certain improve-
ment. The mask and recognition box cover more com-
prehensive areas, but some missing segmentations remain.
Figure 10(c) illustrates the reasoning performance of the
experimental group that improved the model’s feature extrac-
tion ability by increasing the network’s layers. Compared
with Figures 10(a) and 10(b), the missing segmentation phe-
nomenon was improved, but part of the mask area exceeded
the actual log end face. The fourth experiment was designed
by combining the above three experimental groups, which
involved a Backbone structure comprising Res2Net101 and
PAFPN. The actual reasoning performance is depicted in
Figure 10(d). At the same time, the edge of the mask is
smooth. In conclusion, the ResNet101+PAFPN structure
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FIGURE 11. Model inference results for different types of representation of weight.

TABLE 7. Comparison of the inference performance indexes of the weight parameters under various representation types.

performs best on the segmentation mask compared to the
combined model structure.

C. COMPARATIVE EXPERIMENT AND RESULT ANALYSIS
ABOUT QUANTIFICATION
The general training model used 32-bit floating point num-
bers, considering that most models have a relatively strong
anti-oise ability. Even if interference is added, the correct
results are predicted, and thus the edge of the intelligent
device decreases the precision and thus accelerates the cal-
culations or reduces power consumption. The 32-bit floating
point weight of each neural network layer was converted
into an8-bit fixed point and min Max storage mode, signif-
icantly reducing the model’s storage space and the memory
access consumption during reasoning. However, the model’s
quantitative processing reduced its accuracy, affecting the
final results. Thus, the following experiments were designed
to explore the influence of quantification on the results.
Considering the optimal training combination presented in
Section III-B, i.e., the weight of the improved Mask R-CNN
backbone with the Res2Net101+PAFPN combination as the
quantization object. TensorRT as the quantization tool, and
the test set of Section II-A as the test object,When theweights
are FP32, FP16, and INT8, the performance of mAP0.5:0.95,
mAPS, mAPM, mAPL, and mIoUmask on the test set was
compared.

Specifically, Table 7 highlights tha after the weight of the
Float32 representationwas converted into a Float16 and INT8
representation, themodel’s final reasoning result was affected
to some extent, and the value of each indicator decreased.
INT8’s mAPS and mIoUmask, reached 2.7% and 2.54%,
respectively. Moreover, mAP0.5:0.95, mAPM, and mAPL of
INT8 were not particularly affected, which was less than
1%. Besides, the INT8’s mAPM, in particular, was 0.7%
higher than FP16’s 84.2% and just 0.1% lower than FP32’s
85.0%. The process from Float32 to Int8 will narrow the
numerical representation range, resulting in a loss of target
segmentation accuracy of the model. This loss may cause

both the segmented mask area’s narrowing and expansion.
Through many experiments, quantization operation for the
vast majority of logs makes the segment mask area of the
end face smaller than the manually labeled area. An example
is shown in Figure 11, where as the range of numerical
representations decreases, the range of log face segmentation
masks (green areas) decreases, especially at the edges.

Figure 11 presents the model’s inference results, revealing
that the reasoning results of FP16 and INT8 are consistent
regarding the number of detections, and there is only a slight
difference in the segmentation area of the mask compared
to FP32. However, the difference can be controlled within a
reasonable range. According to the analysis in Table 7 and
Figure 11, the INT8 quantization operation on the model
impacts the model’s final inference result, but the impact can
be controlled within a reasonable range, which is helpful for
the deployment of the model in embedded edge devices.

NVIDIA’s Jetson NX development board was taken as
this paper’s final target deployment platform. The following
comparative experiment was set up to test the actual rea-
soning performance of the improved neural network model
on the target platform. When testing the model’s reason-
ing speed, the size of the model’s input pictures was fixed
to 1600∗1216 pictures. The model was compared against
NVIDIA’s 3060 graphics card to evaluate the practical effect
of deployment on embedded devices. Table 8 presents the
corresponding results, revealing that the model’s reasoning
performance under different precision is very different under
the same platform. As the weight representation’s preci-
sion decreases, the model’s storage space is significantly
reduced. Specifically, the weight represented by FP32 was
about 512MB, and by INT8 was only 96MB, which is only
one-fifth of the FP32. The inference speed test of the model
on the 3060 graphics card revealed that the inference speed
of the weight represented by FP32 was only 2.9FPS while for
INT8 was 22.878FPS, nearly 8 times faster. By comparing
the reasoning performance of the INT8 models under dif-
ferent platforms, we found that the reasoning speed of the
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TABLE 8. Model reasoning speed test under different hardware platform setups.

3060 graphics card with a high computing power reached
22.878FPSwhile the Jetson NX platformwith low computing
power was 2.523FPS, far less than the 3060. However, when
testing the power consumption of the two platforms, we found
that the JetsonNX’s power consumptionwas only 20W,much
smaller than the 3060’s power consumption. We quantified
the speed increase on the Jetson NX development board, from
0.3FPS on FP32 to 2.523FPS on INT8, a speed increase of
more than eight times.

D. ANALYZING THE CALCULATION RESULTS OF
VEHICULAR LOG VOLUME
The INT8 quantification network model of the improved
Mask R-CNN of the Res2Net101+PAFPN structure, which
presented the best performance inSection B, was selected to
complete the calculation of the volume of the whole vehicle
logs. Thus, we considered cars of logs and designed the
comparative experiment presented in Table 9. Specifically,
two experienced workers were asked to examine 5 carloads
of logs separately. After calculating the volume, the average
value was used as the ground truth. Then, the model with-
out quantization acceleration and INT8 quantization were
used to complete the recognition of the whole vehicle log
to obtain the mask map of the log end face. The ellipse
fitting method described in Section II-C-I and the diameter
estimation method of Section II-C-II were used to obtain
the inspection diameter of the log. Then the volume was
calculated using the same method as the manual inspection
ruler. The volume obtained by using the weight expressed
by FP32 is reported in Table 9. Compared with the manual
inspection result, the average error of the log volume of
10 cars is 1.5206%, and the maximum error is 3.5444%.
Compared with the manual measurement results, the average
error of the network model volume prediction results rep-
resented by INT8 without any compensation was 2.5450%.
Compared with the results of FP32, the average error was
1.0244% higher, and the maximum error reached 4.4424%.
The results proved that quantifying neural networks affects
the final detection results. By observing the volume calcula-
tion results of each vehicle and the mask segmentation effect
illustrated in Figure 11, we find that:the volume calculation
result of INT8 is always less than the FP32, with Figure 11
illustrating the reason. Quantizing the neural network further

reduces the segmentation area of the mask, decreasing the
overall volume. To reduce the accuracy of the quantitative
comparison, we conducted another set of experiments that
divided the log mask placed not immediately to the fitting
operation but to the masked figure for inflation convolution
operation. Thus, expanding the convolution operation can
increase the mask of the segmented regions, thus reducing
the mask precision compensation of the quantitative losses.
The volume results obtained after expansion convolution are
reported in Table 9. The average error of the vehicle volume
was 0.646%, and the maximum error was only 1.6833%,
which decreased by 1.8982% and 2.7591%, respectively,
compared with the calculation results before compensation,
proving that the expansion convolution can compensate for
the quantization loss.

IV. DISCUSSION
From the test data in Table 6, the segmentation detection
performance of the improvedMask R-CNN instance segmen-
tation network is improved to a certain extent. Especially for
small and large woods, mAP increased by 2% and 4.4%,
respectively. In the test set, the mask segmentation accuracy
improved by 2.6% to 90.81%, highlighting that the effect
of the improved model is not only reflected through the
indexes. Figure 10 illustrates the reasoning results of the
improved model in more intuitive details, revealing that even
a partially occluded model can detect wood. Compared with
the original Mask R-CNN, the segmentation accuracy of a
mask is also improved to a certain extent, and the obtained
mask is more consistent with the log face contour. Here,
although the model’s detection performance is improved, the
inference speed reduces as the model size increases, affecting
the algorithm’s execution efficiency.

Moreover, to meet the needs of detection anytime and
anywhere, this paper explores the actual operation effect
of the model on embedded devices based on a Jetson NX
development board. Table 8 compares the performance dif-
ferences between Jetson NX and an NVIDIA 3060 graphics
card, revealing that for reasoning speed, the 3060 graph-
ics card with high computational power outperforms the
embedded devices that affor a low computational power
requiremen. However, embedded devices have their advan-
tages, as their power consumption is very low, and they
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TABLE 9. Actual volume measurement results.

are suitable for mobile development. Hence, to improve
the model’s reasoning speed on embedded devices, this
paper uses the TensorRT tool to quantify the model, and
the model’s reasoning speed increased by 8 times after
quantization. Although quantization improves the model’s
reasoning speed, it inevitably affects its detection and seg-
mentation performance.

From the performance of the actual reasoning results
in Figure 11, the quantization makes the mask region
segmented by the model smaller. Therefore, during image
post-processing, this paper adopts the expansion convolution
operation to compensate for the loss of mask segmentation
accuracy caused by quantization and experiments on the data
of 5 cars of logs. Table 9 highlights that compared with the
results without processing, the volume data obtained after
expansion convolution compensation has a lower error, and
the average error of the final volume calculation result is
controlled within 1%.

The diameter data of the log face are obtained by ellipse
fitting based on the masking diagram of the model infer-
ence results. Although certain results have been obtained,
the data obtained in some cases are inaccurate, e.g., under
partial occlusion, often seen in the detection of vehicle logs.
Therefore, in practical applications, the proposed algorithm
must conduct a certain specification of log loading and expose
all logs as far as possible. The detection of partially occluded
logs is also our next step.

V. CONCLUSION
In the process of forestry production, the measuring scale
of logs is the key to the efficient utilization of wood
resources. The measuring scale accuracy of the logs deter-
mines the value of the wood. To solve the problems of low
efficiency, high cost, and high-risk coefficient of manual
inspection ruler, this paper designs and implements an intel-
ligent volume calculation method of vehicular log based on
an improved Mask R-CNN instance segmentation model.
Moreover, we successfully deployed our algorithm on an
embedded platform, contributing valuable experience for the
intelligent development of forestry log inspection ruler.

Specifically, this paper uses Mask R-CNN as the basic
model to train the collected vehicle log dataset and evaluate
it on the test set. The backbone network of the origi-
nal algorithm is improved further to improve the model’s
detection and segmentation performance. By introducing the
Res2Net and PAFPN structures in the Mask R-CNN, the
network’s feature map extraction ability for logs of various
sizes is enhanced, and the comprehensive performance of the
network is further improved. The performance comparison
experiment on the test set verified the improved detection
accuracy and masked segmentation quality score of the intro-
duced module compared with the original model. Based on
the mask map, the LSM ellipse fitting method is used to
obtain the diameter data of logs in the image. Aiming at the
stratification problem encountered in practical engineering
applications, an adaptive stratified log diameter estimation
method based on K-means and depth information fusion is
proposed, which is successfully applied to the actual mea-
suring operation. In order to deploy the method proposed in
this paper in embedded devices, the neural network model is
compressed based on a quantization method, and the dilated
convolution operation is proposed to compensate for the loss
of a mask segmentation region.

Extensive evaluation of the INT8 quantification net-
work model utilizing the improved Mask R-CNN based
on the Res2Net101+PAFPN structure and applied on the
Jetson NX embedded development platform demonstrates
our method’s capabilities attaining an average and a max-
imum vehicle volume error of 0.646% and 1.6833%,
respectively.

The embedded vehicle-mounted log intelligent measur-
ing method designed and implemented in this paper meets
the actual measuring application needs and reduces labor
costs. It should be noted that the suggested method can
adapt to different log detection places with a few changes
and has a wide application prospect. The development of
intellectualized and informationalized level of the log check-
ing ruler will be helpful to improve the efficiency of log
production and utilization rate of wood. Therefore, in the
future, we will develop a simple human-computer interaction
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interface and log information management platform based
on this study to provide a solution for intelligent log
management.
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