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ABSTRACT Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a
reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing
(JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spline
(NURBS) interpolation. Firstly, the segmentation concept is introduced to subdivide the entire trajectory into
segments to accommodate curvature changes of theNURBS curve, accelerating the acceleration/deceleration
process. Secondly, a length threshold-based curve segment classification method is proposed to overcome
the complexity of the traditional acceleration and deceleration algorithms. The curve segments are divided
into long, medium, and short types, and the length threshold calculation model is derived. Next, to avoid
computational complexity for engineering applications, a model is established for the first time to calculate
the actual maximum feedrate for different types of segments. Finally, the horizontal-8-shaped and butterfly-
shapedNURBS curves are simulated and analyzed. The simulation results indicate that themachining quality
is steadily improved while several key indicators remain within the given tolerances. Compared with the
traditional method, the proposed method reduces the computational and interpolation time by 17.2% and
22.8%, respectively, demonstrating the feasibility and effectiveness of the method.

INDEX TERMS Feedrate scheduling, NURBS interpolation, jerk-continuous, segmentation.

I. INTRODUCTION
Due to the advantages of NURBS interpolation in terms of
machining accuracy and code size, many scholars have been
interested in applying NURBS direct interpolation in CNC
to meet the requirements of surface quality and machining
time [1], [2], [3], [4], [5]. NURBS direct interpolation has
gradually become the main technology in multi-axis CNC
machining [6], [7], [8], [9], [10].

After decades of development, several NURBS direct
interpolation methods have been proposed. Shpitalni et al.
first proposed the concept of NURBS direct interpolation [6].
Then, Yang and Kong presented Taylor’s expansion-based
NURBS interpolation [11]. Erkorkmaz et al. developed a
quintic spline interpolation method [12]. Lei et al. proposed
the inverse length functions (ILF) method [13]. However,
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these methods inevitably suffer from high chord errors,
acceleration, and jerk exceeding given tolerances due to
curvature.

The feedrate should be changed to keep the chord error
within the tolerance. The NURBS interpolator feedrate
scheduling method is applied to improve machining accuracy
and motion smoothness. Yeh and Hsu put forward an
adaptive feedrate interpolator to satisfy the given tolerance
of chord error [14]. However, this method suffers from the
feedrate discontinuity problem. Sun et al. proposed a new
algorithm based on proportional adjustment for the sensitive
regions to obtain the adaptive feedrate profile [15], which
is too computationally intensive for real-time imputation.
Wang et al. developed an offline-online two-stage NURBS
interpolator, which applies a constant feedrate scheduling
method to the NURBS segment [16]. Jia et al. also proposed
a systematic NURBS interpolator that maintains a constant
feedrate in the federate-sensitive region, which reduces the
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TABLE 1. The comparison of jerk-continuous ACC/DEC methods.

processing complexity at the expense of time efficiency [17].
Ni et al. presented a bidirectional feedrate s. Guo et al.
developed a feedrate planning method, including three
combined curves: a critical deceleration curve, a straight
line, and a critical acceleration curve to reduce computing
load and improve efficiency [19]. However, sudden changes
in curvature will lead to discontinuous feedrates, causing
acceleration beyond the machine’s capacity and vibration.

Several new interpolations were constructed in literature
to address these issues [20], [21], [22], [23]. Javad et al.
first proposed the acc-jerk-limited feedrate scheduling by the
improved quintic feedrate profile [20]. Sun et al. [21] devel-
oped a relaxation mathematical process feedrate scheduling
method with a little jerk for five-axis CNC machining.
Erwinski et al. [22] presented a PSO-based feedrate
optimization method to select appropriate axial velocity,
acceleration, and jerk for NURBS interpolation. Although
Krystian Adam Erwinski et al. [23] presented a new NURBS
feedrate optimization method with axial acceleration and jerk
constraints, the presented method still suffers from the jerk
discontinuity problem.

Various jerk-continuous methods have been presented
in the literature to solve the jerk-discontinuity problem,
as shown in Table 1 [24], [25], [26], [27], [28], [29], [30].
P. Boscariol et al. presented novel trajectory-planning algo-
rithms for an industrial robot using fifth-order polynomial
functions [24]. Fang et al. presented a modified sine jerk
motion profile based on piecewise trigonometric functions.
However, these methods are only suitable for low-speed robot
joint motion [25]. Zhao et al. proposed a new ACC/DEC
approach with jerk continuity using the piecewise quartic
spline curve [26]. Liu et al. adopted the trigonometric
function method to establish the jerk continuous profile
for NURBS interpolation. However, these methods cannot
maintain the maximum jerk and acceleration, significantly
reducing the machining efficiency [27]. Zhang et al. designed
a linear jerk-continuous profile for feedrate scheduling [28],
which cannot maintain the maximum acceleration. Ni et al.

proposed a jerk profile construction method by combining
trigonometric and polynomial functions [29]. However, this
method has 16 stages and too many types of processing,
leading to a high time overhead. Zhang et al. developed a
new jerk-smooth feedrate scheduling method [30]. However,
this method is time-consuming due to the use of high-
order polynomials. Aiming at the smoothing of the velocity
and acceleration at the end of the trajectory of adjacent
micro-straight lines, Sun and Yang et al. focused on jerk-
continuous tool path smoothing and feedrate planning for
6-axis robot machining with more complex kinematics [31],
[32]. However, these methods mainly construct a B-spline
curve in the remaining part of the adjacent micro-straight
lines trajectory, somewhat different from the proposed
NURBS direct interpolation.

Inspired by these works, this paper aims to design
an efficient trigonometric-based jerk-continuous profile for
NURBS interpolation to reduce feedrate fluctuations and
improve interpolation efficiency. Compared to traditional
works, the proposed approach has the following salient
features. Firstly, NURBS curves are subdivided into segments
by confined curvature to accommodate curvature variations.
Secondly, a length threshold-based segment classification
method is proposed to overcome the complexity of con-
ventional acceleration and deceleration algorithms. Finally,
a model is derived for the first time to calculate the actual
maximum feedrate for different segments.

The main contributions of this paper can be summarized as
follows:

(1)We focus on the critical role of curvature in the NURBS
interpolation, present the concept of confined curvature, and
implement segmentation of NURBS to adapt to the curvature
variations.

(2) A trigonometric-function-based jerk-continuous fee-
drate smoothing (JCFS) method is proposed to overcome the
feedrate fluctuation.

(3) The proposed JCFS is employed to derive the analytic
expression for calculating the maximum feedrate of different
length curve types for the first time, which can significantly
simplify the ACC/DEC implementation process.

The rest of this paper is organized as follows. Section II
describes the architecture of the proposed jerk-continuous
feedrate optimization interpolator. Section III introduces
the preliminaries, including NURBS interpolation, confined
curvature, and curve segmentation. The jerk-continuous
NURBS interpolation is designed in Section IV. Section V
provides the simulation results of the proposed method
applied to horizontal-8-shaped and butterfly-shaped NURBS
curves. Finally, conclusions and future aspects are presented
in Section VI.

II. JERK-CONTINUOUS FEEDRATE OPTIMIZATION
INTERPOLATOR ARCHITECTURE
The interpolation feedrate will be continuously influenced
by geometric and dynamic characteristics [35]. The feedrate
should be dynamically adjusted to satisfy the tolerance of
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FIGURE 1. The architecture of the jerk-continuous NURBS interpolator.

specific constraints. However, since the geometric properties
vary continuously along with the NURBS, using the same
feedrate limits for the entire curve is inefficient. Different
processing strategies can be employed depending on the
region of curve curvature. Here, the method proposed in
reference [3] for partitioning NURBS curves according to the
confined curvature is utilized [3].

The curve segmentation is based on dividing a NURBS
curve into segments by critical curvature points. A critical
curvature point is obtained from the local maximum curvature
point in the curvature-sensitive region obtained by the
confined curvature.

As shown in Fig. 1, the architecture of the proposedmethod
proposed is specified as follows.

Firstly, according to the NURBS curve defined in Eq. 1, the
interpolator reads the NURBS curve tool path and kinematic
parameters in turn, including control points and node vectors,
as well as other information such as commanded feed rate,
acceleration, and Jerk. Based on these inputs, the constrained
curvature is calculated, and the NURBS curve can be divided
into several parts with constrained curvature containing
curvature-sensitive areas.

Then, the critical point is found at the curvature-sensitive
region, which is the local curvature maximum point. The
NURBS curve is segmented into several curve parts by
the critical points so that the subsequent acceleration and
deceleration can be processed independently in the curve
segment unit.

Finally, the jerk-continuous method based on trigonomet-
ric functions is proposed. The curves are divided into long,
medium, and short categories. All curve segments are recal-
culated to the maximum achievable velocity. Besides, the
jerk-continuous feedrate optimization is performed according
to the proposed acceleration/deceleration method to realize
continuous interpolation of velocity/acceleration/jerk.

III. PRELIMINARIES
A. PRINCIPLE OF THE NURBS INTERPOLATION
The definition of the NURBS curve can be expressed as
follows [33]:

C(u) =

n∑
i=0

Ni,p(u)ωipi

n∑
i=0

Ni,p(u)ωi

, u1 ≤ u ≤ un+p+1 (1)

where i=0, 1, . . . , n; {Pi} is the set of control points; {ωi}
is the set of weights; {Ni,p(u)} represents the B-spline basic
functions; u is the normalized parameter vector.

The commonly used Taylor expansion method is adopted
to estimate the parameter for point C(u) [34].

ui+1 = ui +
du
dt

∣∣∣∣
t=ti

+
1
2
d2u
dt2

∣∣∣∣
t=ti

T 2
+ ε (2)

where T is the cycle period. ε is a high-order term that can be
ignored.

The feedrate can be obtained by differentiating from
Eq. (1) versus t

v(ui) =

∥∥∥∥dC(u)dt

∥∥∥∥
u=ui

=

∥∥∥∥dC(u)du

∥∥∥∥
u=ui

du
dt

∣∣∣∣
t=ti

(3)

Then, the first-order derivative of u with respect to time t
is given by

du
dt

∣∣∣∣
t=ti

=
v(ui)∥∥∥ dC(u)du

∥∥∥
u=ui

(4)

Similarly, the second-order derivative of u is given by

d2u
d2t

∣∣∣∣
t=ti

−

v2(ui) (
dC(u)
du ·

dC2(u)
du2

)
∣∣∣
u=ui∥∥∥ dC(u)du

∥∥∥4
u=ui

(5)

The curvature of the NURBS curve can be expressed as

k =

∥∥C (1)(u) × C (2)(u)
∥∥∥∥C (1)(u)3

∥∥ (6)

The radius of curvature can be obtained as

ρ =
1
k

(7)
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Thus, substituting equations 4 and 5 into Eq.2 gives

ui+1 = ui +
v(ui)T∥∥∥ dC(u)du

∥∥∥
u=ui

−

v2(ui) (
dC(u)
du ·

dC2(u)
du2

)
∣∣∣
u=ui∥∥∥ dC(u)du

∥∥∥4
u=ui

(8)

According to Eq.8, the parameter ui+1 of C(ui+1) can be
estimated based on the current interpolation parameter ui, the
current velocity v(ui), and the interpolation period T .

B. CONFINED CURVATURE AND CRITICAL POINT
Geometric and kinematic characteristics, drive, and contour
error constraints constantly influence Feedrate. The multiple
constraints are introduced here [35] to obtain the constrained
curvature radius model as

ρi,1 =
v2T 2

+4δ2
8δ

ρi,2 =
v2
an

ρi,3 =

√
v3
jn

ρi,4 =
v2T 2

2ε

(9)

where v,T are the velocity and cycle time, δ, ε are the
tolerance of chord and contour errors, respectively, an, jn are
the maximum normal acceleration and normal jerk.

Thus, from Eq. 7 and Eq. 9, the confined curvature kc can
be obtained as follows.

kc = min(1
/
ρi,1, 1

/
ρi,2, 1

/
ρi,3, 1

/
ρi,4) (10)

The above analysis indicates that when the curve curvature
is less than the confined curvature kc, the feedrate of the
NURBS interpolator can satisfy various constraints and
remain at the command velocity. On the contrary, when
the curve curvature is greater than the confined curvature
kc, the feedrate should be reduced to satisfy the machining
accuracy, and the feedrate should be simultaneously adjusted
to meet the kinematic characteristic. Therefore, the region
of the curve below the confined curvature is defined as the
curvature-sensitive region. Due to the curvature continuity
characteristics of the cubic NURBS curve, the local curvature
maximum point can be found from the curvature-sensitive
region and employed as the critical point. The NURBS curve
can be divided into several curve segments by the critical
points so that the subsequent acceleration and deceleration
can be processed independently in terms of curve segments.

C. CURVE SEGMENT LENGTH
The adaptive Simpson’s method is utilized to calculate
the curve segment length. For more details, please refer
to reference [17]. Finally, the arc displacements of each
curve segment between two adjacent critical points can be
calculated. The constraint velocity for the curve segment
can be obtained by inverse derivation of Eq.9 to obtain the
corresponding features vector, where us and ue are the start
point and end point parameters of the curve segment, vs and
ve are the constrained velocity, li is the arc length of the curve
segment.

FIGURE 2. The jerk-continuous feedrate profile.

IV. DESIGN OF JERK-CONTINUOUS NURBS
INTERPOLATION
The curve segmentation aims to impose acceleration and
jerk constraints on the feedrate scheduling in a tangential
direction based on the proposed acceleration and deceleration
algorithms. However, since it is difficult to determine the
actual velocity, the feedrate scheduling is very complicated
for different lengths of curve segments, especially medium-
long curve segments. Generally speaking, there may be
dozens of accelerations and deceleration processing types for
different-length curve segments.

This section illustrates the details of the proposed jerk-
continuous ACC/DEC feedrate scheduling. Firstly, the jerk-
continuous scheduling method is introduced based on the
trigonometric function, which can effectively improve jerk
continuity at the start and stop times to prevent the vibration
caused by the sudden increase or drop of the jerk. Secondly,
the calculation model of the actual allowable feedrate of the
curve segment is deduced, which is themost effective solution
to solve the feedrate scheduling of the curve segment with
different lengths. Finally, two constant acceleration stages are
added based on the 5-stage jerk-continuous method [36] to
improve velocity acceleration and deceleration capabilities.

A. JERK-CONTINUOUS FEEDRATE PROFILE
As shown in Fig. 2, the trigonometric-function-based jerk-
continuous feedrate optimization method is proposed based
on [37]. The method includes the acceleration rising
stage, constant stage, and falling stage. The acceleration
rising stage is subdivided into three phases: acceleration
increase/acceleration constant/acceleration decrease. The
acceleration falling stage also includes three subdivision
phases. The jerk expression at any time t can be described
as follows:

j(t) =



π
2T1

A sin π
T1
t t0 ≤ t < t1

0 t1 ≤ t < t2
−

π
2T3

A sin π (t−t2)
T3

t2 ≤ t < t3
0 t3 ≤ t < t4
−

π
2T5

A sin π (t−t4)
T5

t4 ≤ t < t5
0 t5 ≤ t < t6
π
2T7

A sin π (t−t6)
T7

t6 ≤ t ≤ t7

(11)
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where A is the maximum acceleration. t0-t1 is the phase the
jerk changes according to the trigonometric function, which
increases from 0 to the maximum jerk, and then decreases
from the maximum jerk to 0; t1-t2 is the phase where the
jerk remains at 0; t2-t3 is the inverse process of t0-t1. t3-t4
is also the phase where the jerk remains at 0; t4-t7 is the
inverse process of t0-t3. From Eq. 15, the jerk is represented
by a sinusoidal function, and the jerk variation is relatively
continuous.

Integrating Eq.11 yields the following acceleration
equation:

a(t) =



A(1 − cos π t
T1
)/2 t0 ≤ t < t1

A t1 ≤ t < t2
A(1 + cos π(t−t2)

T3
)/2 t2 ≤ t < t3

0 t3 ≤ t < t4
−A(1 − cos π(t−t4)

T5
)/2 t4 ≤ t < t5

−A t5 ≤ t < t6
−A(1 + cos π(t−t6)

T7
)/2 t6 ≤ t ≤ t7

(12)

where A is the maximum acceleration, t0-t1 is the increasing
acceleration phase based on the trigonometric function to
increase from 0 to the maximum acceleration continuously;
t1-t2 is the constant acceleration phase, maintaining the
maximum acceleration so that the velocity can be increased
rapidly with the maximum acceleration; t2-t3 is the decreas-
ing acceleration phase, which employs the trigonometric
function to decrease from the maximum acceleration to
0 continuously. t3-t4 is the phase that keeps the acceleration
at 0; t4-t7 is the inverse process of t0-t3.

By integrating Eq.12, the velocity equation can be obtained
as (13), shown at the bottom of the next page, where vs, Vf
and ve are the start, command, and end velocities. T1 is
the duration time from t0 to t1, and T2-T7 are similarly the
corresponding durations of t2-t7. The velocity corresponding
to the time points of T1, T2, T3, T4, T5, T6, and T7 are v1,
v2, v3, v4, v5, v6, and v7. One equation can be obtained from
Eq.13.

v0 = vs
v1 = vs +

A
2T1

v2 = vs +
A
2T1 + AT2

v3 = Vf = vs +
A
2T1 + AT2 +

A
2T3

v4 = Vf

v5 = Vf −
AT5
2

v6 = Vf −
AT5
2 − AT6

v7 = ve = Vf −
AT5
2 − AT6 −

AT7
2 (14)

When the maximum Jerk is J , the following equation can be
derived from Eq.11

J =
π

2T1
A =

π

2T3
A =

π

2T5
A =

π

2T7
A (15)

According to Eq.15, the following formula can be
obtained:

T1 = T3 = T5 = T7 =
π

2
A
J

(16)

Eq.14 shows that{
Vf = vs +

A
2T1 + AT2 +

A
2T3

ve = Vf −
AT5
2 − AT6 −

AT7
2

(17)

By combining formulas 16 and 17, the following formula
can be obtained: {

A =
Vf −vs
T1+T2

A =
Vf −vs
T5+T6

(18)

Then {
T2 =

Vf −Vs
A − T1

T6 =
Vf −Ve
A − T5

(19)

For every NURBS curve segment, the time of the seven
phases T1-T7 in the proposed method can be obtained
according to Eqs.17-19. The feedrate at any time can be
calculated according to Eq.14.

B. CURVE SEGMENT CLASSIFICATION
The NURBS curve is segmented into several curve segments.
However, each curve segment has a different arc length.
According to the proposed jerk-continuation method, when
the arc length is not enough to accelerate the feedrate to the
commanded one, some of the seven stages will not exist.
There may be many complex and difficult special cases (i.e.,
seventeen feedrate profiles in [36]). So far, there is still
no simple and effective method to deal with the feedrate
scheduling problem for different length curve segments.

The main problem is that the actual maximum velocity
cannot be directly obtained for different length curve
segments. In this respect, the NURBS curve segments are
classified into long, medium, and short segments. For the long
segments, since the feedrate can reach the command velocity,
the feedrate scheduling process is performed according to the
proposed 7-phase jerk-continuous profile; For the medium
segments, a mathematical model of the achievable velocity
is established to solve the problem that the curve segment is
not long enough or not very short and should generate various
special feedrate profiles to deal with; For the short segments,
considering the complexity and efficiency of processing,
the interpolation of the curve segment is completed at a
low feedrate in a constant velocity mode. Due to the short
arc length, it cannot significantly influence the processing
efficiency for the entire NURBS curve, while the provided
simplicity and precision are significant.

1) TYPES OF CURVE SEGMENTS
Here, the definitions for three different curve segments are
presented based on curve segment length. Suppose Lmed and
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Lmin refer to the criterion for the medium and short segments,
respectively.

long segment: ifL > Lmed
medium segment: if L ≥ Lmin and L ≤ Lmed
short segment: ifL < Lmin

(20)

where L is the curve segment length. The segment is long if
its curve is longer than Lmed ; The segment is short if its curve
is shorter than Lmin; the segment is medium if its curve is
between Lmed and Lmin.

In [29], the acceleration rising and falling phases are
divided into three sub-phases, increasing the velocity pro-
cessing complexity. In this paper, the three sub-stages are
integrated into one stage so that the Ti1, Ti2, and Ti3 parts
can be combined into one part (Ti) to reduce the processing
complexity.

Here, we assume F is the achievable velocity. According
to [29], the acceleration and deceleration displacements,
denoted by sacc and sdec, can be obtained as:{

sacc =
(F+vs)(T1+T2+T3)

2
sdec =

(F+ve)(T5+T6+T7)
2

(21)

where F is the actual velocity, vs and ve are the beginning and
end velocities, and T1-T7 are the time durations of each phase.
When the segment is long enough, the actual velocity can
equal the command velocity Vf , and there will be a constant
velocity phase. As the length of the curve segment reduces,
there may be no constant velocity phase, and the velocity
cannot reach the command velocity. Let L be the shortest
distance that the actual velocity can reach the command
velocity, and there is just no constant velocity phase. It can
be obtained that:

L = sacc + sdec =
(F+vs)(T1+T2+T3)+(F+ve)(T5+T6+T7)

2 (22)

Then, the criterion length for Lmed defined in Eq.20 can be
expressed as:

Lmed =
(F + vs)(T1 + T2 + T3) + (F + ve)(T5 + T6 + T7)

2
(23)

The expression of Lmin will be given in Section 4.2.3.

2) THE ACTUAL ACHIEVABLE FEEDRATE
This paper considers the following definitions. The max-
imum achievable feedrate for the long segment is equal
to the command feedrate. The maximum achievable fee-
drate for the short segment is the minimum feedrate
at both ends of the segment. The maximum achievable
feedrate for the medium segment is generally less than the
command velocity, directly related to the curve segment
length.

Next, the derivation process of the maximum achievable
feedrate for the medium segment will be presented. Suppose
L is the length of the medium segment, where L ≥

Lminand L ≤ Lmed .
Substituting Eq. (16) and Eq. (19) into Eq. (23) gives (24),

as shown at the bottom of the next page.
Then, we can get the following quadratic equation:

2F2
+ F πA2

J + vs πA2
2J + ve πA2

2J − v2s − v2e − 2AL = 0 (25)

Let a = 2, b =
πA2
J , c = vs πA2

2J + vs πA2
2J + ve πA2

2J − v2s − v2e −

2AL
In this way, the quadratic equation for F can be represented

as:

aF2
+ bF + c = 0

In order to solve (25), the following notation is considered:

1 = b2 − 4ac

= 8(vs −
1
4

πA2

J
)2 + 8(ve −

1
4

πA2

J
)2 + 16AL (26)

The detailed derivation process is presented in Appendix A.
since A > 0 and L > 0, 1 = b2 − 4ac > 0

Then, there are two real solutions:

F =
−b±

√
b2 − 4ac
2a

(27)

Since F > 0, −b < 0 and 2a>0, the solution of the
equation is

F =
−b+

√
b2 − 4ac
2a

(28)

Thus, the maximum achievable velocity for the three
segments can be obtained as follows (29), as shown at the
bottom of the next page.

v(t) =



vs +
A
2

(
t −

T1
π
sin( π

T1
t)

)
t0 ≤ t < t1

vs +
A
2T1 + A(t − t1) t1 ≤ t < t2

vs +
A
2T1 + AT2 +

A
2

(
(t − t2) +

T3
π
sin( π

T3
(t − t2))

)
t2 ≤ t < t3

Vf t3 ≤ t < t4
Vf −

A
2

(
(t − t4) −

T5
π
sin( π

T5
(t − t4))

)
t4 ≤ t < t5

Vf −
AT5
2 − A (t − t5) t5 ≤ t < t6

Vf −
A
2T5 − AT6 −

A
2

(
(t − t6) +

T7
π
sin( π

T7
(t − t6))

)
t6 ≤ t ≤ t7

(13)

VOLUME 11, 2023 25669



M. Nie et al.: Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation

FIGURE 3. The flowchart of the ACC/DEC realization.

L =
(F + vs)(T1 +

F−vs
A − T1 + T3) + (F + ve)(T5 +

F−ve
A − T5 + T7)

2

=
(F + vs)( π

2J A+
F−vs
A ) + (F + ve)( π

2J A+
F−ve
A )

2

=
2F2

+ F πA2
J + vs πA2

2J + ve πA2
2J − v2s − v2e

2A
(24)

F =


Vf if L > Lmed

−
πA2
J +

√
(πA2
J )2 − 8(vs πA2

2J + vs πA2
2J + ve πA2

2J − v2s − v2e − 2AL)
4 if Lmin ≤ L ≤ Lmed

min(vs, ve) if L < Lmin

(29)
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4.2.3 The criterion length Lmin
The criterion length derivation process will be given as

follows:
According to Eq.14, we have

F = v3 = vs +
A
2T1 + AT2 +

A
2T3 (30)

where T1 = T3 = T5 = T7 =
πA
2J > 0, and T2 ≥ 0

Then:

F = vs +
A
2T1 + AT2 +

A
2T3 ≥ vs + AT1 = vs + AπA

2J (31)

According to Eq. 28, we can get

F =
−b+

√
b2 − 4ac
2a

≥ vs +
πA2

2J
(32)

where a = 2, b =
πA2
J , c = vs πA2

2J + vs πA2
2J + ve πA2

2J − v2s −

v2e − 2AL
Substituting temporary variables a, b, and c into Equ.32

gives the following inequality

L ≥

2
(
vs +

3πA2
4J

)2
−

(
vs −

πA2
4J

)2
−

(
ve −

πA2
4J

)2
2A

(33)

Please refer to Appendix B for the detailed derivation
process.

Thus, the criterion length Lmin can be represented as

Lmin =

2
(
vs +

3πA2
4J

)2
−

(
vs −

πA2
4J

)2
−

(
ve −

πA2
4J

)2
2A

(34)

The criterion lengths are given byLmed =
(Vf +vs)(T1+T2+T3)+(Vf +ve)(T5+T6+T7)

2

Lmin =
2
(
vs+ 3πA2

4J

)2
−

(
vs− πA2

4J

)2
−

(
ve− πA2

4J

)2
2A

(35)

C. ACCELERATION AND DECELERATION REALIZATION
As shown in Fig.3, the confined curvature kc of the NURBS
curve is calculated by substituting the commanded velocity
Vf into Eq. 13. Then, the curvature-sensitive regions of
the NURBS curve are naturally partitioned by the confined
curvature, and the local curvature extreme points can be found
as the critical points for each curvature-sensitive area. Finally,
the NURBS curve is segmented by critical points, and each
curve segment can be expressed as (us, ue, vs, ve, li).

After that, the interpolator cyclically scans the segmented
curve feature vector until all curve segments are processed.
Firstly, the acceleration and deceleration of the curve segment
are determined by comparing the segment length with the
length of the confined curve segment. If li > Lmed , the curve
segment is long enough to belong to the long curve segment
and will contain all 7 phases of the jerk-continuous method,
and the feedrate can reach the command velocity. If Lmin ≤

li ≤ Lmed , the curve segment belongs to the type of medium
segment, the feedrate cannot reach the command velocity,
and the actual maximum velocity F should be calculated
according to Eq. 28. If li ≤ Lmin, the curve segment belongs

FIGURE 4. The horizontal-8-shaped NURBS curve.

to the short segment, while the jerk and acceleration cannot
reach the maximum value. The minimum feedrate at both
ends of the short segment will be kept constant throughout
the short curve segment interpolation to reduce the processing
complexity.

Now, the actual feedrate can be calculated. For both
long and medium curve segments, the displacements of the
remaining uninterpolated curve segment are first calculated,
and the stage in which the acceleration and deceleration
of the current interpolation point is located is determined
based on the remaining displacements. If Lr > sacc +

sdec, the velocity v(t) at this point should gradually increase
to the end velocity, which should be calculated according
to Eq.13. If sdec ≤ Lr ≤ sacc + sdec, it indicates that
the velocity of the current interpolation point belongs to
the constant velocity phase, while the feedrate v(t) should
be maintained at the maximum velocity F of the curve
segment. If Lr < sdec, it indicates that the velocity of
the current interpolation point belongs to the acceleration
decreasing stage, while the velocity v(t) at this point should
gradually decelerate to the endpoint velocity, which should be
calculated according to Eq.13. Besides, for the short segment,
the velocity should be maintained at a constant velocity,
smaller than the velocity between the beginning and end
points.

So far, the feedrate can be obtained for three different curve
segments at any interpolation cycle. The parameter ui+1 can
be calculated from Eq.8.

V. SIMULATION AND ANALYSIS
As shown in Fig. 4 and Fig. 6, horizontal-8-shaped and
butterfly-shaped NURBS curves are simulated to verify the
effectiveness of the proposed method. Appendix C lists the
parameters for the two typical curves, such as degrees, control
points, and weight. The interpolation parameters for the
simulation are given in Table 2.
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TABLE 2. The interpolation parameters for the simulation.

FIGURE 5. The curvature and the critical points of the
horizontal-8-shaped NURBS curve.

A. SIMULATION ANALYSIS OF THE
HORIZONTAL-8-SHAPED NURBS CURVE
As shown in Fig.4, the curve is divided into four segments
by four critical points, marked with A, B, C, and D.
Critical points on the curve are marked with ‘‘o’’, and
their corresponding coordinate values are displayed next to
them. The parameter information of the curve segments is
shown in Table 3. Fig. 5 shows the curvature corresponding
to the horizontal-8-shaped curve. It can be seen that there
are four abrupt change areas in the curvature of the curve,
each of which represents a curvature-sensitive region. The
confined curvature kc can be obtained by substituting the
parameters in Table 2 into Eq.10. The confined curvature is
finally calculated as kc = 0.112. This confined curvature is
represented by a line parallel to the x-axis in Fig. 5, marked as
the curvature threshold, and divides the horizontal-8-shaped
curve into four curvature-sensitive regions with curvature
higher than the portion above the confined curvature line. The
local curvature maximum point of each curvature-sensitive
area is regarded as a critical point and marked as ‘‘o’’,
which corresponds to the critical point in Fig. 4. The number
next to each critical point in Fig.5 represents the point
curvature.

FIGURE 6. The butterfly-shaped NURBS curve.

FIGURE 7. The curvature and the critical points of the butterfly-shaped
NURBS curve.

The simulation results of the proposed method are shown
in Figs.8-15. The proposed method’s velocity and tangential
acceleration/jerk are well confined to the maximum values.
At the same time, the tangential acceleration profile and
tangential jerk profile are continuous, indicating that the
velocity is smooth naturally. Fig. 11 shows that the chord
error is always kept below the maximum chord error during
the interpolation, indicating a high machining accuracy. The
normal acceleration and normal jerk are also involved in the
simulation, as shown in Figs.12-13, and the results indicate
that bothmetrics are within themaximum range. In particular,
the normal jerk is significantly lower than the maximum
normal jerk. The influence of contour error is also considered
in the simulation, and the simulation results are shown in
Fig. 14. The results show that the method can well limit
the contour error throughout the interpolation process, which
is several orders of magnitude smaller than the maximum
allowable contour error.
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TABLE 3. Segments of the horizontal-8-shaped curve.

TABLE 4. Segments of the butterfly-shaped curve.

Besides, Fig.15 shows the velocity planning results using
the jerk-continuous method for the long type segment. The
horizontal-8-shaped test curve is divided into four long curve
segments. Therefore, the paper intercepts one long segment.

The long curve segment parameters are (us = 0.036, ue =

0.400, vs = 0.088mm/ms, ve = 0.070mm/ms, li =

243.73mm). As shown in Fig. 15a, the curvature of the tested
curve segment is high at both ends and low in the middle.
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FIGURE 8. The velocity simulation result of the horizontal-8-shaped
NURBS curve.

FIGURE 9. The tangential acceleration simulation result of the
horizontal-8-shaped NURBS curve.

Fig. 15b shows the scheduled velocity profile, including three
stages of acceleration, constant velocity, and deceleration,
while the velocity profile changes continuously. Fig.15c and
Fig. 15d show the corresponding tangential acceleration and
jerk curves, all within the maximum allowable value range
of the system, and meet the continuous characteristics of a
jerk. At the same time, Fig. 15e and Fig. 15f show that the
normal acceleration and normal jerk also meet the tolerance.
Significantly, the change of the normal jerk is well limited,
further reducing the vibration in the normal direction. The
chord and contour errors of the curve segment under the jerk-
continuous method are shown in Fig. 15g and Fig. 15h. The
chord error generally meets the maximum allowable error
requirements, the chord error value at the beginning and end
of the curve segment is high, with smaller values in the
middle part. The contour error is several orders of magnitude
smaller than the maximum allowable error, indicating that the
machining accuracy can be well guaranteed.

FIGURE 10. The tangential jerk simulation result of the
horizontal-8-shaped NURBS curve.

FIGURE 11. The chord error simulation result of the horizontal-8-shaped
NURBS curve.

B. SIMULATION ANALYSIS OF THE BUTTERFLY-SHAPED
NURBS CURVE
The simulation results of the butterfly-shaped NURBS curve
are shown in Fig. 6, while the critical points on the curve
are marked with ‘o’. The thresholds of the medium segment
Lmed and short segment Lmin are 42.922mm and 0.274mm,
respectively, which can be calculated by Eq.39. Next, the
curve can be divided into 22 segments according to the
threshold, of which 2 are long segments and 20 medium
segments. Table 4 shows the detailed parameters of each
curve segment. The curvature of the butterfly-shapedNURBS
curve is listed in Fig. 7. The right middle area in Fig. 7 is
a partially enlarged view, indicating some details that are
not apparent in the small scaling. The sharp corners with
larger curvature are the curvature-sensitive regions in Fig.7.
Each curvature-sensitive area’s maximum local curvature
point is regarded as a critical point and marked as ‘‘o’’,
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FIGURE 12. The normal acceleration simulation result of the
horizontal-8-shaped NURBS curve.

FIGURE 13. The normal jerk simulation result of the horizontal-8-shaped
NURBS curve.

which corresponds to the critical point in Fig. 6. Compared
with the horizontal 8-shaped curve, the butterfly-shaped
curve is divided into more curve segments, and the feedrate
scheduling is more difficult.

The simulation results of the proposed method are shown
in Figs.16-22. According to the simulation results of the
horizontal 8-type curve, Figs. 16-18 show that the proposed
method’s velocity, tangential acceleration, and tangential jerk
values are limited to the maximum values. At the same time,
it is clear that the tangential acceleration and jerk profiles are
continuous, indicating that the velocity is smooth naturally.
The normal acceleration and jerk are always kept below the
maximum value in Figs.19-20. The influence of chord and
contour errors are also considered in the simulation, and
the simulation results are shown in Figs.21-.22. The results
indicate that the proposed method can well limit the chord
and contour errors in the whole interpolation process.

FIGURE 14. The contour error simulation result of the
horizontal-8-shaped NURBS curve.

TABLE 5. Comparison of butterfly-shaped curve simulation results.

At the same time, to better observe the simulation results,
the results of one curve segment are taken from each of
the two types of 22-segment curve segments for display.
As shown in Fig. 23, the curve segment is long, corresponding
to s2 in Table 4. The detailed parameters of the curve
segment can be found in the s2 item. Fig. 23 shows that
the acceleration and deceleration processes include seven
phases, and the maximum velocity can reach the command
velocity. As shown in Fig. 23a, the curvature of the tested
curve segment is high at both ends and low in the middle.
Fig. 23b shows the feedrate scheduled profile, including three
stages of acceleration, constant velocity, and deceleration,
while the velocity profile changes continuously. Fig. 23c and
Fig. 23d show the corresponding tangential acceleration and
jerk curves, all within the maximum allowable value range
of the system, and meet the continuous characteristics of the
jerk. Fig. 23e and Fig. 23f show that the normal acceleration
and jerk also meet the tolerance, especially the change of the
normal jerk is well limited. As shown in Fig. 23g and Fig. 23h,
the chord and contour errors are also limited.
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FIGURE 15. The simulation results of the long-length type curve segment of the horizontal-8-shaped NURBS curve. a Curvature.
b Scheduled velocity. c Tangential acceleration. d Tangential jerk. e Normal acceleration. F Normal Jerk. g Chord error. h Contour
error.

FIGURE 16. The scheduled velocity of butterfly-shaped NURBS curve.

Besides, the s12 segment in Table 4 is taken for further
discussion, which belongs to the medium segment. Since the
length of the curve segment is not enough to accelerate to
the commanded velocity, the difference from s2 is inevitable.
Besides, the feedrate planning process is somewhat different
from that in Fig.23. The most important thing is that the
velocity profile does not have a constant velocity phase, and
the maximum velocity is less than the command velocity,
as shown in Fig. 24b. However, from the simulation results

FIGURE 17. The tangential acceleration profile of butterfly-shaped
NURBS curve.

of tangential acceleration and jerk, normal acceleration and
jerk, chord and contour errors, the design requirements can
be met.

In order to evaluate the effectiveness of the proposed
method, it is compared with a double interpolation algorithm
based on the cosine theorem (DICT) [16], a complete
S-shape feedrate scheduling approach (CSFA) [38], and
a dynamic-based interpolator with real-time look-ahead
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FIGURE 18. The tangential jerk profile of butterfly-shaped NURBS curve.

FIGURE 19. The normal acceleration profile of butterfly-shaped NURBS
curve.

algorithm (DBLA) [39]. Several parameters are compared,
such as maximum chord error, maximum contour error,
computational time [16], and interpolation time. Table 5
shows that although DBLA and CSFA methods consume
less computational time than DICT and the proposed
method, their maximum chord and contour errors are higher
than DICT and the proposed method. Using DICT as the
benchmark, the proposed method reduces the maximum
chord and contour errors by 23.7% and 17.2%, respectively.
The proposed method can achieve the best accuracy and
surface quality compared with other methods. At the same
time, the computational time of the proposed method is about
658.36us for NURBS curve interpolation, which is 14.7%
lower than that of DICT, which can better meet the real-
time interpolation period (2ms) requirement. Moreover, the
interpolation time is 8.712s, which is 22.8% lower than that of
DICT, providing a better processing efficiency. The proposed

FIGURE 20. The normal jerk profile of butterfly-shaped NURBS curve.

FIGURE 21. The chord error of butterfly-shaped NURBS curve.

FIGURE 22. The contour error of butterfly-shaped NURBS curve.

method significantly reduces the computational overhead and
improves the processing quality.
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FIGURE 23. The simulation results of the long-length type curve segment of the butterfly-shaped NURBS curve. a Curvature.
b Scheduled velocity. c Tangential acceleration. d Tangential jerk. e Normal acceleration. f Normal Jerk. g Chord error. h Contour
error.

FIGURE 24. The simulation results of the medium-length type curve segment of the butterfly-shaped NURBS curve.
a Curvature. b Scheduled velocity. c Tangential acceleration. d Tangential jerk. e Normal acceleration. f Normal Jerk. g Chord
error. h Contour error.

The simulation results indicate that the proposed method
has reached the expectation in all aspects for more complex

butterfly-shaped curves, demonstrating the feasibility and
effectiveness of the proposed method.
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C. BRIEF DISCUSSION ON THE JERK LIMITATION
The proposed method considers the normal and tangential
jerk limitations during interpolation. The proposed method
obtains the confined curvature throughmaximum chord error,
maximum contour errors, maximum normal acceleration and
normal jerk and obtains the curvature-sensitive areas. The
above parameters (including the maximum normal jerk)
restrict the feedrate of each point in the curvature-sensitive
area so that the maximum normal jerk tolerance can be met at
any time during the interpolation process, as shown in Fig. 13
and Fig. 20. At the same time, the trigonometric-function-
based jerk-continuous method is utilized to confine the
tangential jerk, so that the tangential jerk meets the maximum
tangential jerk tolerance and maintains the continuity of the
tangential jerk everywhere, as shown in Fig. 10 and Fig. 18.

However, there are some differences in different inter-
polation curves, such as the simulated horizontal-8-shaped
NURBS and butterfly-shaped NURBS curves. Since the
curvature profile of the former curve is much lower than that
of the latter, as shown in Fig. 5 and Fig. 7, the actual normal
jerk profile of the former is much lower than the maximum
normal jerk tolerance (as shown in Fig. 13). In contrast, the
actual normal jerk profile of the latter is larger than the former
in terms of the fluctuation range and amplitude (as shown in
Fig. 20). In terms of a tangential jerk, since the former has
fewer curvature sensitive areas than the latter, the change in
the actual tangential jerk profile of the former is simpler than
that of the latter (as shown in Fig. 10 and Fig. 18).

VI. CONCLUSION
In this paper, a jerk-continuous feedrate optimization method
is proposed. Firstly, the entire trajectory is subdivided into
segments based on the curve segmentation idea. Then,
curve segment classification and threshold length calculation
methods are constructed to reduce the complexity of feedrate
optimization. Next, the analytic expression of the maximum
achievable feedrate for different-length curve segments is
also established. Finally, two typical horizontal-8-shaped
and butterfly-shaped NURBS curves are simulated. The
results indicate that the chord and contour errors can be
kept within the given tolerance. Besides, the values of
normal acceleration/jerk and tangential acceleration/jerk are
confined to match the machine tool’s dynamic capabili-
ties. Compared with the DICT method, the computational
and interpolation time are reduced by 17.2% and 22.8%,
respectively, demonstrating the method’s feasibility and
effectiveness. Further research should be performed to apply
the proposed method to five-axis machine tools, which will
face more significant challenges.

APPENDIX A

2F2
+ F πA2

J + vs πA2
2J + ve πA2

2J − v2s − v2e − 2AL = 0

Let a = 2, b =
πA2
J , c = vs πA2

2J + vs πA2
2J + ve πA2

2J − v2s − v2e −

2AL

TABLE 6. The horizontal-8-shaped curve parameters.

TABLE 7. The parameters of the butterfly-shaped curve.

The quadratic equation for F can be described as:

aF2
+ bF + c = 0

1 = b2 − 4ac

= (πA2
J )2 − 4 ∗ 2 ∗ (vs πA2

2J + ve πA2
2J − v2s − v2e − 2AL)

=
π2A4

J2
− 8(vs(

πA2

2J
− vs) + ve(

πA2

2J
− ve)) + 16AL

= 8(v2s −
1
2
vs

πA2

J
) + 8(v2e −

1
2
ve

πA2

J
) +

π2A4

J2
+ 16AL

= 8(v2s −
1
2
vs

πA2

J
+

π2A4

16J2
)
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⇒ −8(vs(AT1 − vs) + ve(AT5 − ve) − 2AL) ≥ 16(vs +
πA2

2J
)2 + 8A(T1 + T5)(vs +

πA2

2J
)

⇒ 16AL ≥ 16(vs +
πA2

2J
)2 + 8A(T1 + T5)(vs +

πA2

2J
) + 8(vs(AT1 − vs) + ve(AT5 − ve))

⇒ L ≥
(vs +

πA2
2J )2 +

1
2A(T1 + T5)(vs +

πA2
2J )

A
+

(vs(AT1 − vs) + ve(AT5 − ve))
2A

⇒ L ≥
(vs +

πA2
2J )2 +

1
2A(

πA
2J +

πA
2J )(vs +

πA2
2J )

A
+

(vs(AπA
2J − vs) + ve(AπA

2J − ve))

2A

⇒ L ≥

(vs +
πA2
2J )2 +

1
2

πA2
J (vs +

πA2
2J ) +

(
πA2
4J

)2
−

(
πA2
4J

)2
A

−

(
v2s − vs πA2

2J +

(
πA2
4J

)2
−

(
πA2
4J

)2)
+

(
v2e − ve πA2

2J +

(
πA2
4J

)2
−

(
πA2
4J

)2)
2A

⇒ L ≥

(
(vs +

πA2
2J ) +

πA2
4J

)2
−

(
πA2
4J

)2
A

−

(
vs −

πA2
4J

)2
−

(
πA2
4J

)2
+

(
ve −

πA2
4J

)2
−

(
πA2
4J

)2
2A

⇒ L ≥

2
(
(vs +

πA2
2J ) +

πA2
4J

)2
−

(
vs −

πA2
4J

)2
−

(
ve −

πA2
4J

)2
− 2

(
πA2
4J

)2
+ 2

(
πA2
4J

)2
2A

⇒ L ≥

2
(
vs +

3πA2
4J

)2
−

(
vs −

πA2
4J

)2
−

(
ve −

πA2
4J

)2
2A

Lmin =

2
(
vs +

3πA2
4J

)2
−

(
vs −

πA2
4J

)2
−

(
ve −

πA2
4J

)2
2A

+ 8(v2e −
1
2
ve

πA2

J
+

π2A4

16J2
) + 16AL

= 8(vs −
1
4

πA2

J
)2 + 8(ve −

1
4

πA2

J
)2 + 16AL

APPENDIX B

−b+
√
b2 − 4ac
2a

≥ vs +
πA2

2J

⇒

√
b2 − 4ac ≥ 2a(vs +

πA2

2J
) + b

⇒ b2 − 4ac ≥ 4a2(vs +
πA2

2J
)2 + 4ab(vs +

πA2

2J
) + b2

⇒ −4ac ≥ 4a2(vs +
πA2

2J
)2 + 4ab(vs +

πA2

2J
)

where a = 2, b =
πA2
J , c = vs πA2

2J + vs πA2
2J + ve πA2

2J − v2s −

v2e − 2AL, then the equation can be derived, as shown at the
top of the page.

APPENDIX C
See Table 6 and 7.
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