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ABSTRACT Hundreds of variants of Swarm Intelligence or Evolutionary Algorithms are proposed each
year and numerous competitions and comparisons between algorithms may suggest rapid improvement in
the field. However, such comparisons are often done between a limited number of methods and are based on
averaged ranks of algorithms. This way theymeasurewhether onemethod is on average ranked better than the
others, without giving any information on how much improvement is in fact obtained. In this study we show
a general comparison between 69 algorithms, starting from methods proposed in the 1960’s up to variants
developed in the early 2020’s, on single-objective static numerical problems. Algorithms are compared on
searching for a minimum of 30 different 50-dimensional mathematical functions, and on 22 real-world
problems.We focus on the relative improvement achieved by various algorithms over a single-solution based
method proposed in 1960 by Howard Rosenbrock. We find that the general improvement of Evolutionary
Algorithms over Rosenbrock’s algorithm is relatively limited. It is high for the artificial benchmarks, for
which many Evolutionary Algorithms find solutions 10 times closer to the global optimum in terms of fitness
than Rosenbrock’s algorithm, but much lower for real-world problems. Improvement is also higher when
performance averaged over many runs is compared, but lower when the best results from multiple runs are
analyzed. In the last case, only the best Evolutionary Algorithms are able to find solutions of a ‘‘typical’’
real-world problem that are 2-3 times better in terms of fitness than those found by Rosenbrock’s algorithm.
The relative improvement of recently proposed algorithms is not much better than the improvement achieved
by algorithms proposed over a decade ago.

INDEX TERMS Evolutionary algorithms, swarm intelligence, metaheuristics, performance, Rosenbrock’s
algorithm.

I. INTRODUCTION
Heuristic approaches devoted to solving optimization prob-
lems [1] are being developed at least since 1945 when George
Polya published his famous book ‘‘How to solve it’’ [2].
The early 1960’s saw the dawn of some classical algorithms
that are still widely used, like Nelder-Mead simplex [3] or
Rosenbrock’s method [4]. In the mid-1970’s the idea of
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biologically-inspired optimization algorithms appeared when
Holland published his book on Genetic Algorithms [5] and
Ingo Rechenberg worked on the first Evolutionary Strate-
gies [6]. These algorithms were followed by other meta-
heuristics, including Simulated Annealing [7], Differential
Evolution [8], and Particle Swarm Optimization [9], and
since the late 1990’s a swarm of inspiration-guided methods
sprinkled in the optimization literature. The prefix ‘‘meta’’
before heuristics means that the method should be of gen-
eral use. Metaheuristics are frequently called Evolutionary
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Algorithms (EAs) – even if they have no direct link to the
biological process of evolution – or Swarm Intelligencemeth-
ods (we would not care about the difference between EAs and
Swarm Intelligence in this paper), and hundreds of variants
are proposed each year. EAs have found plentiful applications
in almost any field of science, for example in developing
self-learning robots [10], improving chemical reaction mod-
els [11], analysis of bio-diversity in prehistorical epochs [12],
conservation of marine environment [13], facilitating health
care services [14], development of artificial life forms [15],
discovering new drugs [16] or searching for exoplanets [17].
They have also been widely used in various fields of engi-
neering, including software faults prediction [18], smart grid
development and control [19], system fault diagnosis [20],
transmission congestion in power networks [21], develop-
ment of charging stations for electrical vehicles [22], or plan-
ning of the renewable energy sources [23] [24]. Different
kinds of EAs are applied to different kinds of problems –
continuous, discrete or combinatorial, single-objective or
multi-objective, static or dynamic, constrained or uncon-
strained [25]. In this paper we focus on the algorithms aiming
at numerical, single-objective static problems.

There is a common belief that EAs are improving their
performance – which means that the newer ones can either
find better solutions in the search space or find solutions of
similar quality quicker than the older ones. Such a view may
be justified by the outcome of numerous competitions that are
held each year [26] and the fact that some kinds of algorithms
are steadily modified in a step-by-stepmanner [27]. However,
it was also noted that algorithms that win subsequent competi-
tions may be inferior to the winners of previous competitions,
even if they were held on similar kinds of problems [28].
Apart from conference-related competitions, several papers
appeared in which a comparison of several, but rarely more
than 30 algorithms, was presented [29], [30], [31].

There is of course an endless problem how to measure the
quality of optimizers, and different opinions on the perfor-
mance of different methods may be the outcome of different
rules set for comparison [32]. For example, in Black-Box
Optimization Benchmarking suite (BBOB) competitions, the
expected value to be reached is fixed, and algorithms compete
by how quickly they can find a solution with required perfor-
mance [33] when in the majority of IEEE benchmarks [34]
the opposite view is set – the number of function calls is fixed,
and algorithms are expected to find as good solution as possi-
ble within the pre-specified number of function calls. We also
know that algorithms that perform relatively better on quick
search would be outperformed by others when much more
time is allowed, and vice versa [35]. This is in full accordance
with No Free Lunch theorems for optimization [36], [37].
However, from a practical point of view, a different funda-
mental issue seems to bemissed in the literature: a majority of
studies focus on a rank-based comparison of algorithms, and
ignore the question – How much improvement is obtained?

In the present paper we study the improvement obtained
by 68 EAs, proposed between the 1960’s and early 2020’s,

over a very basic optimization algorithm from 1960. Our
comparison is restricted to single-objective static numerical
problems and is based on the IEEE approach, hence we set the
maximum number of function calls (MNFC), and algorithms
search for the solution with the lowest objective function
valuewithin this computational time limit. To analyze the size
of the improvement of EAs, we use a 50-dimensional IEEE
benchmark test suite from CEC 2017 competition composed
of 30 functions [34], and a set of 22 real-world problems [38].

In our research, we verify the improvement obtained by
EAs over a simple, non-population-based algorithm proposed
by Rosenbrock [4] that makes steps along the coordinate axes
and occasionally modifies the step size and rotates the coor-
dinate system (RA). This is a historical, but still sometimes
used method that may be competitive to EAs, especially on
unimodal or simple multimodal problems. If we know the
global optimum (as in the case of CEC 2017 benchmarks),
or at least the best solution known so far (as in the case of real-
world problems), we may discuss the relative improvement
of particular EA over RA. We focus on whether EAs in fact
improve over RA, how much improvement is obtained, and
whether the improvement obtained by newer EAs is indeed
sufficiently larger than the improvement obtained by more
historical algorithms to make a real difference for practition-
ers that wish to solve a particular problem.We aim at writing a
simple and short paper focused only on the practical improve-
ment of Swarm Intelligence and Evolutionary Algorithms in
general, hence no detailed analysis of the possible reasons for
successes or failures obtained by 69 algorithms is given. Such
more algorithm-specific, detailed research is left for future
papers.

The rest of the paper is organized as follows. In section II
we briefly discuss various papers that aim at the comparison
between Swarm Intelligence and Evolutionary Algorithms,
or their different features. In section III we describe shortly
themethods used in the study (test suites, algorithms, and per-
formance criteria). In section IV we discuss the main results
from both ranking-based comparisons between 69 algo-
rithms, and the relative improvement of Swarm Intelligence
and Evolutionary Algorithms over Rosenbrock’s method.
In section V we conclude the paper.

II. LITERATURE REVIEW
Various kinds of Swarm Intelligence and Evolutionary Algo-
rithms have been compared multiple times in the literature,
both theoretically and empirically, but we are not aware of
papers in which a relative improvement of many novel algo-
rithms over the classical ones would be addressed. In numer-
ous guides a number of rules have been proposed that, at least
in the opinion of their authors, should be followed when com-
paring various algorithms [39], [40], [41], [42]. In practice
often it is considered that the safest choice is to follow the
rules defined for some widely accepted benchmark sets, such
as IEEE or BBOB ones [33], [34].

The main outcome of the theoretical approach to the
comparison of Evolutionary Algorithms are No Free Lunch
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theorems for optimization [36]. According to No Free Lunch
theorems, if the problem is implemented on a computer
(hence discretized) and algorithms are non-revisiting, the
performance of all possible heuristic methods averaged uni-
formly over all possible problems would be equal. However,
this finding has limited practical applicability, as no one
would average performance of optimization algorithms over
all possible problems – at least because the fitness landscape
of almost all of such problems would be a mix of random
points, and hence would be of no interest to anyone.

In some other theoretical comparison studies similarities
between various algorithms have been found, and the lack
of novelty of many newer algorithms over the older ones
has been revealed [43], [44], [45]. The fact that many new
algorithms repeat operators of older methods just under
novel nomenclature is one of the main problems that users
may face when seeking for relevant Evolutionary Algo-
rithms to solve particular problems [43]. A number of other
papers address a theoretically different aspect of Evolutionary
Algorithms, namely how they cope with different kinds of
difficulties that may be faced when solving optimization
problems [46], [47], [48]. Finally, from a theoretical point
of view, the impact of various control parameter settings on
the performance of different optimization algorithms has also
been widely studied [49], [50], [51], [52], [53].

Despite the importance of theoretical studies, empirical
comparisons between evolutionary algorithms seem to be
more popular than theoretical ones, even though they are
always limited by the scale of problems, setting of com-
parison rules, and algorithms chosen for the competition.
A relatively wide-scale comparison between up to 30 vari-
ous evolutionary algorithms has been presented in numerous
papers [29], [30], [31], [54], [55]. In addition, each year
multiple novel algorithms compete in different competitions
on Evolutionary Computations (e.g. [28], [56]). However, the
results of all such comparisons are rather ‘‘local’’, e.g. they
showwhich algorithms perform better than the others, but it is
hard to generalize them to gain opinions on the improvement
in Swarm Intelligence or Evolutionary Algorithms in general.

In many important papers some specific features of evolu-
tionary algorithms, or competition settings, have been com-
pared. Such empirical tests may address diversified kinds
of issues. For example, in [45], [57], [58], and [59] the
impact of various initialization techniques on the perfor-
mance of Evolutionary Algorithms is shown. A number of
review papers [60], [61], [62], [63] analyze the impact of the
population size of particular algorithms on the final perfor-
mance. The impact of versatile other control parameters on
the performance of specific kinds of Evolutionary Algorithms
has also been addressed multiple times [64], [65], [66], [67].
As shown in numerous comparison papers, the performance
of specific Evolutionary Algorithms would also depend on
the number of allowed function calls [35], [55], [68], [69]. It is
also known that the choice of the specific statistical test may
affect the choice of the best algorithms [70], [71], [72], [73].

The comparison between algorithms may even to some
degree be affected by the number of runs that are performed
with each method [74]. Topology is another factor that may
affect the effectiveness of many algorithms and is also studied
in various comparison papers [75], [76], [77], [78]. In addi-
tion, the impact of the ensemble strategies [79], surrogate
meta-models [80], multi-populations [81], or competition
mechanisms [82], [83] on the performance of Evolution-
ary Algorithms has been analyzed. All such studies provide
fruitful insight into the relative performance of Evolutionary
Algorithms, or the impact of particular operators, control
parameters, or other features of a specific method or compe-
tition settings. However, such papers still do not reveal how
much improvement has been de facto obtained in recent years
by Evolutionary Algorithms over classical, half-a-century-
old optimizers.

III. METHODS
This section introduces briefly algorithms, benchmark sets,
comparison criteria, and statistical tests used in the present
study.

A. TEST PROBLEMS
To verify the range of improvement obtained by different
EAs, two different types of numerical minimization problems
are used: 30 mathematical, 50-dimensional functions (which
we consider a trade-off between high- and low-dimensional
cases) from IEEE CEC 2017 benchmarks [34] and 22 real-
world problems of various difficulty and dimensionality [38]
that come from different fields of science and industry.We set
the maximum number of allowed function calls to the values
proposed in the original papers in which the tests were intro-
duced: to 10,000D for CEC 2017 benchmarks [34], where
D is the problem dimensionality, and to 150,000 function
calls for the real-world problems [38]. For each problem,
every algorithm has been run 51 times [34]. For each run
the solution with the lowest value of the objective function
is remembered, hence we obtain a sample of 51 results per
problem for each algorithm.

B. RELATIVE IMPROVEMENT MEASURE
In the classical comparison between algorithms, a rank-based
ranking of algorithms is used. In such a case algorithms are
ranked for each problem from the best one (rank 1) to the
worst, usually according to the mean performance from all
runs made on the specific problem. When setting the ranks of
algorithms, often some very small threshold on the difference
between methods is set; if the difference in the performance
of some algorithms on a specific problem is lower than this
threshold, these algorithms are given the same rank. As in
many papers, we set this threshold to 10−8. Then, ranks
are averaged over all problems (e.g. [34]). This way the
size of improvement, and the range of difference between
algorithms, is lost.

In this study we focus on the scale of improvement
obtained by EAs. To measure the relative improvement
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of a particular algorithm over RA, for each problem we
need information on the function value in the global opti-
mum (GM). In the case of CEC 2017 benchmarks GM is
known and equals 0 for each problem [34]. However, in the
case of real-world problems, the global minimum is often
unknown. Hence, we assume that the value of GM used
in this study to measure the relative improvement will be
equal to the lowest value found for the particular real-world
problem by any algorithm applied in this research, or, if it is
lower, the value reported in the paper in which the winner
of CEC 2011 competition that was held on the same 22
real-world problems was described [84]. We list the GM
values that we have used for all real-world problems in
Suppl. Table. 1.

In the majority of comparisons between algorithms only
the mean performance (AV) averaged over all performed runs
(51 in our case) is used as a comparison criterion. However,
mean performance favor algorithms that avoid big failures in
all runs, not necessarily those that at least in some runs can
reach a noticeably better solution than competitors. Hence,
in this paper we use two measures: the 51-runs averaged
performance (AV), and the best performance obtained in
51 runs (BEST). The second measure may benefit algo-
rithms that have a larger standard deviation of performance
noted in different runs. We are interested in whether the
results obtained would be consistent for both AV and BEST
measures.

Having the GM value for the particular problem, we may
define the relative improvement of algorithm A over RA on
ith problem as

IMPRi(A,RA) = 100
(
1 −

f (A) − GM
f (RA) − GM

)
(1)

where f () is either the average value of the performance
from 51 runs (AV) or the best performance (BEST) found
during 51 runs by the algorithm of interest. Here we assume
that RA does not find exactly the global minimum for any
problem. The idea is to have a measure to verify the relative
performance between classical Rosenbrock’s algorithm RA
and any other algorithm A. We would like to see how much
better (what we understand as: closer to the global optimum
in terms of fitness) is algorithm A, with respect to RA. The
proposed IMPRi measure is based on the measure of average
convergence [148]; however, it is related not directly to GM,
but to the difference between the performance obtained by
RA and GM. IMPRi measure shows in percentage (%) how
much closer to the global optimum (GM) in terms of perfor-
mance is the solution found by the particular algorithm A,
with respect to the solution found by the classical RA. For
example: if the objective function value in the global opti-
mum GM equals 0, the averaged performance from 51 runs
equals 100 for RA, and 10 for algorithm A, IMPRi measure
shows 90% improvement of A over RA. Note that the highest
possible improvement of A is 100%, but there is no limit on
the deterioration (or negative improvement) – if in the above

example the averaged performance of algorithm A was 500,
IMPRi would be negative and equal to -400%.
Note that AV and BEST measures refer to the specific

problem. However, discussing the relative improvement of a
particular algorithm on each specific problem would not be
much effective. Rather, we need some aggregate information
on the improvement. AV or BEST improvement averaged
over all problems may be the simplest measure, but it is
highly affected by the problems on which the specific algo-
rithm A performs poorly, as there is no limit on the negative
improvement (see discussion on two examples given above).
Median AV or BEST improvement is insensitive to the scale
of improvement on problems on which particular method per-
forms especially well, or equally bad, hence shows a flattened
picture for a ‘‘typical’’ problem. Having this in mind we will
discuss the mean, median, lowest, and biggest improvement
of AV and BEST measures for each algorithm.

C. EVOLUTIONARY ALGORITHMS COMPARED
In this study we compare the performance of 69 optimization
algorithms (see Table 1). Algorithms are arranged histori-
cally, from the oldest (RA proposed in 1960, NMA proposed
in 1965, etc) to the recent ones, proposed in 2021. Tested
algorithms compose just a small fraction of EAs that were
proposed so far and the choice of competitors is obviously
subjective. We aim at comparison between a large number
of methods, including both the best algorithms that we were
aware of, and many less known ones. We have, though,
tried to avoid metaphor-based methods in which novelty
or performance could be doubtful – as discussed in land-
mark critical papers [43], [149]. However, we are aware
that many widely appreciated, popular methods are anyway
not included in the present test. Some tested algorithms we
have programmed ourselves in MATLAB, but the majority
of codes were obtained from their inventors, as indicated
in Table 1.

Appropriate choice of control parameters for metaheuris-
tics is often a deliberate issue. We are against fitting all
control parameters to the same value, as depending on the
specific operators of particular algorithms, different settings
may be beneficial for each particular method. Hence, in this
paper we use the simplest, but also one of the most fair
approaches: the control parameters of tested algorithms are
given as suggested in the source papers. A very few excep-
tions that needed to be made due to technical reasons are
listed in Table 1. Also, the box-constraints handling methods
employed were the same as in the source papers or computer
codes, if they were specified there; otherwise, we used the
rebounding method.

IV. RESULTS AND DISCUSSION
In this section, we first pay attention to the averaged-based
ranking of algorithms across all problems. After that, we dis-
cuss the relative improvement obtained by particular methods
over the RA algorithm from the 1960’s.
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TABLE 1. Algorithms compared. D– problem dimensionality. ∗ - marks codes that have been obtained from other researchers, either on request or from
the relevant web pages.
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TABLE 1. (Continued.) Algorithms compared. D– problem dimensionality. ∗ - marks codes that have been obtained from other researchers, either on
request or from the relevant web pages.
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TABLE 1. (Continued.) Algorithms compared. D– problem dimensionality. ∗ - marks codes that have been obtained from other researchers, either on
request or from the relevant web pages.

A. RANK-BASED CLASSIFICATION OF ALGORITHM
Before we analyze the relative improvement over RA
obtained by different EAs on benchmarks and real-
world problems, some discussion on the classical rank-based
ranking of algorithms is needed. In Table 2 the algo-
rithms are listed from the best to the worst one according
to the all-problems averaged ranks. In the left part of Table 2
the average ranking is based on 22 real-world problems from
the 2011 set, and on the right – on the 50-dimensional ver-
sion of 30 CEC 2017 benchmarks. To facilitate a compar-
ison of rankings obtained by older and more recent EAs,
the year of publication is associated with each algorithm

in Table 2. In Table 3 similar information is given, but for
algorithms arranged historically, with chronological numbers
specified in Table 1; in Table 3 we add specific informa-
tion on the average rank of each algorithm. To simplify
the discussion on historical improvement, in Table 4 the
average year of publication, and the most recent year
of publication are presented for the 10 best and the
10 worst algorithms, and in Table 5 the average ranking
of the 10 oldest, and the average ranking of the 10 most
recent algorithms is given. The detailed results obtained
by each algorithm on every problem are listed in Suppl.
Tables 2-5.
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TABLE 2. Average-ranks-based ranking of algorithms arranged from the
best to the worst for real-world 2011 problems and 50-dimensional CEC
2017 benchmarks.

TABLE 2. (Continued.) Average-ranks-based ranking of algorithms
arranged from the best to the worst for real-world 2011 problems and
50-dimensional CEC 2017 benchmarks.

From Tables 2 and 3 we find that the HARD-DE algo-
rithm from the year 2019, is the best method for real-world
problems and the ELSHADE-SPACMA from 2021 is
the winner on 50-dimensional CEC 2017 benchmarks.
L-SHADE-cnEpSin, which was proposed in 2017, is the
second-best method on real-world problems and
the third-best on CEC 2017 benchmarks, which makes it
the rank-based winner of the summarized competition. Such
results suggest that at least some of themost recent algorithms
are better than the older competitors. Indeed, from Table 4
we see that the average publication year of the 10 best
algorithms, out of 69 tested, is close to 2018 for both real-
world and benchmark problems, when the average year of
publication of the 10 worst algorithms is between 2004-
2006. Also, as given in Table 5, the mean ranking of the
10 newest algorithms is much better than the mean ranking
of the 10 oldest methods. From Table 2 we see that among
the best 20 algorithms on real-world problems, the oldest is
from 2013 (ATPS-DE – which is ranked 15th). In the case
of CEC 2017 benchmarks AMALGAM from 2009 is ranked
11th and is the only over-10-years-old method among the
best 20 algorithms. This confirms that, as long as problem-
averaged rank-based comparison of algorithms is considered,
the older methods are not competitive with the newer ones.

From Table 2 we may also find that L-SHADE [103] based
methods in general perform better than other versions of
Swarm Intelligence and Evolutionary Algorithms that have
been tested in the present study. We may recognize many
variants of L-SHADE among the best ten optimizers, based
on both the results obtained for real-world problems and CEC
2017 benchmark functions. As L-SHADE algorithms have
also found so far many practical applications in different
fields of science and engineering [150], [151], [152], [153],
the present result may be considered as another confirmation
of their superiority, or at least a high performance among
other Evolutionary Algorithms.

On the other hand, some recently proposed algorithms
may perform very poorly even according to the averaged
ranks. From Table 4 we find that algorithms proposed in the
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TABLE 3. Average ranks of algorithms on real-world problems 2011 and
50-dimensional CEC benchmarks 2017.

TABLE 3. (Continued.) Average ranks of algorithms on real-world
problems 2011 and 50-dimensional CEC benchmarks 2017.

TABLE 4. The average year of publication of the 10 best and 10 worst
algorithms according to the average ranking, and the year of the most
recent algorithm that is within the 10 best or 10 worst methods.

recent three years are both among the best 10, and among the
worst 10 for each set of problems. SOMA_T3A from 2019 is
the worst method out of 69 algorithms on both real-world
problems and artificial benchmarks. MaDE from 2021 is
ranked 54th on real-world problems and 61st on artificial
benchmarks, and performs poorer than the classical Nelder-
Mead algorithm (NMA) from 1965, which is ranked 58th and
54th, accordingly. Hence, according to the average ranking,
some most recent methods are indeed better than all tested
former competitors, but still many novel algorithms perform
poorly, even when compared with much older methods.

B. RELATIVE IMPROVEMENT OVER ROSENBROCK’S
METHOD
The method proposed by Rosenbrock in 1960 (RA) is
extremely simple, does not use a population framework, and
may be applied to solve any continuous optimization prob-
lem. This motivates us to analyze the relative improvement
obtained by various EAs over such an old, simple, and flexible
algorithm. As we found in the previous sections, RA is not
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TABLE 5. The mean ranking obtained by the 10 oldest and 10 most recent
algorithms, and the mean average rank of the 10 oldest and 10 most
recent algorithms.

much competitive with EAs when the rank-based approach is
used.

The meaning of the relative improvement of a particular
algorithm over RA is defined in eq. 1. Note that 51 runs
of each algorithm are made on every problem, hence the
improvement may be counted for the averaged performance
from 51 runs (AV), or for the best performance reached during
51 runs (BEST) made by the particular algorithm. As tests
were made on 22 real-world problems and 30 mathematical
functions, we illustrate 1. the improvement averaged over all
problems, 2. the median improvement from all problems, 3.
the lowest, and 4. the biggest improvement achieved across all
problems. Such four statistics are separately shown for AV on
30 CEC 2017 benchmarks (Fig. 1), BEST on 30 CEC 2017
benchmarks (Fig. 2), AV on 22 real-world problems (Fig. 3)
and BEST on 22 real-world problems (Fig. 4). Note that in
Figs 1-4 the algorithm number 1 is RA, hence its relative
improvement is always equal to 0. We remind that, according
to eq. (1), for the specific problem there is no limit on the
worst (lowest) improvement, but there is a maximum possible
improvement (100%). Hence, to keep important details visi-
ble in Figs 1-4, we have limited the range of improvements
shown to [-100%, 100%] for mean, median, and the largest
improvement, and to [-1000%, 100%] for the lowest noted
improvement; we assume that performances that are over
10 times poorer than performances obtained by RA may be
classified as a big failure, does not matter how poor they are.

From the top pictures of Figs 1-4 one may note that,
with some surprise, the mean relative improvement obtained
by the majority of EAs over RA is negative, which means
that if the improvement is averaged over all problems, the
majority of EAs lead to the poorer solutions than RA. This
is observed for both CEC 2017 benchmarks (Figs 1-2) and
real-world problems (Figs 3-4), and both when the average
(AV, Figs 1 and 3) or the best performance out of 51 runs
on a particular problem (BEST, Figs 2 and 4) is considered.
Why this is the case? Many EAs perform very poorly on
a few specific problems, which is clearly seen in the third
plot from the top of Figs 1-4. For example, on problem 3
from 50-dimensional CEC 2017 benchmarks, for which the
value of the function in the global optimum equals 0, the
51-runs averaged performance of RA is slightly below 0.02
(see Suppl. Table 2). However, the 51-runs averaged

performance of 36 EAs on this problem is higher than 100.
Hence, over half of the tested EAs are 4 orders of magnitude
weaker than the RA on this problem. Because the maximum
possible relative improvement is 100% (see eq. 1), and there
is no restriction on the negative improvement, such poor
results on a single problem mean that the relative improve-
ment averaged over all problems turns out to be negative.
Similarly difficult for many EAs are real-world problems
nr. 4, which aims at the optimal control of a stirred tank
reactor, and nr. 9, which focuses on large-scale transmission
pricing in power systems. Relatively good performance of RA
on some tasks on which many EAs face problems means that,
when the 51-runs averaged performance is considered (AV),
only 25 EAs show positive relative improvement over RA
on CEC 2017 benchmarks, and only 18 EAs – on real-world
problems. Note that such very good performance of RA on a
few problems would be lost from our view if average ranks
were to be used for comparison among optimizers.

All this means that by searching for the positive mean rel-
ative improvement we may recognize EAs that avoid failures
on any problem, rather than pointing at those that perform
very well for many problems. Based on the 51-runs averaged
performance (top pictures in Fig 1 and 3), we find that only
AMALGAM from 2009, Rcr_JADE from 2014, MPEDE and
HMJCDE from 2016, EPSO, ETI-SHADE and HIVBBO
from 2017, and CS-DE from 2021 show the positive mean
relative improvement over RA on both CEC 2017 bench-
marks and 2011 real-world problems. When we consider
both averaged, and the best performance from 51 runs, just
a single EA, namely HMJCDE from 2016, shows consistent
positive mean relative improvement over RA (top pictures
of Figs 1-4). Interestingly, HMJCDE was not ranked espe-
cially high in rank-based analysis, being 18th and 31st on
real-world problems and CEC 2017 benchmarks, respectively
(see Tables 2 and 3). HMJCDE avoids a serious failure on
any problem but also does not perform especially well on any
tasks.

A different picture appears when we focus on median
relative improvement over RA (second pictures from the top
on Figs 1-4), where we compare improvements on a typical
problem, skipping extremes. When we consider the averaged
performance from 51 runs, median relative improvement over
RA is generally positive for almost all EAs, with exception
of the basic DE from 1995 and SOMA-T3A from 2019.
When the best performance among 51 runs on real-world
problems is considered (see Fig. 4), the median improve-
ment is negative for 6 EAs. However, although the values of
median improvement over RA are often positive, they highly
differ for various algorithms and are much different for CEC
2017 benchmarks than for real-world problems. In the case of
CEC 2017 benchmarks themedian relative improvement over
RA for the majority of algorithms exceeds 50%, and for some
(AMALGAM from 2009, HSES from 2018, EL-SHADE-
SPACMA from 2021) is close to 95%, both for the average
(see Fig. 1) and the best performance from 51 runs (Fig. 2).
It means that some EAs are able to find solutions 20 times
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FIGURE 1. Relative improvement over RA of 51-runs average performance. Statistics computed over all CEC 2017 problems.
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FIGURE 2. Relative improvement over RA of 51-runs best performance. Statistics computed over all CEC 2017 problems.
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FIGURE 3. Relative improvement over RA of 51-runs average performance. Statistics computed over all real-world problems.
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FIGURE 4. Relative improvement over RA of 51-runs best performance. Statistics computed over all real-world problems.
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better than RA on a typical benchmark function. In the case of
real-world problems, the median relative improvement over
RA is lower for most EAs, and it does not reach 90% for any
algorithm. If the results from the best runs are compared (see
Fig. 4), the median relative improvement over RA on real-
world problems is for the vast majority of EAs lower than
50%, and only a few best algorithms reach the value of 70%
– what means that they on a typical problem find three times
better solutions than RA.

The above discussion shows that the relative improvement
obtained by EAs over RA on real-world problems is lower
than the relative improvement obtained on CEC 2017 bench-
marks. There may be a simple explanation for that: in the
source papers, the majority of newly introduced EAs are
tested and fitted to either mathematical benchmarks, or to
a single specific real-world problem. Comparisons of newly
proposed algorithms on a wider range of real-world problems
are rare. Moreover, the majority of comparisons between EAs
focus on the all-runs averaged performance. However, the
comparisons based on the averaged performance may be in
contradiction with the expectations of many practical users
of Evolutionary Algorithms. Many practitioners would either
run the algorithm just once on the problem they are interested
in or would seek for the best solution of their problem in
numerous runs. In both cases, the comparisons based on the
averaged performance may be inadequate. Our results show
that if we use a different measure, for example, comparing the
best solutions found during all runs on real-world problems,
the relative improvements of EAs over RA are observed, but
are lower than one could expect.

V. CONCLUSION
When comparing Evolutionary Algorithms often the rank-
based approach is used, in which only the ranking of methods
is considered, not the actual performance. When ranking is
averaged over many problems, a marginal improvement on
numerous tasks becomes more important than a substantial
improvement on some, or even many problems. When we
apply the rank-based approach to analyze the performance of
69 heuristic optimizers on 22 real-world problems and 30 dif-
ferent 50-dimensional IEEE CEC 2017 benchmarks, three
relatively recent Evolutionary Algorithms show the best per-
formance: HARD-DE from 2019 (the winner on real-world
problems), ELSHADE-SPACMA from 2021 (the winner on
IEEE CEC 2017 benchmarks) and L-SHADE-cnEpSin from
2017 (that ranked 2nd and 3rd on these two sets of problems).
Among the best 10 algorithms, out of 69, the majority have
been proposed since the year 2017. Historical algorithms do
not look much competitive: Rosenbrock’s algorithm from
1960 is among the five poorest methods, and the famous
Nelder and Mead Simplex from 1965 is ranked only slightly
better. Although some of the most recent algorithms occupy
the bottom positions of such ranking, in general, the newer
algorithms look much better than the older ones.

Much different opinion on the performance of Evolution-
ary Algorithms may be drawn if, instead of the rank-based

approach, the relative improvement on various problems over
a historical Rosenbrock’s algorithm from 1960 is considered
for comparison. By relative improvement wemean howmuch
closer, in terms of the objective function value, to the global
optimum (if known), or to the best solution known so far, are
the solutions found by a particular Evolutionary Algorithm
than the solutions found by the reference approach – Rosen-
brock’s algorithm.

The range of improvement obtained by Evolutionary Algo-
rithms over Rosenbrock’s algorithm to a large degree depends
on a specific measure that is used (average or best perfor-
mance frommany runs, average ormedian improvement from
many problems). The problem with the improvement aver-
aged over many problems is that the upper limit of the relative
improvement is restricted by 100%, but there is no bottom
limit on the deterioration of the results. The algorithms that
on some problems perform by orders of magnitude poorer
than Rosenbrock’s approach cannot compensate for this poor
result on the remaining problems. As a result, on average the
majority of Evolutionary Algorithms note deterioration (neg-
ative relative improvement) over Rosenbrock’s algorithm.
Algorithms that on average gain substantial improvement
over Rosenbrock’s algorithm are not necessarily the newest
ones. Such average improvement rarely exceeds 67% for 50-
dimensional CEC benchmarks or 50% for real-world prob-
lems. Hence, on average the best Evolutionary Algorithms
find solutions 2-3 times closer to the global optimum (in
terms of fitness) than the historical Rosenbrock’s algorithm.

The median measure is insensitive to the extremes, and
it shows the improvement for a ‘‘typical’’ problem. The
median value of the relative improvement over Rosenbrock’s
algorithm is for almost all Evolutionary Algorithms positive,
but highly diversified. For many Evolutionary Algorithms,
the median improvement exceeds 50%. In the case of the
best Evolutionary Algorithms it even exceeds 90% on 50-
dimensional CEC benchmarks, and 80% on real-world prob-
lems, which means that the solutions found by these methods
on a typical problem may be 5-10 times better than the
solutions found by the Rosenbrock’s algorithm.

However, if one compares only the best results obtained
by algorithms in many runs (instead of the performance
that was averaged over all runs made), on a ‘‘typical’’ real-
world problem only some Evolutionary Algorithms can find
2-3 times better solutions than the Rosenbrock’s approach.
As many practitioners would be mainly interested in the best
solutions that may be found within many runs on real-world
problems, not in the averaged performance on mathematical
test functions, from a practical point of view these last values
are especially important.

The recent algorithms do not show much larger relative
improvement over Rosenbrock’s method than the algorithms
proposed a decade ago. This is because on a ‘‘typical’’
problem the recent algorithms frequently find only slightly
better solutions than the older methods – which is sufficient
to achieve a better position in ranking but has very limited
practical meaning for the majority of users. As a result,
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despite many efforts, practically meaningful improvement of
the performance on real-world problems is still a challenging
task for Evolutionary Algorithms.
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