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ABSTRACT The emergence of cyber-physical smart grid (CPSG) systems has revolutionized the traditional
power grid by enabling the bidirectional energy flow between consumers and utilities. However, due to
escalated information exchange between the end-users, it has posed a greater challenge to the cyber security
mechanisms for the communication networks at the cyber and physical planes. To address these challenges,
we propose a Bayesian approach integrated with deep convolutional neural networks (CNN-Bayesian).
While, the Bayesian component is used to discriminate cyber-physical intrusions from the normal events
in the binary and multi-class events. CNN layers are utilized to handle the high-dimensional feature space
prior to the intrusions classification task. The proposed method is validated using real-time Industrial
control systems (ICS) dataset against the standard deep learning-based classification methods such as
recurrent neural networks (RNN) and long-short term memory (LSTM). From the experimental results,
it can be inferred that the proposed CNN-Bayesian method outperforms the existing benchmark classification
methods to discriminate intrusions in CPSG systems using evaluation metrics such as accuracy, precision,
recall, and F'1-score.

INDEX TERMS Bayesian inference, cybersecurity, deep learning, intrusion-detection systems, SCADA,
smart grid.

I. INTRODUCTION

The modern power grid widely recognized as smart grid
(SG) involves bidirectional exchange of energy and infor-
mation between the end-users [1]. It comprises of advanced
metering and communication technologies having control
algorithms implemented at cyber plane of the cyber physical
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smart grid (CPSG) systems contributing to the grid robustness
and digitalization [2]. While, the conventional power grid
relies on supervisory control and data acquisition (SCADA)
systems for monitoring and control applications, CPSG sys-
tems employ advanced technologies such as phasor measure-
ment units (PMUs) for more sophisticated control operations
and high resolution monitoring. PMUs send the monitoring
information to phasor data concentrators (PDCs) and receive
control signals in return, through communication channels,

VOLUME 11, 2023


https://orcid.org/0000-0003-0070-182X
https://orcid.org/0000-0002-3568-3716
https://orcid.org/0000-0002-2354-7960
https://orcid.org/0000-0003-4955-6889
https://orcid.org/0000-0002-8755-1176
https://orcid.org/0000-0003-2237-4284

D. Kaur et al.: Bayesian Deep Learning Approach With Convolutional Feature Engineering

IEEE Access

thus involving the cyber space in control operations. As the
network size and different attack types continue to grow,
these communication networks have been exposed to greater
cyber vulnerabilities more than ever before [3]. Consumers
can now directly interact with the grid using smart appliances,
thus increasing the probability of cyber intrusions in the
CPSG environment [4]. Moreover, the disturbances can occur
at both cyber and physical planes caused by either natural
or man-made attacks [5]. Therefore, it becomes crucial to
discriminate the power system disturbances to support the
cyber attacks detection and handling capabilities.

Thus, beside a reliable communication topology such as
mesh [6], it is imperative to have a robust classification
mechanism incorporated with the control algorithm to detect
potential anomalous events in CPSG communication net-
works. In this regard, an effective intrusion detection system
(IDS) can work in the defense of CPSG cyber security. IDS
is a dominant security mechanism which can utilize the data
availability from advanced metering infrastructure (AMI)
and PMUs related to synchrophasor measurements, and
relays.

Furthermore, the process of detecting and classifying the
cyber intrusions can be automated using data driven intel-
ligent techniques such as machine learning (ML) and deep
learning (DL) [7], [8]. In the past decade, traditional ML
algorithms such as random forest and decision trees have suc-
cessfully provided potential solutions for classifying cyber
attacks and detecting system disturbances in CPSG systems
[9], [10], [11], [12]. However, ML-based techniques can only
detect features manually from the network traffic data and do
not provide high performance and detection accuracy [13].
In this direction, advanced feature engineering techniques
such as convolutional neural layers from the DL domain can
be highly effective and need to be further investigated [14].
Moreover, DL methods can be used to generate features
automatically without much human intervention and thus,
enhancing the IDS performance overall.

Though various traditional and new learning techniques
have been proposed so far to provide potential solutions to
classify and detect cyber intrusions in CPSG systems, the
benchmark DL algorithms are deterministic in nature and
fail to quantify the uncertainties present in the DL model
parameters [15]. In this regard, probabilistic approaches for
data classification may effectively address uncertainty chal-
lenges. To be specific, probabilistic distributions integrated
with neural network layers can be highly effective to pro-
vide probabilistic solutions for various classification tasks in
CPSG domain [16].

In this paper, we attempt to provide a holistic solution
combining the feature extraction capabilities of convolutional
deep neural layers with advanced probabilistic layers. The
proposed methodology takes advantage of the Bernoulli dis-
tribution implemented with deep neural networks as an inte-
grated method working towards reducing the false positive
and false negative rates.

VOLUME 11, 2023

The rest of this paper is organized as follows. Section II
discusses related work and research challenges related to IDS
methods based upon machine learning and deep learning.
Section III elaborates the proposed methodology and pseudo-
code for the proposed CNN-Bayesian algorithm. Section IV
outlines the implementation results and discussions using a
case study carries on ICS dataset. Finally, Section V con-
cludes the paper and briefs the future work.

Il. RELATED WORK AND RESEARCH CHALLENGES FOR
INTRUSION-DETECTION SYSTEMS (IDS) IN CPSG
This section discusses the related work for existing IDS
methodologies in CPSG systems using state-of-the-art ML
and DL detection algorithms.

The Table 1 outlines the benefits and limitations of con-
ventional IDS methods in CPSG systems.

A. ML-BASED CPSG-IDS

In order to detect and handle cyber intrusions in CPSG, it is
imperative to first classify them accurately [2], [17]. In the
recent years, various ML-based IDS techniques have been
explored to detect malicious events in the traditional security
networks [18], [19], [20], [21], [22]. In this regard, the authors
in [23] investigated ML-based extreme gradient boosting
(XGBoost) classifier integrated with genetic algorithm to
detect intrusions and attacks in wireless sensor networks.
The authors claimed extreme XGBoost to be more accurate
than standalone XGBoost due to its ability to detect minority
classes in highly imbalanced traffic data with 99.9% accuracy
for normal classes.

Furthermore, the authors in [24] utilized different ML
classifiers such as Adaboost, support vector machine (SVM),
random forest (RF), etc., to discriminate power system dis-
turbances. The authors demonstrated that RF achieves highest
overall accuracy to classify CPSG cyber intrusions from natu-
ral events with minimum false positive rate (FPR). Similarly,
the authors in [25] utilized an ensemble approach combining
random trees (RT) with random subspace (RS) methods to
detect cyber attacks in SCADA systems. Although the pro-
posed technique is demonstrated to be more scalable and
insusceptible to overfitting, it is not well equipped for datasets
with lesser number of features. Given that not all features in
SCADA data will be required for identifying attack patterns,
the authors in [26] optimize the features using flora optimisa-
tion after performing mean shift clustering and then applied
the Boltzmann machine learning algorithm to classify attack
types based on the optimised features.

A similar approach has been adopted by the authors in [27]
where network data is clustered using Markov Chain clus-
tering, features are optimised using rapid probabilistic corre-
lated optimization and then block correlated neural network
model classifies the labels to identify attack data. To reduce
the false positive and false negative outputs, the authors
in [28] utilised an weighted-intrusion based cuckoo search
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TABLE 1. Benefits and limitations of conventional IDS methods in CPSG systems.

Sr. Method Benefits Limitations

no.

1 Standard machine  Ideal to produce generalized results and with  Require feature selection while training
learning methods  larger number of attributes
(eg., Support vector
machines)

2 Hybrid methods (eg.,
Naive Bayes and deci-
sion trees)

3 Ensemble  methods
(eg., Random forest
and gradient boosting
algorithms)

of a voting system

4 Artificial neural net-
works (ANNSs)

Higher performance and optimum results

Improved prediction accuracy with the help

Capable of capturing complex relationships
between input attributes and classification
labels with deep neural layers

Increased complexity

Complicated model architecture

Suffer from local minima, time consuming

method and graded neural network to classify the anomalies
in SCADA systems.

B. DL-BASED CPSG-IDS

Artificial neural networks (ANN)-based DL algorithms make
advantage of huge data generation from AMIs in CPSG
systems [29] and, thus can be used for attacks classification
and detection tasks effectively. In this direction, CNN has
been recently used to extract spatial features in a hybrid
approach along with long-short term memory (LSTM) neural
networks used to extract temporal nonlinear sequences [30].
This integrated method is trained on three separate datasets
reporting significant improvements in accuracy, precision,
recall, and F1 scores due to feature extraction capabilities of
CNN layers. A recent advancement in this domain includes
physics aware graph convolutional neural networks which
considers physical configuration of the system to develop the
graph neural networks. This method has been implemented
for power system state estimation [31] and forecasting the
operating states with reduced number of model parame-
ters and reduced computational complexity [32]. However,
this method has not been tested yet for intrusion detection
problems.

On the other hand, the authors in [33] have autoencoders
as the DL algorithm with Gaussian mixture models to detect
anomalies in control area networks. To be specific, autoen-
coders have been used to extract features before they are fed
to the Gaussian models to classify normal events from the
attack events when sending messages in vehicle intercommu-
nication networks. With this DL approach, authors conducted
various experiments on network and vehicular datasets and
reported 6.4% of improvement in attacks classification accu-
racy. Furthermore, multilayer convolutional neural networks
(CNNs) are proven very efficient for the feature extraction
tasks as they outperform traditional ML algorithms such as
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SVM and RF to extract features from the high-dimensional
network traffic data [34], [35], [36].

C. MOTIVATION

Though CNN can effectively deal with the dimensionality
problem in attack classification, it still suffers from uncer-
tainty issues. The uncertainty could be in optimising the
weight parameters for CNN layers or the uncertainty involved
in the randomness of attack generation. Thus, an advanced
technique which can integrate the uncertainty quantification
for optimising CNN layers, is highly essential to improve
attack detection accuracy and reduce false positive and false
negative rates.

In this regard, a CNN incorporated with probabilistic lay-
ers in the form of Bayesian neural networks (BNN) can
be used to address the problem of parameter uncertainty
for IDS applications. The weight parameters in BNNs are
represented using probability distributions instead of point
estimates, contrary to non-probabilistic neural networks [15].
These distributions define the uncertainty in weights and can
further be used to estimate variability in predictions. Bayesian
networks are trained using variational inference and instead
of learning deterministic weight values directly, distribution
parameters are learned [37], [38], [39].

Furthermore, with the help of convolutional layers and
filters, automated feature mapping and extraction can be
performed. So, there is a need of an integrated IDS method
proving competitive performance for various classification
evaluation metrics while quantifying the weight uncertainties
using a low dimensional feature space.

D. CONTRIBUTIONS
The main contributions of this paper are described as follows:
« We propose a Bayesian probabilistic technique incorpo-
rated with deep convolutional neural networks (CNN-
Bayesian) to detect and classify malicious events
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in cyber physical smart grid (CPSG) networks. The
proposed method helps to extract features from the
multidimensional feature space with the help of
convolutional and pooling neural layers and quantify
uncertainties in model parameters using Bayesian proba-
bilistic approaches. The proposed method has an advan-
tage over state-of-the-art CNN techniques in terms of a
smaller false positive and false negative outcomes, thus
improving the detection accuracy.

o The proposed Bayesian scheme utilizes Bernoulli dis-
tribution as the prior and posterior distributions to deal
with the model uncertainties and provides future proba-
bilities for the potential cyber attacks in CPSG networks.

« We evaluate the proposed Bayesian neural network on
binary and multi-class power dataset taken from elec-
tric transmission systems [40] using classification eval-
uation metrics such as accuracy, precision, recall, and
F1-score. Furthermore, efficacy of the proposed scheme
is demonstrated against state-of-the-art deep learning
techniques such as vanilla artificial neural networks
(ANN), recurrent neural networks (RNN), LSTM, gated
recurrent unit (GRU), and standalone CNN algorithms.

Ill. THE PROPOSED BAYESIAN PROBABILISTIC
METHODOLOGY FOR CPSG-IDS

This section mainly involves four subsection dealing with
main four units from the proposed methodology as shown in
the Fig. 1. The four units namely, data preprocessing, feature
extraction, probabilistic layers with Bernoulli distribution,
and classification unit are described as following.

A. DATA PREPROCESSING AND FEATURE EXTRACTION
Data preprocessing is one of the initial and important steps
in data analytics to improve the input data quality, so that
it can further be fed to the neural networks to achieve
effective and insightful results. These data preprocessing
methods involve data cleaning (such as treating for missing
or noisy values) and data transformation (such as scaling
and encoding).

Since power system data can be highly dimensional, it is
important to select what features can be useful and how
we can extract these features to perform the classification.
Through this process, it is aimed to combine the information
from the original features and transform to a reduced space.
In this paper, the convolution layer of CNN is used for feature
extraction.

B. BERNOULLI DISTRIBUTION

For classification, BNNs can be expressed as probabilistic
model using categorical distribution p(ylx, w) for training
data D = (x;,y;). Here y is the target variable representing
set of classes, x defines the input features and w are the
weight parameters. Considering independent and identical
probability distributions, the likelihood of classification data
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as a function of w parameters is defined as:

p(Dw) = [ T pvitxi. w) M

Standard neural networks use categorical cross entropy as a
cost function to maximize the likelihood and thus, to achieve
high accuracy. In BNN, Bayesian probability is utilized by
multiplying Eq. (1) with prior belief p(w) as:

pwID) o< p(Dlw)p(w) @

Here p(wID) represents the posterior distribution of w param-
eters over D. The marginal probability of the data can be
written as:

p(D) = / p(Dw)p(w)dw 3
Using Bayes theorem, eq. (2) can be written as:
p(Dlw)p(w)
D)= ——F— 4
pwiD) D) “

Substituting (3) into the denominator, (4) can be repre-
sented as:

p(Dw)p(w)

PO = T D pwdn

&)

Computing posterior in Eq. (5) works as the core concept
of BNN. However, it is analytically impossible due to the
presence of large integral in the denominator. So, the true
posterior is approximated with variational distribution g(wlf)
over 0 parameters using the technique of variational inference
(VD) [41]. And, the difference between true and approxi-
mated posterior is measured using a distance metric known
as kullback-Leibler (KL) divergence as:

KL(ge(W)llp(w)) (0)

s.t. KL(ggw)lp(w)) = 0 (N

where gg(w) denotes the approximated posterior over 6
parameters using VI. VI is a mechanism to minimise the
gap between true posterior and approximated posterior dis-

tributions. Thus, the cost function for the proposed Bayesian
scheme is to minimize the KL divergence as:

arg Lgl(lwn) KL(go(W)llp(w)) ®)
6 =(W,b) ©))

where W and b denote wights and bias in BNN parameter
domain. KL divergence can be represented as:

KL(@o)lp) = — E log 2

10
awm ~ qo(w) (10

Note that the true distribution of weight parameters p(w) are
fixed given known input data and thus minimising KL diver-
gence is equivalent to minimising the negative log-likelihood
of gg(w).
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FIGURE 1. System model of the proposed CNN-Bayesian IDS scheme.

C. ATTACKS CLASSIFICATION

Furthermore, the proposed Bayesian layer utilizes the
Bernoulli distribution as prior and posterior distributions
for binary classification through the Densevariational layer.
Probability mass function (pmf) and cumulative distribution
function (cdf) for Bernoulli distribution are given by the
following mathematical equations:

I-p k=0
=k)= 11
pow =k) [p 1 (1n
0 k<0
pw=<k)= 11—-p 0<k<1 (12)
1 k>1

Furthermore, the expected value (E[w]) and variance
(var[w]) are obtained as:

Ewl= D> kp(w=k) (13)
var[w] = E[w?] — E[w)? (14)
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Fig. 1 presents the system model of the proposed
CNN-Bayesian intrusion-detection scheme. Furthermore, the
Algorithm 1 presents pseudo-code of the proposed technique.
The algorithm is explained using a number of execution steps
identified by a number in Algorithm 1. In step 1, the input data
is acquired. The feature set in the form of input data is fed to
the proposed hybrid method in step 2. Normally, the features
extracted from the network traffic involve different range of
values and it is crucial to normalize or scale these values
in alike range. After splitting the input data into training
and testing sets in step 3, training data is fed to the first
layer of the proposed CNN-Bayesian method in step 4. CNN
convolves the data and a pool of features is extracted in
multidimensional form in steps 5 and 6, respectively. The
multidimensional output is then converted to 1-dimensional
array using flatten operation in step 7. Finally, dense varia-
tional layer is used as the Bayesian layer to perform posterior
optimization (lines 8-12) to classify the attacks in target vari-
able. For each iteration, the prior distribution on the weight
parameters is defined based on Bernoulli distribution as

VOLUME 11, 2023
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Algorithm 1 The Proposed CNN-Bayesian Technique for
IDS in CPSG Systems

TABLE 2. Dataset description.

Input: Actual observed data, D = (x;, y;)
Output: Accuracy, precision, recall, F'1-score

1: Acquire the input data D;

2: Normalize Dy € (-1,1);

3: Split Dy to training (Dy,-) and testing (Dyegr) Set;

4: Feed D,, to the input layer of CNN-Bayesian;

5: Extract features using convolutional layer;

6: Pool the measure map from the convolved layer;

7: Flatten the multidimensional output into 1 dimensional
array;

8: Feed the flattened output to Bayesian (Dense Variational)
layer;

9: for (n=1, n < m, n++) do

10: Formulate prior trainable on p(w);

11: Approximate posterior using (6);

12: Minimize negative log likelihood loss using (8)
and (10);

13: Validate the training loss using validation split while
training;

14: end for

15: Evaluate the proposed model on Dy, ;

16: Calculate accuracy, precision, recall, F'1-score;

17: Obtain confusion matrix and area under curve (AUC);

in step 10. The posterior distribution is also assumed to be
a Bernoulli distribution parameterized by 6 as in step 11.
Then the negative log likelihood (NLL) of the KL loss is
minimized to obtain optimized posterior distribution using
(8) in step 12. The hybrid approach is trained using Adam
optimization algorithm and tested and validated on the split
dataset in step 13. The proposed model is evaluated on the test
data in step 15. Step 16 involves the calculation of accuracy,
precision, recall and Fl-score. To obtain visual representa-
tions, the confusion matrix and area under curve is computed
in step 17.

IV. RESULTS AND DISCUSSIONS

A. DATASET GENERATION AND DESCRIPTION

This section presents implementation results conducted on
the proposed and state-of-the-art DL techniques as a compar-
ative case study using industrial control systems (ICS) cyber
attack dataset [40]. Results simulations involve two different
use cases with binary and multi-class target values.

In the binary dataset, the target variable involves two
types of events, namely, ‘Attack’ and ‘Natural’. On the
other hand, from the multi-class data, say three-class dataset
includes ‘NoEvents’, ‘Natural’, and ‘Attacks’ as target labels,
as depicted in Table 2. While ‘NoEvents’ is reported in case
of no incident, ‘Natural’ scenario is generated when an usual
shortage or fault occurs. The ‘Attack’ scenario is reported
when the system is controlled by an intruder, and it needs to
be reported with greater accuracy.

VOLUME 11, 2023

Dataset Events Features Train- Validation
test size size

Binary Natural, attack 129 0.8:0.2 0.2

Multi- Natural, attack, 131 0.8:0.2 0.2

class NoEvents

The binary and multi-class classification problem cate-
gorises the outcomes into true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN). For binary
dataset, TPs are the outcomes where an ‘Attack’ is predicted
correctly. On the other hand, TNs include the outcomes where
or a ‘Natural’ event is predicted correctly. FPs represent the
outcomes where a ‘Natural’ event is predicted as ‘Attack’.
Similarly, FNs are the outcomes when an ‘Attack’ is pre-
dicted as a ‘Natural’ event. For multi-class dataset, TPs are
defined as in the binary dataset. TNs define the outcomes
when a ‘NoEvents’ or ‘Natural’ case is predicted correctly.
FPs include the outcomes when a ‘NoEvents’ or ‘Natural’
case is predicted as ‘Attack’. On the other hand, FNs are the
outcomes when an ‘Attack’ is predicted as a ‘NoEvents’ or
‘Natural’ case.

The attack scenarios are generated using several compo-
nents namely, power generators, electronic devices (IEDs),
breakers, etc. The dataset is constructed using 29 sets of
measurements from 4 PMUs along with 12 features for
control logs and 1 feature for target variable, resulting into
129 features. These PMU measurements have sampling rate
of 120 samples/s. The raw data is sampled randomly at one
percent and grouped into binary and multi-class datasets.

The implementation results are obtained using python
libraries and Tensorflow framework on i10 processor and
16 GB RAM.

B. DATA PREPROCESSING AND FEATURE EXTRACTION
Firstly, raw data is loaded and any duplicate and null val-
ues are removed using python libraries such as Numpy and
Pandas. Then, one-hot encoding is performed to convert the
categorical data into numerical form using label-encoder.
Furthermore, data normalization is performed to scale the
features in one range to achieve better results.

In this paper, convolutional neural layers are utilized to
extract features from input ICS data using convolutional func-
tionality from the CNNs. The element-wise multiplication is
performed between the array of inputs and array of weights
usually known as filters. The filters in the CNNs are applied
from left to right and top to bottom resulting into a feature
map. Eventually, with multiple training iterations, the net-
work will learn what type of features to extract from the input
data. The proposed method uses a set of 256 to 32 filters in
parallel to learn the feature set effectively.

Furthermore, first layer of CNN captures simple features
and last layer captures complex features from the data. Thus,
with more neural layers, the deeper patterns and features can
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TABLE 3. Binary classification results on evaluation metrics (percentage values).

Sr. Classifier Accuracy Precision Recall F'1-score AUC
no.
1. Vanilla-ANN 51.06 49.89 30.10 37.54 0.65
2. GRU 67.66 59.88 57.70 57.92 0.76
3. RNN 77.20 72.73 71.43 71.99 0.86
4. LSTM 88.38 70.58 72.77 71.55 0.89
5. CNN 83.84 41.92 50.00 45.60 0.85
6. CNN-Bayesian 92.76 88.97 84.74 86.83 0.98
TABLE 4. Multi-class classification results on evaluation metrics (percentage values).
Sr. Classifier Accuracy Precision Recall F'1-score AUC
no.
1 Vanilla-ANN 69.62 48.77 33.33 39.59 0.58
2 GRU 70.96 51.78 33.33 40.55 0.625
3. RNN 71.02 62.87 35.15 45.09 0.69
4. LSTM 72.56 63.23 35.29 45.29 0.73
5 CNN 73.23 67.43 38.33 48.87 0.71
6 CNN-Bayesian 84.76 71.97 84.74 77.84 0.84
be learned. The training, testing and validation splits for the TABLE 5. Hyper-parameter settings.
binary and multi-class datasets, as well as the number of
features are specified in Table 2. Isur) Name Value
The proposed scheme is validated on a number of classifi- ' —
K . . 1. Optimizer Adam
cation metrics and parameters as discussed below. 2. Epochs 100
3. Loss NLL
4. Learning rate 0.001
C. PERFORMANCE EVALUATION METRICS 5. Batch size 128
1) ACCURACY 6. Hidden units 100
To begin with, accuracy is the accustomed criteria to evaluate 7. Activation tanh
e L 8. Validation split 0.2
the performance of a classifier and it is measured as how 0. Dropout rate 0.5
many classes in the test dataset are correctly classified with
respect to the total test predictions as:
TP + TN equation below:
Accuracy = (15)
TP +1TN + FP + FN TP
Recall = ———— (17)
TP + FN

However, accuracy metric fails to analyze cases with imbal-
anced classification with a skewed class distribution.

2) PRECISION AND RECALL

For an imbalanced dataset, relying just on the accuracy to
evaluate method performance is not an optimal approach.
In order to detect the prediction anomalies, precision and
recall are used [42]. Precision is defined as the ratio of posi-
tive test predictions with respect to all the predicted positives
including FPs, as shown below:

TP

e — 16
TP + FP (16)

Precision =
As the name suggests, precision traces how accurately the
given model has predicted the TPs, out of all true and falsely
predicted positive values. Precision is a crucial metric when
the cost of FPs is high, eg., classifying a non-spam email as
spam and losing of an important email. Furthermore, recall,
which is also known as the sensitivity of a classifier, signi-
fies how accurately the actual positives are truly classified
taking into account the FN as shown in the mathematical
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In cyber attacks classification, recall is of prime impor-
tance, as classifying an attack (TP) as a normal event (FN) can
cause a serious fault in the grid functionality. Although, both
the scores are desired to be higher, there is a trade-off involved
between the two parameters. And, in our case, we are slightly
inclined towards getting a higher recall score with accurate
attacks classification.

3) F1-SCORE

Finally, F'1-score also known as F-measure represents the
weighted average between precision and recall. It measures
the harmonic mean for the aforementioned metrics providing
a single overall score, as:

precision x recall
*

Fl=2 (18)

precision + recall

F1-score is useful in case of dataset with highly unbalanced
classes, for example, when 'normal’ and 'non-attack’ events
are prevalent than the positive *Attacks’ class. The highest
value for all the aforementioned metrics is 1.0 and the lowest
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FIGURE 2. Area under the curve given by the proposed method.

is 0.0. Note that, the numerical values for the implementation
results are considered in percentage form.

4) AREA UNDER THE CURVE - RECEIVER OPERATING
CHARACTERISTICS (AUC-ROC)

ROC curve is used to evaluate the quality of a classifier by
visualizing how well a classification model works. It features
the true positive rate (TPR) on the Y axis and a false positive
rate (FPR) on the X axis. Larger the area under the curve
(AUC), better the accuracy i.e., a FPR of zero and a TPR
of one is highly desirable. The Fig. 2 presents the AUC
graph and score given by the proposed method. The proposed
method achieves an AUC of 0.98, which illustrates its superi-
ority in terms of the effectiveness of the classification model.

D. IMPLEMENTATION RESULTS
Tables 3 and 4 demonstrate the implementation results over
aforementioned evaluation metrics for the proposed and stan-
dard DL methods namely, Vanilla-ANN, GRU, RNN, LSTM,
and standard CNN to classify anomalous events in CPSG
environment. For binary classification, ’Attacks’ events are
classified as positives and need to be identified with greater
accuracy from the "Normal® operations. From Table 3, it can
be seen that LSTM as a recurrent variant provides compet-
itive accuracy similar to proposed CNN-Bayesian method.
However, precision and recall values for LSTM confine only
to 70.58% and 72.77%. On the other hand, CNN-Bayesian
achieves the highest scores, that is, Precision with 88.97%
and Recall with 84.75%. Considering the repercussions of
an attack scenario falsely classified as a normal event and
the fact that there will be more normal scenarios that attack
scenarios in a real-life system, it is highly important to train
a classifier with grater precision and recall along with com-
petitive accuracy. It is worth noting that RNN, LSTM and
GRU are more suitable for handling time-series data but
for multidimensional data such as the considered intrusion
detection dataset, CNN will be more useful due to its ability
to handle the features independently.

Similarly, Table 4 shows numerical results for classifying
multiple scenarios from the ICS dataset using the proposed
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and standard classifiers. It is evident from the numerical val-
ues that CNN-Bayesian outperforms state-of-the-art methods
for multi-class classification. Furthermore, Table 5 shows
the external parameters to tune-in the proposed algorithm.
Note that, NLL stands for negative log likelihood which
is an important loss function to train probabilistic neural
layers. In addition, we make use of dropout [43] to avoid
the classifier from overfitting the training data. The hyperpa-
rameters are tuned using grid search optimisation so that the
performance comparison across the different models is fair.
The training and testing process has been repeated 10 times
and the evaluation metrics have been averaged over these
10 iterations.

The comparative analysis is further extended and tested for
5 different scenarios of the dataset (S1-S5) for all the above
mentioned standard and proposed classifiers. S1-S5 involve
binary and multi-class instances sampled randomly from the
pool of ICS dataset. Each dataset scenario consists of 5k
instances related to electrical transmission system behaviors
with 128 independent features.
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FIGURE 3. Accuracy scores from binary classification over different
dataset scenarios (S1-S5).
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FIGURE 4. Accuracy scores from multi-class classification over different
dataset scenarios (S1-S5).

The Fig. 3 and Fig. 4 demonstrate overall accuracy values
(in percentage) for binary and multi-class scenarios, respec-
tively. It is evident from the visualizations that the recurrent
neural layers, such as LSTM and RNN perform better than the
vanilla-ANN and GRU. However, these layers can not per-
form feature engineering and thus, CNN is required. In addi-
tion, Fig. 5 illustrates the precision, recall, and weighted
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FIGURE 5. Precision, recall, and F1-score using proposed CNN-Bay
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FIGURE 6. Confusion matrix for multi-class classification.

F1-score values for S1-S5 dataset scenarios using proposed
CNN-Bayesian classifier. It is clear from the bar graph that
our proposed method performs most efficiently by yielding
the highest precision and recall values over all the dataset
scenarios. Fig. 6 presents the confusion matrix for multi-class
classification. It can be observed that 99.13% of the attack
scenarios have been correctly detected. On the other hand,
0.87% of these scenarios are detected as normal operating
conditions. Among the non-attack scenarios, 84.89% cases
have been correctly identified, while 15.11% cases have been
incorrectly detected as attacks. 92.17% of the scenarios when
faults have occurred, have been correctly detected. However,
7.83% of such scenarios have been detected as attacks. Thus,
it can be concluded that when there is an attack, the proposed
model demonstrates a much higher accuracy. This is essential
given the critical nature of the situation if attacks remain
undetected.

V. CONCLUSION AND FUTURE WORK

This paper presents a probabilistic deep learning approach
integrated with convolutional layers as a feature engineering
mechanism for the applications of cyber attack detection in
the smart grid systems. We implemented the proposed CNN-
Bayesian method on a real-life power systems dataset with
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multivariate features (128, to be specific) to classify differ-
ent types of malicious events. Furthermore, a comparative
case study is conducted against the standard deep learning
methods such as vanilla and recurrent neural networks and its
variants. It is inferred from the numerical results that CNN-
Bayesian outperform all the other comparative DL classi-
fiers, not just in the terms of accuracy, but precision and
recall as well. Though the proposed method can outperform
for datasets with more uncertainty, it may not be the best
performing model if there is less uncertainty in the dataset.
Future work will focus on the application of distributed
machine learning framework integrated with Bayesian layers
for multi-class event detection. We will also consider the
optimisation of the dataset features for improved performance
of the proposed algorithm and compare against the more
recent machine learning based classification methods.
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