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ABSTRACT Human body skeleton, acting as a spatiotemporal graph, is increasing attentions of researchers
to adopt graph convolutional networks (GCN) to mine the discriminative features from skeleton joints.
However, one of GCN’s flaws is its inability to handle long-distance reliance between joints. In this
regard, graph attention network (GAT) was recently suggested, which combines graph convolutions with
a self-attention mechanism to extract the most informative joint of a human skeleton and increase the
model accuracy. However, GAT can compute only static attention: for each query node, the attention rank is
same which severely hurts and limits the expressivity of an attention mechanism. In this work, we present
a spatial-temporal dynamic graph attention network (ST-DGAT) to learn the spatial-temporal patterns of
skeleton sequences. For dynamic graph attention, we tweak the order of weighted vector operations in
GAT, our approach achieves a global approximate attention function, making it strictly superior to GAT.
Experiments show that by fixing the order of internal operation of GAT the proposed model achieved better
action classification results while maintaining the same computing cost as GAT. The proposed framework has
been evaluated on well-known publicly available large-scale datasets NTU60, NTU120, and Kinetics-400,
which notably outperforms state-of-the-art (SOTA) results with an accuracy of 96.4%, 88.2%, and 61.0%,
respectively.

INDEX TERMS Skeleton, action recognition, graph attention network, multihead attention.

I. INTRODUCTION

The amount of multimedia content (e.g. video) uploaded
through assorted nodes has skyrocketed in recent years. As a
result, the autocratic need has arisen to automate human
action analysis based on video data. In the past decade, human
action recognition in extended video sequences, in con-
junction with localizing actions both spatially and tempo-
rally [1], [2] is a prominent research area due to its extensive
applications like sports analysis, human-machine interaction,
and intelligent robotics systems [3], [4], [5], [6], [7] and
so on. Compared with modalities like RGB-D and optical
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flow [8], [9], [10], the skeleton-based approaches are com-
putationally fast and simplify storage data [11], [12], [13].
Moreover, skeleton data is lightweight and robust against
irrelevant objects, body scale, and camera viewpoint and
can be predicted efficiently. However, the human skeleton is
indeed a graph structure, not a sequence making it difficult
for proven neural network models like CNN to perform well.
The generalized form of CNN is GCN, a powerful graph
representation learning method capable of handling arbitrary
graph structure data, which has received increasing attention
among researchers.

Handcrafted features are often used in traditional skeleton-
based action recognition techniques to describe the motif of
co-occurrences from skeleton sequences [14], [15], [16], [17].
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FIGURE 1. lllustration of attention mechanism by root node on its
neighborhood in the spatiotemporal environment.

On the other hand, recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) possess a solid ability
to model sequential features. These approaches showed an
impressive result with Euclidean data, e.g. images and video.
However, their direct implementation is not intuitive in the
non-euclidean space since they lack the skeleton structure
connection property, resulting in partial generalization and
poor robustness.

Recent research [12], [18], [19] considers an entire graph
for processing and shared weight vector with every node,
which obscuring the importance of distinct nodes for differ-
ent activities. This bleak outcome and effect on a model’s
overall performance on graph classification significantly
increases computational cost and unintentionally presents
noise. To tackle this, graph attention networks (GAT) [20]
were led into skeleton-based action recognition. We study an
attention model that accentuates the important nodes while
quashing redundant nodes. The advantage of the attention
model is that it handles variable-sized inputs effectively. The
GAT model has the disadvantage of sharing the attention
score with all nodes and not being bound by the query node.
However, Brody et al. [21] proposed GATv2 to alleviate
GAT’s restriction by reordering the weighted vector opera-
tions and putting it ahead of GAT in terms of performance.
To the best of our knowledge, GATv2 model has never been
applied to the field of skeleton-based action recognition. This
motivates us to develop a model that allows the extraction of
skeleton properties in a spatiotemporal environment.

Based on ST-GCN [19] network, we present a spatial-
temporal dynamic graph attention network (ST-DGAT) to
classify human actions. As illustrated in Fig 1, first, we lever-
age the long-sequence skeleton data to construct a spatiotem-
poral graph that naturally unit the human body joints (node)
and conjugates in time. Then we feed the generated spa-
tiotemporal graph into our ST-DGAT network. Afterward, the
model computes the dynamic attention coefficient by fixing
the order of internal operation in GAT. Finally, we calculate
the class rank by using adjacent node properties and dynamic
attention score. We apply the multihead attention [22] to
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stiffen the learning process and also improve the perfor-
mance of action recognition w.r.t accuracy. We ran extensive
tests on three large-scale action recognition datasets NTU60,
NTU120, and Kinetics, and found that our model ST-DGAT
outperforms the baseline model and achieves SOTA
performance.

The following is a summary of our contribution:

« We propose a novel dynamic graph attention network by
changing the order of internal operation of GAT to model
the skeletons features in a spatiotemporal environment.

« We further conducted extensive experiments to compare
static attention and dynamic attention.

The proposed network surpasses the SOTA performance on

three extensive datasets NTU RGB+D 60, NTU-RGB+D 120,
and Kinetic without hyper-parameter tuning.

Il. RELATED WORK

A. CNN, RNN AND LSTM BASED APPROACH FOR
SKELETON-BASED ACTION RECOGNITION

Recently, deep learning techniques have achieved remarkable
gains in vision tasks, and numerous methods are suggested for
action recognition. A current model falls into two architec-
tures. The first architecture, called convolutional neural net-
work (CNN) based model, [23] transforms every generated
clip’s to long-term temporal skeleton sequences and applies
the convolutional operator to the entire frame sequences
parallelly to integrate spatial structural features for action
recognition. In [24], created a view-independent sequence-
based method for describing skeleton sequences as a series
of color images and feeding them into the CNN model for
classifying actions. Although CNN-based algorithms excel
in the spatial information domain, they commonly neglect
the temporal information domain. The author of [25] uses
a 2D convolutional to learn the temporal information. Such
a procedure is sluggish and emphasizes unneeded features,
which has a negative impact on the performance of the model.
The second architecture, called LSTM [26], [27], [28] has
effectively modelled temporal dependency as compared to
CNN. In [29] presented a spatial-temporal LSTM network
with a gating mechanism to remove erratic input caused by
occlusion and noise. In [30], The first tier records the skeleton
pattern, while the second tier applies the attention model to
enrich the global context to recognize human action.

The author of [31] presented that each skeleton part holds
distinct LSTM cells to extract the features; then synthesis
features are used in place of sharing a cell. Also, sequence
base approaches are significantly increasing computational
costs. As the human body is logically a graph data, graph-
based techniques are more apparent than sequential methods.

B. GCN FOR SKELETON-BASED ACTION RECOGNITION

Structure graph data are more general than sequential data,
which cannot be directly fed to conventional approaches
such as CNNs and RNNs. The principle of applying GCN
on the graph has two perspectives i) spectral perspec-
tive, where locality of graph convolutional are applied in
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FIGURE 2. The Architecture of ST-DGATs.

spectral-domain [32], [33], ii) spatial perspective defines
graph nodes and their neighbors are used to define con-
volutional filters directly [34]. Inspired by a success-
ful GNN-based method Yan et al. [19] first proposed a
spatial-temporal graph convolutional network (ST-GCN),
in which captures skeleton feature by applying graph convo-
lutional operator and learn temporal dynamics via 2D con-
volutional operator. Shi et al. [35] congregate adaptive graph
approach and two-stream framework based on ST-GCN and
suggested a two-stream adaptive GCN(2s-AGCN), which can
connect the joint(first-order) and bones(second-order) fea-
tures to improves the action recognition. In [36], the authors
presented a directed acyclic graph (DAG) mechanism spe-
cially designed to extract relational patterns among joints
and bones to enhance the action recognition task. In addi-
tion, [37] applied a part-based GCN to study the relation of
human gestures using analogous joint coordinates and tem-
poral displacements. In [38] model learns the spatial feature
but loss the focus to learn the temporal features. Plizzari
etal. [39] presented the ST-TR, a spatio-temporal transformer
network that uses transformer technique to determine the
self-attention score of each body joints. However, because the
implicit connection between specific joints is not taken into
account, this method will exaggerate the correlation among
particular joints. The addition of interdependence between
those joints not only raises the computing cost but also makes
the model more difficult to understand when it comes to iden-
tifying actions. In a Spatio-temporal Graph, Penget al. [40]
suggested graph triplet pooling, which can amalgamate or
eliminate insignificant vertices.

C. GRAPH ATTENTIONAL MODEL

Attention mechanism attracted researchers widely and pro-
posed numerous approaches [41], [42]. The key benefits of
the attention mechanism are that they are competent with
variable-sized inputs since they focus on informative parts of
the input and allow them to make the appropriate decisions.
During graph aggregation, the attention mechanism is used
to dynamically compute the weight of every node’s neighbor.
Reference [43] designed an end-to-end memory attention net-
work to execute temporal-then-spatial feature recalibration,
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but it lacks to find key joints in the spatial domain. In [44]
the author proposed an end-to-end spatial-temporal attention
architecture for learning attention weight and applying it over
joints to focus on discriminative joints within each frame.
The GAT proposed by Velickovic et al. [20] is considered the
most popular GNN framework for learning with graphs. GAT
calculates a pair-wise normalized attention score between two
neighbors’ nodes and pays attention to each node without
the use of any expensive matrix operations. The GAT model
has the drawback of sharing the attention score with every
node and being unconstrained by the query node. However,
Brody et al. [21] proposed GATV2 to address the constraint
of GAT by changing the order of weighted vector operations
in GAT. The GATv2 achieves a global approximator attention
function, making it strictly superior to GAT.

IlIl. PROPOSED APPROACH
Notation

A skeleton graph denoted as G = (V,, E,) with N nodes in
frame T, where (V, = [vn-]tT:’IY , ;,—1) denotes a vertex set of ith
body joints on frame. i. E,, represents the relationship between
nodes, denoted as e.; = ((vi,v2),..., (Vk—1,W))) € Eg,
i # j.Let A € R™V an adjacency matrix that indicates
whether pair of joints (i, j) are adjacent or not. The adjacency
matrix represents the topological network by setting A; ; =
1 when (v;, v;) is connected otherwise, A; j = 0. Let D € RNV
where D; j = >, A; j represents the corresponding diagonal
node degree matrix. The default graph is generally computed
as:

Gdefuult — B*O.SAD*Oj (1)

where A = A + Iy is the normalized adjancency matrix with
self-loops, D is the corresponding node degree matrix of A.
The goal is to learn a function f(G;) — L;, where G; and
L; are represented as respectively. The notations used in this
paper are illustrated in Table 1.

A. SPATIAL DYNAMIC GRAPH ATTENTION LAYER (5-DGAL)
1) SAMPLING FUNCTION

The sampling function is calculated on the neighbour set
Fs(V)) = {V!|d(V/, Vj’) < 1} of a single frame w.r.t center
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FIGURE 3. The Illustration of computing dynamic graph attention network.

TABLE 1. Commonly used notations.

Notation Description

G A Graph

14 The set of nodes in a graph.

E The set of edges in a graph.

vf vertex set of ¢th body joints on frame
1

w Weight matrix

2t Embedding vector

e% . Anedgee;j € E

aTJ T represents transposition and a is a
single-layer feedforward neural net-
work.

o(-) The sigmoid activation function

al s Attention Coefficient

node v;i. Here d (vﬁ, vjt.) is the collection of neighbour nodes
of vi. Thus the sampling function is represented as

PO =t @)

2) DYNAMIC ATTENTION COEFFICIENT

Inspired by [20], we applied a shared linear transformation,
parametrized by a weight matrix W, to each body joint and
convert input features into significantly high-level features at
time t, which can be represented as

Z = wl 3)

Within each frame of given skeleton sequences, we use the
self-attention technique to retrieve the essential features that
encapsulate the relationship between human body parts. The
attention coefficient (followed by LeakyReLU nonlinearity)
can be represented as:

¢l; = LeakyReLU[a" (1. 2)]. j € Fy(v) )

where 7 represents transposition and a is a single-layer feed-
forward neural network But GAT can compute only static
attention which severely hurts and limits the expressivity
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of an attention mechanism. To fix this limitation, Brody
et al. proposed GATvV2 by switching the order of internal
operations in the attention function of GAT. The GATv2
outperforms the GAT w.r.t accuracy. Equation (3) can be re-
written as:

¢l =a' (LeakyReLU[w(Z}. 2)l. je€F(V))  (5)

We apply masked attention mechanism on graph structure
to determine the attention coefficient. This clearly demon-
strates that the e(i, j)! is exclusively calculated for first-order
neighbors. we apply a softmax function, which normalizes
the attention score across all neighbor nodes. This means how
strong the correlations between each pair of body joints are.
Thus, the attention coefficient function is represented as:

exp(e)
(ZkeFS(vg) exP(e;,k)
Multi-head attention was presented as a way for the center
node and neighboring nodes to concurrently attend multiple
representation embedding, which can inhibit the overfitting
of the network. Thus we apply the multi-head attention to

obtain a new node embedding set (yi’1 ey yi; ) for the same
node; the function is signed as:

k k
vi =lisoC Y @hw L9 @
keFs(v})

(6)

r (o _
o= softj(ei‘j) =

where || represents concatenation,K is the number of inde-
pendent attention heads. oz;’(jk) is the k th normalized attention
weight among the root node i and neighbor node j. The W'®)
is the corresponding linearly projection weight matrix of &y,
head.

B. TEMPORAL GRAPH ATTENTION LAYER (T-DGAL)

The notation used here is opposite to S-DGAL; subscripts
denote time, whereas superscripts denote joint. With the
T-DGAL module, temporal dynamics is captured for each
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joint across consecutive frames. The correlations across
frames are computed by changing the embedding of com-
parable joints throughout the temporal dimension. The final
formulation of T-DGAL is symmetric to that given in
Equations (6) and (7) for S-DGAL

explel )
a) = softy(e] ) = - 8
tu ftu( t,u) (Zkepr(v;:“) exp(e;,’q) ( )
k k
,}/tu — ”112210,( Z (a;/‘(u))WV(k)Z;”(u)) )

keFs(v} )

Here, atv’u is the correlation score. vy;,v,,; refer to the same
joint v at two separate instants ¢,u and y,”,, is the resulting node
embedding. Multi-head attention mechanism applied here is
the same as S-DGAL.

IV. EXPERIMENTS AND RESULT

We undertake comprehensive ablation studies in this section
to fairly examine the efficacy of leveraging dynamic graph
attention compared to static graph attention. The proposed
model outperforms the SOTA on three large-scale datasets.
We also present the proposed model experiment settings as
well as the datasets used to test the model

A. DATASETS

1) NTU-RGB+D 60 (NTU60) [45]

This is a KinectV2 camera capture dataset consisting of
56,880 skeleton sequences over 60 action classes captured
from 40 daily actions, 9 actions depending on a medical
condition and 11 joint actions. Each skeleton sequence has
25-joints for each subject. The author recommended two
evaluation settings: 1) Cross-subject(X-Sub), for training and
testing, data split into 40,320 samples and 16560 samples
with 40 distinct subjects. 2) Cross-view(X-View), training set
containing 37,920 samples captured by 1 camera and the rest
18,960 samples used for training.

2) NTURGB+D 120 (NTU120) [46]

This is a more complex and challenging version of the
NTU60 dataset, enclosing an additional 60 classes, 57,600
video samples, and 4 million frames. Three cameras record
all video clips in 32 different indoor scenario setups, per-
formed by 106 diverse performers in a group of people ages
between 10 and 57. The extended dataset recommended two
evaluation protocols Cross-subject (X-Sub) and cross-setup
(X-Setup).

3) KINETICS-400 [47]

This dataset contains raw videos of high-quality human
actions. It incorporates 300,000 video clips with 400 action
classes and at least 400 videos per action class. Each clip
has a duration of around 10 seconds and is mined from
diverse YouTube videos. OpenPose [48] toolbox is adopted to
extract skeleton information from RGB videos and estimates
2D pixel coordinate (x,y) of the predicted joints and their
corresponding confidence score ¢ for all 18 body joints, and
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each joint is defined by a 3D vector (x,y,c). All videos are
resized to 340 X 256 resolution with 30fps. To compare the
proposed model with the literature, we reported top-1 and
top-5 accuracies.

B. EXPERIMENTAL SETTINGS

Python, OpenPose [48], and the deep learning framework
PyTorch [49] are used in our experiments to build the ST-
DGAT model. A batch normalization layer initially normal-
izes the input skeletal sequences. The backbone of ST-DGAT
is constructed with 9 blocks, where the feature dimension
of the first three layers has 64 channel output, followed by
three layers with 128 channel output and the last three layers
have 256 channel output. The temporal kernel size is set
to 9 for these layers. To alleviate the overfitting problem,
we used DropAttention [50] for regularizing attention weight
with probabilities 0.5 at each unit. The number of attention
layers and the multi-head unit used for NTU60/120 and
Kinetics-400 are (1,8) and (1,8), respectively. We started with
a 0.0005 learning rate and reduced it by 0.1 per 10 epochs.
The model applied a global average pooling layer on the
resulting tensor. Finally, we train a softmax classifier with
the feature vector using the conventional cross-entropy loss.
The model is trained for epochs (80,40) with batch sizes of
(32, 128) for NTU60/120 and Kinetics-400 respectively.

C. ABLATION STUDY

We conducted extensive experiments to determine the best
K head on NTU60 and Kinetic dataset of our model. Fur-
thermore, we compare the proposed model with a baseline
to analyze the computational cost. In our ST-DGAT model,
we want to determine the impact of varied head (K) counts.
We set head value K=2 as lower limit and K = 10 as upper
limit with an interval of 2. The output channel of ST-DGAT
is 64,128,256 and 512. For K = 6, the outpu channel is set
to 126,252,510 and for K = 10 the output channel is set
to 120,250 and 510. Table 2 shows that ST-DGAT consis-
tently outperforms baseline ST-GCN, which demonstrating
the efficacy of our proposed module. In Table 3, we presented
training and testing time per epoch on NTU60 and Kinetic
dataset. As we can see our ST-DGAT model is 1.4h faster
in training and 0.76h faster in testing than the baseline on
NTUG60 dataset. Our model is even faster on Kinetic dataset,
which contains 2.4M video clips (300 frame/clip).

D. COMPARISON WITH STATE OF THE ART

On NTU60, NTU120, and Kinetics-400 datasets, our model
ST-DGAT surpasses current SOTA methods on recom-
mended benchmarks. In Table 4, we report the action recog-
nition accuracy on NTU60 dataset with recommended bench-
marks cross-subject and cross-view. Our model ST-DGAT
achieves an accuracy of 91.1% (X-Sub) and 96.4%(X-View).
The proposed model surpassed RNN-based method AGC-
LSTM by 1.9% (X-Sub) and 1.4% (X-View). Our model
still outperforms the CNN-based technique VACNN with an
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TABLE 2. Comparison with baseline in on NTU60 and Kinetics dataset.

Method NTU60 Kinetics
X-Sub X-View Top-1% Top-5%

Baseline 80.7% 88.9% 31.8 53.6

ST-GCN

ST- 84.8 92.8 242 44.7

DGAT2h

ST- 87.9 94.8 29.6 50.4

DGAT4h

ST- 91.2 95.3 33.7 56.6

DGATgh

ST- 91.7 96.7 38.2 61.0

DGATsh

ST- 90.9 95.1 32.8 56.1

DGAT;0h

TABLE 3. Comparison of Training and Testing time with baseline on
NTU60 and Kinetic datasets.

Method No.of No.of TRN* TST*
param. Skeleton (one (one
(NTU60) Se- epoch) epoch)
quences
(Kinetics)
Baseline 3.2M - 2.77h 0.950h
(ST-GCN)
Baseline - 2.4M 0.578h 0.186h
(ST-GCN)
ST-DGAT 2.29M - 1.32h 0.185h
ST-DGAT 2.29M - 0.566h 130h

TABLE 4. On the NTU60 dataset, action recognition was compared to
existing SOTA techniques for X-Sub and X-View benchmarks.

Method X- X- Year
Sub(%) View(%)

Part-aware LSTM [45] 62.9 70.3 2016
Two-Stream RNN [26] 71.3 79.5 2017
STA-LSTM [44] 73.4 81.2 2017
VA-LSTM [27] 79.2 87.7 2017
AGC-LSTM [28] 89.2 95.0 2019
MT-CNN [14] 83.2 89.3 2018
SAN [51] 87.2 92.7 2019
VACNN [25] 88.7 94.3 2019
ST-GCN [19] 81.5 88.3 2018
PB-GCN [37] 87.5 93.2 2018
GCMVT [52] 84.2 90.2 2019
2s-Shift-GCN [53] 89.7 95.0 2020
ST-TR [39] 89.9 96.1 2020
DSTA-Net [54] 91.5 96.4 2020
Tripool [40] 89.5 96.4 2021
AAM-GCN [38] 90.4 96.2 2021
ST-DGAT (ours) 91.1 96.4 -

accuracy of 2.4% (X-Sub) and 2.1% (X-View). Experiments
in Table 4 show that our method surpasses the GCN and
attention-based approaches, demonstrating that our model
outperforms them in terms of accuracy.

Furthermore, we compare ST-DGAT to ST-GCN (the
work’s baseline) and determine that it outperforms by 9.6%
and 8.1% on the X-Sub and X-View benchmarks, respec-
tively. However, DSTA-Net[50] shows competitive results,
which combine four streams and arouse a huge computational
cost than our model.

Table 5 presents the performance of our model on NTU120
dataset, which is based on joint information only; our model
achieves higher accuracy than SOTA approach. As can be
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TABLE 5. On the NTU120 dataset, compare top-1 accuracy with current
SOTA techniques.

Method X- X- Year
Sub(%) Setup(%)

ST-LSTM [29] 55.7 57.9 2016
GCA-LSTM [30] 61.2 63.3 2018
RotClip+MTCNN [55] 61.8 81.2 2018
2s-Shift-GCN [53] 86.6 87.7 2020
ST-TR [39] 85.1 87.1 2020
DSTA-Net [54][50] 86.6 89.0 2020
Tripool [40] 80.1 82.8 2021
ST-DGAT 86.5 88.2 -

TABLE 6. On the Kinetic-400 dataset, compare the top-1 and top-5
classification accuracies with current SOTA techniques.

Method Top- Top- Year
1(%) 5(%)

TCN [23] 20.3 40.0 2017
ST-GCN [19] 30.7 52.8 2018
SAN [51] 35.1 55.7 2020
2s-Shift-GCN [53] 37.1 60.1 2020
ST-TR[35] 37.4 59.8 2020
AAM-GCN [38] 375 60.5 2010
Tripool [40] 34.1 56.2 2021
ST-DGAT 38.2 61.0 -
0.800

BN Baseline(ST-GCN)
0.775| MM ST-DGAT(our)

0.750

o
~
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FIGURE 4. Comparison of the difficult classes with accuracies less than
80% on NTU60.

seen from Table 6, we achieved an accuracy of 86.5% on
X-Sub and 88.2% on X-Setup. We compare our method on
third-largest Kinetics-400 data, results presented in Table 6.
Our model ST-DGAT surpassed baseline ST-GCN [20] by
7.5% in top-1 and 8.2% in top-5. Our method also surpassed
recent SOTA methods

As shown in Figure 4, The baseline model, on the other
hand, has trouble with many challenging classes, such as
eating, reading, writing, taking off shoes, playing with
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phone/tablet, and sneezing/coughing. Small differences in
repetitive motion distinguish these classes, making action
recognition more difficult.

V. CONCLUSION

In this work, we proposed a dynamic GAT for skeleton-
based action recognition in spatial-temporal environment.
The attention based GCN model shares the attention score
with every node and is unconstrained by the query node.
The ST-DGAT model computes dynamic graph attention
by tweaking the order of weighted vector operations in
GAT. We feed the extracted spatiotemporal joint features
to classifier for action recognition. We conducted ablation
studies to prove the effectiveness of our approach. Exten-
sive experiments carried out in this work and results show
that compared to ST-GCN(baseline) achieved 9.6% and
81% higher accuracies on both benchmarks of NTUG60.
Our model extortionate by 7.5% in top-1 and 8.2% in
top-5 on Kinetics dataset. We prove that the model outper-
forms on NTU60 and NTU120 and achieved SOTA level on
kinetic-400. In future work, our model will be investigating
human-object interaction and scene information for better
action

recognition.
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