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ABSTRACT Sign language recognition (SLR) enables the deaf and speech-impaired community to integrate
and communicate effectively with the rest of society. Word level or isolated SLR is a fundamental yet
complex task with the main objective of using models to correctly recognize signed words. Sign language
consists of very fast and complex hand, body, face movements, and mouthing cues that make the task very
challenging. Several input modalities; RGB, optical Flow, RGB-D, and pose/skeleton have been proposed for
SLR. However, the complexity of these modalities and the state-of-the-art (SOTA) methodologies tend to be
exceedingly sophisticated and over-parametrized. In this paper, our focus is to use the hands and body poses
as an input modality. One major problem in pose-based SLR is extracting the most valuable and distinctive
features for all skeleton joints. In this regard, we propose an accurate, efficient, and lightweight pose-based
pipeline leveraging a graph convolution network (GCN) along with residual connections and a bottleneck
structure. The proposed architecture not only facilitates efficient learning during model training providing
significantly improved accuracy scores but also alleviates computational complexity. With the proposed
architecture in place, we are able to achieve improved accuracies on three different subsets of the WLASL
dataset and the LSA-64 dataset. Our proposed model outperforms previous SOTA pose-based methods
by providing a relative improvement of 8.91%, 27.62%, and 26.97% for WLASL-100, WLASL-300, and
WLASL-1000 subsets. Moreover, our proposed model also outperforms previous SOTA appearance-based
methods by providing a relative improvement of 2.65% and 5.15% for WLASL-300 and WLASL-1000
subsets. For the LSA-64 dataset, our model is able to achieve 100% test recognition accuracy. We are able
to achieve this improved performance with far less computational cost as compared to existing appearance-
based methods.

INDEX TERMS Graph convolution network (GCN), skeleton modeling, sign language recognition.

I. INTRODUCTION Sign language (SL) is a primary communication tool for

According to the World Federation of the Deaf, there are
over 70 million people with hearing and speech impairments
and over 300 sign languages are used by these people [1].
This means that a large portion of the world population
suffers from this communication barrier that directly affects
their daily interactions and causes inequality in society.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy

deaf people. Therefore, the design of efficient mechanisms
for automatic sign language recognition (SLR) will not only
break down this communication barrier but will increase
the availability of opportunities for a major portion of the
world’s population. In contrast to written and spoken lan-
guages, sign languages make use of ““corporal-visual” chan-
nels produced by body motions and interpreted by eyes. This
makes automatic SLR a very interesting research domain that
requires expertise from computer vision as well as natural
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language processing to efficiently understand the spatio-
temporal linguistic constructs of performed signs. Just like
other languages, sign languages have their underlying struc-
tures, grammar, inter alia, intricacies, and articulators that
allow users to effectively communicate and express them-
selves. Multiple channels/articulators are used by signers to
convey complex semantics [2]. These channels can be cat-
egorized into two main groups, i.e., manual or non-manual
features [3] based on their role in information communica-
tion. Manual features represent the macro motions, like the
hand and arm movements as well as hands shape, location,
and palm orientation. Although manual features play a dom-
inant part in sign morphology, they cannot encapsulate the
full spatial and temporal context of the information being
conveyed. To fill this gap and provide additional information,
clarity, and context, non-manual features, including body
pose, facial expressions, and mouthing cues, are used. Manual
and non-manual features are often used together and thus
affect each other’s meanings. Many applications such as
interpreting services, translation systems, human-computer
interactions [4], real-time person recognition systems, Vir-
tual reality, robot controls, games [5] and hand tracking in
desktop environments [6] can benefit from advancements
in SLR.

SLR can be categorized into two domains: Isolated/Word
level SLR and Continuous SLR. Isolated SLR recog-
nizes or classifies individual sign recordings into correct
glosses (signed words) while Continuous SLR translates
the whole utterances containing multiple glosses. A special
case of isolated SLR is the classification of gestures into
alphabets.

SLR techniques make use of videos or data acquired
through wearable sensors mounted on a hand glove as input.
One of the early approaches to hand gesture recognition
dates back to 1987 where magnetic flux sensors mounted
on a glove were used to acquire hand position and orien-
tation [7]. With the latest advancements in deep learning,
visual sign language recognition has gained much attrac-
tion. However, visual recognition faces many challenges (i.e.
occlusions, illumination changes, different viewpoints, dif-
ferent image resolutions, and cluttered backgrounds) mak-
ing it more complex to design a universal automatic SLR
model.

From a computer vision perspective, visual sign language
recognition mainly depends upon visual features acquired
through RGB or RGB+D cameras. These features are then
used for extracting strong and efficient spatiotemporal rep-
resentations that encapsulate visual characteristics, such as
hand shape, palm orientation as well as motion profile of
hands and arms. In recent years, several deep learning based
approaches are proposed that can learn the most useful
spatiotemporal relations in videos and are being used for
action recognition, gait recognition, and action localization
[8], [9], [10]. The latest deep learning models make use
of ConvNets to extract spatial cues and Recurrent neural
networks to model temporal dependencies. Some of these
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models make use of 3D ConvNets [11] to fuse spatial and
temporal cues. However, appearance-based methods have
distinctively higher computational complexity originating
from higher data dimensionality. Some other methods make
use of human hands and body poses extracted by efficient
pose estimation algorithms [12], [13], [14]. Human poses
are represented by the locations of body and hand joints,
bones, and facial landmarks [15], [16], [17]. In general, mod-
els using skeleton data as input are lightweight, compute-
efficient, and suitable for edge devices that dramatically
increase their potential in everyday use. Despite these advan-
tages, pose-based methods for SLR still suffer from low
accuracies.

Motivated by the substantially low accuracies and high
computational efficiency of pose-based methods, we have
proposed a highly accurate, lightweight method for isolated
SLR using spatiotemporal graph convolutions and residual
mechanisms. We have shown that our proposed model pro-
vides state-of-the-art results while being computationally
efficient which makes it a perfect choice for an accurate
and lightweight sign language recognition solution capable
of running on edge devices.

In summary, the main contributions of our work include:

e An accurate, efficient, and lightweight novel pose-based
pipeline leveraging a graph convolution network (GCN)
architecture with SOTA basic and bottleneck structures and
residual connections is proposed for SLR that is capable
of effectively capturing spatiotemporal dependencies in the
input poses, extracted using an efficient pose extractor.

e Constituting improved accuracy scores for the WLASL-
100, WLASL-300, WLASL-1000, and LSA-64 datasets.

o Constituting improved computational efficiency by 20x
reduction in the number of model parameters, 2.68 x reduc-
tion in FLOP computations, and 13.6 x reduction in inference
time.

Il. RELATED WORKS

SLR has achieved substantial progress in recent years in terms
of recognition accuracy. The emergence of deep learning-
based architectures and the availability of high computational
resources has made the design and implementation of deep
models using multi-modal data a possibility. The problem
of automatic SLR mainly involves three phases: choosing
the appropriate input modality, extracting spatiotemporal fea-
tures from the input data, and a prediction phase. All these
phases have been approached in several ways. There are
various data modalities, like RGB, RGB+D, and 2D or
3D skeleton features, that can be considered appropriate as
input to the feature extraction modules. In the early days
of SLR, hand-crafted features, like Histogram of Gradients
(HOG) based features, Scale Invariant Feature Transform
(SIFT) based features, motion velocity vector, and frequency
domain features [18], [19], [20], [21], were used to generate
spatial representations. Whereas temporal dependencies were
extracted, using condition random fields, Hidden Markov
Models (HMM) [22], [23], and Dynamic Time Warping,
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TABLE 1. Statistics of existing SLR datasets.

Datasets Year Language Modalities #Classes #Signers #Videos
WLASL [15] 2020 American RGB 2000 119 21,803
AUTSL [39] 2020 Turkish RGB+ Depth +skeleton 226 43 36,302
MS-ASL [27] 2019 American RGB 1000 222 25,513
LSA64 [37] 2016 Argentine RGB 64 10 3,200
DGS [38] 2012 German RGB + Depth 40 15 3,000

to handle variable frame rates. However, these methods lack
generalization ability. The final prediction phase was treated
as a classification problem. To predict the sign classes, Sup-
port Vector Machine (SVM) were used.

The task of SLR shares the same problem structure as
gesture and action recognition. So, the approaches to solve
the SLR problem are mostly inspired by network architec-
tures proposed for action and gesture recognition and can be
classified into mainly three categories based on the input data
modality:

e Appearance based Methods
e Pose/Skeleton based Methods
e Hybrid Methods

A. APPEARANCE BASED SLR WITH
SEQUENTIAL/DYNAMIC INPUT DATA

Appearance-based methods mainly focus on spatial features
in each frame, i.e., hand shapes, locations, orientations, and
sometimes facial clues, and temporal features in a sequence of
frames, i.e., hand, arms, and sometimes body motion. As the
background is not useful in sign recognition, it is subtracted
from the input image. To extract spatial features, 2D- convo-
lutional neural network (CNN) based deep models [24], [25]
are useful. Whereas to capture temporal information, Recur-
rent neural networks (RNNs) are used. Some studies make
use of both traditional and deep learning based methods.
In [26], hand-crafted features, like hand shapes and locations,
are estimated using a single-shot detector (SSD) model and
fed to a CNN model to extract spatial features, which are then
fused and provided to a Long-Short term memory (LSTM)
model for temporal feature extraction.

To learn spatiotemporal patterns in video frames,
3D-CNNss are also a popular choice and have shown remark-
able performance. A large-scale dataset MS-ASL is proposed
in [27] and a baseline is established using 2D- CNN followed
by an LSTM module and 3D-CNN model. A 3D-CNN
based I3D model baseline is proposed in [28]. Various other
appearance-based baselines have also been proposed in [15]
including a) 2D CNN + Gated Recurrent Unit (GRU) and
b) 3D-CNN claiming the best results obtained by the 13D
network. In [29], a SLR and education system is proposed.
This SLR system is built upon a spatiotemporal network for
semantic category identification of a given sign video while
the education system detects the failure mode of learners and
guides them to sign correctly. SLR is treated as a zero-shot
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learning problem in [30] to efficiently use the models learned
on the seen sign glosses to unseen sign glosses. Textual sign
descriptions and attributes, such as hand shapes, orientations,
and right, left, or both hands used to perform a sign, are
collected from sign language dictionaries. This information
is then used as auxiliary data to learn semantic class repre-
sentations.

The usage of RGB+D (Depth) images as input have also
been studied in the latest literature. The depth stream assists
in learning more complex features by ignoring the video
background. Recently, the SUGO model based on 3D-CNN
is proposed that uses data acquired through LIDAR [31].
Appearance-based methods for SLR critically suffer from
high computational complexity in terms of memory require-
ments and processing power and have significantly low
accuracies.

B. APPEARANCE-BASED SLR WITH MHI/STATIC

INPUT DATA

Motion history image (MHI) is a static grey scale or colored
image that represents the history of the motion present in a
video images sequence into a single image. MHI is computed
by various methods. Colored MHIs, namely star RGBs, are
created in [32] to represent video sequences. These MHIs are
fed to two ResNets and their features are combined using
an attention mechanism. Three different types of motion
templates: RGB motion image, dynamic image, and MHI
have been created [33]. A single colored MHI representing
the entire sequence is proposed in [34] and is combined with
the I3D model to learn spatiotemporal dependencies in a sign
video.

C. SKELETON-BASED METHODS

With the latest advancements in pose estimation methods,
SLR based on pose data is receiving an increasing attention.
Pose estimation involves the extraction of 2D or 3D skeletal
joint data from an image or a video sequence. The methods
to localize joints are divided into two main categories: Top-
down [12] (Localize the human first and then localize body
parts) or bottom-up approaches [14] (localize body parts
and then group them). Skeleton-based SLR methods take
body pose, hand pose, and sometimes face data as input.
In [15], the body pose sequence is extracted and a gated
recurrent unit (GRU) is employed to extract spatiotemporal
clues. Additionally, a temporal Graph Convolutional Network
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(TGCN) is also employed on this pose data and a baseline
is provided. In [16], spatial and temporal information has
been captured separately using GCNs and a BERT model,
and late fusion is performed to make the final predictions.
A transformer-based model is employed in [17] for pose-
based SLR. Although previously proposed pose-based SLR
methods are less accurate as compared to appearance- based
methods but are computationally cheaper and efficient.

D. HYBRID/MULTI-MODAL METHODS

Using multiple modalities, like RGB, depth, optical flow,
and skeleton, is a common approach. These modalities are
fused together by either early fusion or late fusion strategies
to extract the most useful features to enhance recognition
accuracies. The winning teams of the ChalLearn-2021 chal-
lenge used different types of data modalities [35], [36], e.g.,
skeleton, optical flow, RGB, depth, depth flow, and depth
HHA, and used these multi-modal ensembles to improve
the accuracy. In [26], several manual and non-manual fea-
tures have been extracted from input videos. Firstly, several
2D-CNN-LSTM models have been trained separately using
RGB, depth, and optical flow data and then these features
are fused at the classification level using the best 2D-CNN-
LSTM model. In [11], both motion and hand shape cues
have been used as input features and fed to a 3D-CNN.
A pose-guided 3D pooling mechanism is used to fuse the
prediction score during test time. Although hybrid or multi-
modal methods perform well in terms of accuracy but require
much more processing power than methods using a single
input modality.

E. SIGN LANGUAGE DATASETS

There are several publicly available sign language datasets
that target different sign languages, word level or continuous
sign languages, data sizes, number of signers, sensors to
capture the data, and signer dependency. The most significant
datasets reported in the literature include WLASL [15] - a
large-scale American sign language dataset that has a vocab-
ulary of 2000 glosses. MS-ASL [27] is also an American
sign language dataset that includes a collection of publicly
recorded videos of American sign language. LSA64- is an
Argentinian sign language dataset with video recordings hav-
ing colored hand gloves to make hand segmentation easier
[37]. DGS Kinect 40 [38] is a German sign language dataset
and includes RGB+D images. AUTSL [39] is the most recent
Turkish sign language dataset. The details of these datasets
are provided in Table 1.

Our proposed model is evaluated on the LSA-64 and the
Word Level American Sign Language (WLASL) dataset [15].
WLASL is the largest signer-independent American sign
language dataset, collected from 20 different public web-
sites and signs are performed by American signers or inter-
preters. The presence of a variety of dialects, signing styles,
and video backgrounds makes it quite challenging. The
authors of WLASL have provided four subsets of data named
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TABLE 2. Details of WLASL-sub splits and LSA-64.

WLASL-Subset #Glosses #Videos #Signers
WLASL-100 100 2,038 97
WLASL-300 300 5,117 109
WLASL-1000 1000 13,168 116
WLASL-2000 2000 21,083 119
LSA-64 64 3200 10

WLASL-100, WLASL-300, WLASL-1000, and WLASL-
2000, where 100, 300,1000, and 2000 represent the number
of glosses present in a subset. Details of LSA-64 and WLASL
subsets are given in Table 2.

lll. PROPOSED METHODOLOGY

n this paper, we propose a pose-based pipeline to address the
problem of isolated sign language recognition. In this section,
first a formal problem definition is provided, and then the
main components of proposed approach are explained.

A. PROBLEM DEFINITION

Given a training dataset x, = {(x;, ci)}?’: | that consists of
N sample videos and {x; € RT*H>*Wx3} i the i training
video and ¢; € Cj the corresponding sign class; where H,
W, 3 represent the height, width, and channel information
of a single frame, respectively, and T is the total number of
frames in the video. We aim to extract pose information of
each video sample using the pose estimation method, such
that {x; € RT*V*C where T, V, and C represent total frames,
number of nodes, and node features and to construct a graph
using this skeletal data. We aim to design an efficient and
lightweight graph convolution network (GCN) based model
to extract spatiotemporal dependencies of this sequential data
to correctly predict the sign class labels.

B. POSE EXTRACTION

Historically, several methods have been reported to estimate
human pose from RGB images or video sequences [12], [13],
[14], [40], [41]. Most of these methods can measure human
body pose efficiently but fail to correctly estimate hand
joints and pose. SLR is highly dependent on hand shapes
and poses, so the importance of an efficient pose estimator
cannot be undermined. OpenPose [14] is known for its high
performance in human pose estimation, however, in our spe-
cific application of SLR, the MediaPipe pose extractor was
selected as the optimal solution due to its higher efficiency,
speed, flexibility and adaptibility. MediaPipe Holistic [42],
is a multistage pipeline developed by MediaPipe, to prepro-
cess the data and extract pose features from the image. Fig.1
clearly shows the overall functionality of MediaPipe Holistic
model.
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FIGURE 1. Overview of MediaPipe holistic pose estimator.

MediaPipe is an open-source framework that processes
perceptual data, such as videos and images, by creating
pipelines with a hybrid platform. For each frame in the
input video, MediaPipe Holistic uses individual models i.e.,
MediaPipe holistic hand landmarks, MediaPipe holistic pose
landmarks, and MediaPipe holistic face landmarks detector
for pose estimation of the hands, body, and face regions. The
MediaPipe holistic pose landmarks detector estimates 33 3D
landmarks from the given image or video frame consisting
of x, y, and z coordinates. Whereas MediaPipe holistic hand
pose model estimates 21 3D landmarks for each hand. It also
provides binary classification of hands (left and right hand),
and a hand flag showing the hand presence probability in the
input image. The MediaPipe holistic face model estimates
468 3D face landmarks by using a single input camera image.

Pose Extraction is the stage 1 of our proposed method and
is briefly discussed below:

e Blaze Pose’s pose detector was used to estimate human
pose and subsequent landmarks model. Then, three regions of
interest (ROI) crops representing face and each hand (left and
right) were derived using inferred pose landmarks, and then
to improve the ROI, a new re-crop model was employed.

e The full-resolution input coordinates were cropped to
these ROIs for task specific hand and face models, and corre-
sponding landmarks were estimated.

e Finally, these estimated landmarks were joined together
to produce pose information.

This model generated a total of 5404 landmarks, out of
which we have used data for only 65 landmarks. These
65 landmarks consist of pose information for both hands,
arms, body torso and some significant facial nodes like eyes,
nose, ears, and lips. We have discarded all the remaining land-
marks because they were providing no additional information
in our model.

C. DATA PRE-PROCESSING AND CLEANING

In total, data of 65 joints (21 joints for each hand, 11 head
joints and 12 joints for the body) has been considered to
be given as input to our model. The head joints include the
eyes, ears, and nose. From the estimated body joints, we only
retain upper body joints that contain the neck, shoulders,
elbows, and wrists. The hand joints contain four joints for
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each finger and one joint for the wrist. The data from each
frame is concatenated and stored in a file. Although, Medi-
aPipe provides information on 3D (X, y, and z) landmarks, but
the model is not fully trained to predict depth (z-coordinates)
accurately [42]. Thus, for our network, we have used only
2D (x & y coordinates) features and discarded z-coordinates.
Moreover, under certain conditions, i.e., blurred frames, pose
estimator might miss some of the landmarks. The model
requires fixed dimensional data, so it is preprocessed to han-
dle such cases by filling these landmarks with null values.
The extracted pose has a dimension of {x; € R *63%2},

D. DATA NORMALIZATION AND AUGMENTATION
MediaPipe Holistic pose estimation method provides land-
mark coordinates normalized to [0, 1] by the image width and
height respectively. These coordinates are then shifted by [-
0.5; -0.5] to make sure that mean is zero and the standard
deviation is 1. Although we tested different mean and stan-
dard deviation values, the reported ones gave the best results.
The resultant normalized coordinates are then multiplied by
2 to maintain a fixed scale. We have augmented the data using
two noise transform, that creates a cropped copy of the given
sequence.

E. GRAPH PRELIMINARIES

Notation. A human skeleton graph can be constructed as a
unidirectional spatiotemporal graph G = (V, £) on a pose
sequence with T frames and N joints, where V is the set of
N nodes {vy, v, ....., vN} representing the body and hand
joints. Spatial and temporal connections can be represented
by connecting adjacent joints in spatial dimension and joining
all joints to themselves in the temporal dimension. & is rep-
resenting edge connections and is captured by an adjacency
matrix A € RY*N_ where A,-Jz 1 if node v; and v; is
connected by an edge otherwise \A; j= 0.

Each joints has a feature set X = {x,n €
RI1<t<T,1 <n<N} where C is the total number
of features in a single joint, T represents the total number
of frames in a video sequence and N is the number of
joints in each frame. X is characterized as a feature tensor
of dimension RT XN XC Thus, each sign sequence can be
defined structurally by A and feature-wise by X such that
X, € RV*C is a pose at time t. C-dimensional pose feature
X is a tuple of 2D coordinates.

F. GRAPH CONVOLUTION NETWORK

Graph convolutions are an integral part of our proposed archi-
tecture. Given skeleton inputs, defined by adjacency matrix
A and features vector X, graph convolutions can be applied
using layer-wise update rule to the features at time t as given
in Equation (1).

X =0 (D72 A+ DD 2x00) ()

where A is the adjacency matrix and represents intra-body
connections and the identity matrix (/) represents self-loops,
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FIGURE 2. Basic block: basic spatial and temporal block structure.

D is the diagonal degree matrix of (A +I), ) denotes train-
able weight matrix and o represents an activation function.
Intuitively, D=1/ (A + 1) D=1/2x" can be explained as an
approximate spatial mean feature aggregation of the mes-
sages being passed by the direct neighbors. These are called
spatial graph convolutions (SCN). The graph’s temporal con-
volutions (TCN) can also be implemented as a standard 2D
convolution with the kernel size of L x 1 along the temporal
dimension and with a reception field of L to aggregate the
contextual information embedded in adjacent frames. L is a
hyperparameter that defines the length of temporal window.
A basic block is constructed by both spatial and temporal
convolutions, where each convolution is followed by a Batch
Normalization layer and RELU activation layer. We adopt
an extended variation of spatial graph convolution called
Residual GCN or ResGCN as proposed in [43] for activity
recognition. We modify the same concept to our use case of
SLR.

G. NETWORK ARCHITECTURE

We use ResGCN [43] as baseline model for sign language
recognition. In this model, we use basic and bottleneck blocks
constructed using ST-GCN block. Spatial graph convolutions
and 2D temporal convolutions are sequentially executed to
learn spatial features in a single frame and features temporal
dependencies in video frames. The model consists of two
types of blocks, i.e., standard basic ST-GCN block and bot-
tleneck block. A basic block consists of a spatial block and a
temporal block as presented in Fig.2. A standard graph convo-
lution followed by batch normalization and RELU activation
function is implemented in spatial block whereas temporal
block consists of standard 2D temporal convolution followed
by batch normalization and RELU activation.

Inspired by ResNet [44], a bottleneck structure as pre-
sented in Fig.3 has been introduced in ResGCN. The bottle-
neck block consists of two 1 x 1 convolution layers with a
reduction rate of R to reduce the number of feature channels.
Each bottleneck convolution layer is added before and after
the convolution layer. These bottleneck layers are added in
both spatial and temporal blocks resulting in a reduction in the
number of parameters. The original ST-GCN architecture has
been further modified by the addition of residual connections.
Residual connections were proposed in [43] to connect the
features before and after every spatial and temporal block.
Two types of residual connections have been used in this
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TABLE 3. Overview of ResGCN-n21 architecture with reduction rate R=8.

Module Output
Batch Normalization 64% 65%2
Basic Block 64X 65X 64
Bottleneck Block1 64%x 65% 32
Bottleneck Block2 32 X 65x 128
Bottleneck Block3 16 X 65x% 256
Global Average pooling 1x256
FCN 1 Xembedding_size
FCN IXnum_classes

architecture, i.e., module residual, which connects the output
of the previous basic or bottleneck block to the output of the
current block and block residual, which connects the features
before and after every temporal and spatial block.

The complete pipeline of proposed architecture is pre-
sented in Fig.4. Table 3 and 4 give an overview of network’s
output after each stage.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed architecture
is evaluated on three subsets of the WLASL dataset and
LSA-64 dataset. Our results are compared with the SOTA
appearance-based and pose based methods. Results of abla-
tion studies are also provided to show the importance of
various components in the proposed architecture.

A. DATASETS

In our work, we have performed sign language recognition
for two kinds of sign languages: 1. American Sign Language
and 2. Argentinian Sign Language. To test the performance
of the proposed architecture, we have used the most recent
American SL dataset: WLASL and Argentinian SL dataset
LSA-64. We have performed experiments on three subsets
of WLASL, WLASL-100, WLASL-300, and WLASL-1000.
Each subset has its training, validation and test data samples
distribution as described in Table 5. As the dataset is collected
from various online open-source resources so it has a huge
diversity in terms of the number of signers, illumination con-
ditions, and background variations, making it a challenging
dataset. Given the video sequences, body and hand poses
are extracted using the MediaPipe pose extraction method.
For WLASL training, We have used the same training and
validation protocols as used by dataset authors [15]. LSA-64
contains data of 3200 videos with 50 video samples per class
signed by ten nonexpert signers. We have used 80:20 % split
for training and testing purposes. For training on LSA-64
dataset, we have used four-fold cross validation to train the
model and tested on reserved 20% test set.
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FIGURE 3. Bottleneck block: bottleneck spatial and temporal block structure along with block residual connections.
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FIGURE 4. Overall pipeline of proposed architecture.

B. IMPLEMENTATION DETAILS
For implementation, we have partitioned the pose sequence
as a graph using the spatial configuration provided in [8].
Experiments are carried out on a single NVIDIA 3080 RTX-
GPU using PyTorch. Model is trained for 350 epochs. Global
Average Pooling has been implemented using AvgPool2d
function in PyTorch. Random start sampling strategy is used
to choose the required sequence length of 64 frames. For
cases, where video lengths are shorter than required sequence
length, frame sequence is appended with the last frame of
the given video. The embedding size is chosen to be equal
to number of classes. Further details of hyperparameters are
given below.

e Optimizer: Adam optimizer [45]

e Max Graph Distance: 2

e Temporal Kernel Size: 9

e Spatial Graph convolution Kernel Size: (Max Graph

Distance + 1)

e Batch Size: 32

e Sequence Length: 64

e Scheduler: cyclic learning rate schedular with learning

rate 0f 0.01
e Loss Function: Cross Entropy
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C. COMPARISON WITH STATE-OF-THE-ART

We report the top-1, top-5, and top-10 accuracy of the pro-
posed architecture on the WLASL-100, WLASL-300, and
WLASL-1000 datasets. We also compare our method with
the SOTA as presented in Table 6. For comparison pur-
poses, we divide the methods into two main sections: the
first section represents the appearance-based methods (meth-
ods taking RGB sequences as input) for SLR, whereas the
second represents only the skeleton or pose-based models.
By using SIGNGRAPH, we are able to surpass the previ-
ous SOTA pose-based approach’s accuracy by 8.91% for
WLASL-100 subset, by 27.62% for WLASL-300 subset and
by 26.97% for WLASL-1000 subset. Our model is also able
to outperform SOTA appearance-based methods by 2.65%
and 5.15% for WLASL-300 and WLASL-1000 subsets. For
WLASL-100 subsets, our model produces comparable results
with appearance-based methods. It is evident from our results,
as the number of glosses to be recognized increases, our
method is robust while all other methods fall apart. Exper-
imental charts in terms of train and validation accuracy
and loss for WLASL-100, WLASL-300, and WLASL-1000
are presented in Fig.5, showing the performance of our
model.
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FIGURE 5. Training and validation accuracy and loss plots for WLASL-100, WLASL-300, and WLASL-1000.

TABLE 4. Overview of ResGCN-n39 architecture with reduction rate R=4.
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FIGURE 6. Training and validation accuracy and loss plots for LSA-64
dataset.

TABLE 5. Statistics of WLASL. Train, Validation and Test represent number
of video samples in each split.

model outperformed all the methods by establishing SOTA
test accuracy of 100%. Accuracies represented with *x are

obtained using four-fold cross validation over 5 repetitions.

Experimental charts for LSA-64 are presented in Fig.6.

WLASL-Subset Train Validation Test
WLASL-100 1442 338 258
WLASL-300 3548 901 668

WLASL-1000 8978 2320 1876

D. ERROR ANALYSIS

We have also tested our model on the LSA-64 dataset
and results are reported in Table 7. We have compared our
results on LSA-64 with the latest appearance-based, pose-
based, and hybrid (pose + appearance) methods and our
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Despite achieving state-of-the-art performance for subsets of
WLASL, our pipeline has demonstrated difficulty in correctly
recognizing certain signs. An in-depth analysis of the data
revealed that a substantial proportion of errors in our study
can be attributed to the inherent ambiguities present within
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TABLE 6. Top-1, top-5 and top-10 average accuracy (%) for pose-based and appearance-based models on the WLASL-100, WLASL-300 and WLASL-1000

dataset.
Type Model WLASL100 WLASL300 WLASL1000
top-1 | top-5 top-10 top-1 top-5 top-10 | top-1 top-5 top-10

Appearance | 3D [15] 65.89 | 84.11 89.92 56.14 79.94 86.98 47.33 76.44 84.33

based+ TK-3D Convnet [46] 77.55 | 91.42 - 68.75 89..41 - - - -
Backbone Fusion3 [11] 75.67 | 86.00 90.16 68.30 83.19 86.22 56.68 79.85 84.71
Pose Based Pose-GRU [15] 46.51 | 76.74 85.66 33.68 64.37 76.05 30.01 58.42 70.15
Pose-TGCN [15] 55.43 | 78.68 87.60 38.32 67.51 79.64 34.86 61.73 71.91

GCN-BERT [16] 60.15 | 83.98 88.67 42.18 71.71 80.93 - - -

MOPGRU [47] 63.18 | - - - - - - - -

SPOTER [17] 63.18 | - - 43.78 - - - - -
SIGNGRAPH (ours) 72.09 | 88.76 92.64 71.40 92.26 94.16 61.83 85.87 91.04

the WLASL dataset. We have identified four primary sources
of error.

1) The presence of different words signed in the same way
i.e. ‘Purple*’ and ‘Pizza*’ are signed in an identical
manner as shown in Fig.7.

2) The variation in signing style among different signers
i.e., sign for ‘Before™*’ is performed by signers with
completely different hand positions and movements as
shown in Fig.7.

3) Instances where certain frames (not all) of distinct signs
were found to be similar. Our sampling method, which
randomly samples 64 frames, may have resulted in
incorrect recognition in instances where the sampled
frames matched with those of another sign.

4) Extremely low-resolution videos resulting in inaccu-
rate pose estimations

Upon comprehensive analysis of incorrectly recognized
videos, it was determined that approximately 43% of the total
error was contributed by source 1. Additionally, sources 2,
3 and 4 were found to contribute approximately 34%, 19%,
and 4%, respectively, to the total error. These sources of error
are particularly detrimental to the model’s performance and
become increasingly pronounced as the number of signs to be
recognized increases (i.e., 100, 300, and 1000). Despite these
challenges, our proposed pipeline is still able to achieve very
good performance demonstrating its robustness and efficacy
in addressing these issues in most of the cases.

E. EFFECT OF VOCAULARY SIZE
Vocabulary size in the dataset greatly impacts model per-
formance. As presented in Table 6, the models trained on
datasets with smaller vocabulary sizes perform better as com-
pared to larger ones.

To explain the impact of this factor, we have also tested
the models trained on the dataset with larger vocabulary size
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TABLE 7. Top-1 accuracy (%) for pose based and appearance based
models on the LSA-64 dataset.

Type Model Top-1 Accuracy

IAppearance based [LSTM+LDS [48] 98.09 + 0.59 *
DeepSign CNN [49]  196.00
MEMP [50] 99.06
13D 98.91

IAppearance + Pose [LSTM+DSC [51] 99.84+ 0.19*
ELM+MN CNN [33] [97.81

IPose Only SPOTER [17] 100.00+ 0 *
MOPGRU [47] 99.92
SIGNGRAPH (ours) (100.00+ 0*

to its smaller counterparts and results have been reported in
Table 8. It is evident from the table that for smaller vocabulary
sizes, the models are able to achieve higher accuracy. These
experiments imply that classification becomes easier with the
decrease in number of classes to be classified because of the
decrease in the number of ambiguous classes.

V. ABLATION STUDY

Ablation study has been performed to analyze the influence of
various components to system’s performance. We have used
the original ST-GCN model as a baseline. Bottleneck blocks
and residual connections have been introduced to enhance
the model performance and reduction in computational com-
plexity and model size. Table 9 shows the results of the
ablation study in terms of the baseline model, varying model
depths, and residual connections. N represents the number
of bottleneck blocks and R represents reduction rate. Thus,
ResGCN-N39-R4 is a deeper architecture with a greater num-
ber of bottleneck blocks (six to be exact) and a reduction
rate of 4, whereas ResGCN-N21-R8 represents relatively a
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Ground Truth Predicted Label

Clothes Clothes
Book Book
Chair Chair

ﬁ | Help Help
Purple* Purple
Pizza* Purple
Before** Brown
Before** Fish

FIGURE 7. Examples of videos from WLASL along with their ground truth & predicted label * The same sign for different words “Purple” and
“Pizza” ** sign for “Before” is performed with entirely different hand position and movements by different signers.

smaller number of bottleneck blocks (three to be exact) and a
reduction rate of 8. The results of the ablation study support
our claim that using the residual connections and bottleneck
structure improves the model’s performance significantly.

VI. PERFORMANCE ANALYSIS

In this section, a comparative analysis of SIGNGRAPH
(pose-based) and I3D (appearance-based) architecture is
performed to assess the computational efficiency and per-
formance of appearance and pose-based models. First, the
number of model parameters are counted. For the WLASL-
100 subset, SIGNGRAPH has only 0.62 million parameters,
13D has 12.4 million parameters, i.e., more than twenty times
as much. Both models are assessed by their computational
complexity in terms of their inference efficiencies and times.
We have computed floating-point operations (FLOPs) dur-
ing inference using Deepspeed [52] library’s FLOP profiler.
We have chosen a random batch of 32 videos from WLASL
dataset and averaged the required FLOPs and inference time.
Fig.8 shows all these performance attributes. The evaluations
have been carried out on a single NVIDIA RTX-3080 GPU.
On our system, SIGNGRAPH took 0.040 seconds to process
each video and required 1.95 GFLOPs on average, Whereas
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FIGURE 8. Relative comparison of the SIGNGRAPH and 13D model
attributes: 1. Number of model parameters, 2. Average FLOPS 3. Average
Inference time.

the 13D took 0.50 seconds and required 5.22 GFLOPs on
average.

To test our model’s ability to learn more generalizable
and robust representation, we have performed experiments
by training our model on smaller training subsets and testing
on a fixed set. We sampled the sizes of the training dataset
and trained our model on these subsets. The learnt model
is than tested on a fixed test set. We have conducted these
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TABLE 8. Top-10 accuracy (%) for Pose based and appearance based models trained(row) and tested(column) on different WLASL subsets.

WLASL-100 WLASL-300 WLASL-1000
Model 13D TGCN SIGNGRAPH 13D TGCN SIGNGRAPH I3D TGCN | SIGNGRAP
(Ours) (Ours) H
(Ours)
WLASL-100 89.92 87.60 92.64 - - - - - -
WLASL-300 88.37 81.40 92.56 86.98 79.64 94.61 - - -
WLASL-1000 85.27 77.52 90.70 86.22 74.25 92.51 84.33 71.91 91.04

TABLE 9. Ablation study on WLASL-100, WLASL-300, and WLASL-1000 dataset splits in terms of bottleneck blocks (model depth) and residual connections.

Model WLASL-100

(top1 Accuracy %)

WLASL-300
(top1 Accuracy %)

WLASL-1000
(top1 Accuracy %)

ST-GCN (Baseline) 51.55

36.20 26.63

ResGCN-N21-R8 67.83

69.35 60.71

ResGCN-N21-R4 69.21

70.25 60.99

ResGCN-N39-R8 71.45

70.81 61.62

ResGCN-N39-R4
(SIGNGRAPH)

72.09

71.40 61.83

===|3D SIGNGRAPH

100%

75%

50%

25%

0%

0.1 0.3 0.5 0.7 0.9 1

FIGURE 9. Top-1 accuracies of SIGNGRAPH and 13D models when trained
on five gradually increasing subsets of training set and tested on a fixed
20% split for LSA-64.

experiments on LSA-64 because of its smaller size. We split
the entire data into training and test set by an 80:20 ratio.
Next, 5 SIGNGRAPH and I3D models have been trained,
with a different split of training set each time.

We started training models with a 10% subset and went
all the way up to the full data by adding 20% more data each
time. To preserve the class distributions, training subsets were
distributed uniformly. We evaluated the trained model on the
original fixed test subset. The results are shown in Fig.9.
SIGNGRAPH achieved an accuracy of 74.99% even when
trained only on 10% of the training set, whereas 13D model
lagged behind with 45.47% accuracy. SIGNGRAPH was able
to achieve an accuracy of 100% when trained only on 70%
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subset whereas I3D model achieved maximum accuracy of
98.91% when full training set was used.

The reason for this behavior can be explained as; I3D
model requires learning general concepts like human body
mechanics for semantic decoding of sign language. When
the model is trained on smaller data sizes, learning becomes
even harder, thus degrading the model’s performance. Hand
crafted body and hand pose information fed to SIGNGRAPH
already contains enough information for such decoding
resulting in higher accuracies even when smaller number of
data samples are used. Considering model size, data size,
computational requirements for inference, and speed, these
experiments clearly demonstrate the superiority of SIGN-
GRAPH for SLR as opposed to appearance-based approaches
like 13D.

VIi. CONCLUSION

In this paper, we propose SIGNGRAPH, an accurate, effi-
cient, and lightweight pose-based pipeline for the task
of isolated SLR. SIGNGRAPH uses 2D hands and body
poses as input features. By considering the inherent graph
structure of the pose, spatiotemporal information of a per-
formed sign is extracted using residual graph convolution
network. Previously proposed architectures to tackle the
problem have significantly low accuracies and are compu-
tationally expensive. Experiments conducted on the three
different subsets of the latest American sign language
database WLASL and Argentinian sign language LSA-64
demonstrate that our proposed pipeline achieves significant
improvements in accuracy compared to existing pose-based
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and appearance-based SLR methods, while reducing com-
putational complexity. The ablation study also shows the
importance of residual connections and bottleneck structures
in improving the model’s performance. A performance com-
parison with the appearance-based method proves that our
proposed architecture is significantly less demanding and
generalizes well. In the future, we plan to extend the proposed
architecture by using multi branches of hand-crafted features
and by introducing attention mechanisms to learn the most
significant motion patterns for efficient SLR.
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