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ABSTRACT The research on complex human bodymotion including sports andworkout activity recognition
is a major challenge and long-lasting problem for the computer vision community. Recent development in
deep learning algorithms to track people’s workout activity characteristics based on video sensors can be
used to infer the human body pose for further analysis. Specifically, tracking complex body movements
while performing multi-pose physical exercise helps individuals provide fine granularity feedback including
activity repetition counting and activity recognition. Therefore, this research proposes a system that provides
a repetition counter and activity recognition of physical exercise from video frames (extracted 3D human
skeleton using VIBE) based on the deep semantic features and repetitive segmentation algorithm. The
proposed system locates both ends of the activity’s action and segments the activity into multiple unit actions
which improves activity recognition, time intervals, # of sets, and other quantitative values of activity. The
proposed system is evaluated on the physical activities dataset named ‘‘NOL-18 Exercise’’ through extensive
experiments. The proposed system results show that the accuracy of the repetitive action segmentation is
96.27% with 0.23% time error, and action recognition reaches 99.06%. The system can be employed to
fitness or rehabilitation centers and used for treating patients.

INDEX TERMS Activity analysis, activity segmentation, periodical information mining, activity
recognition, repetitive action counting.

I. INTRODUCTION
Performing physical activity regularly is an essential part
of people’s daily life for strengthening the immune system
and the cardiovascular system, balancing anxiety, and
maintaining the mental and physical health [1], [2], [3],
[4], [5], [6], [7], [8]. People from different age groups
prefer to perform physical activities, e.g. push up, running,
and biceps, in a periodical manner. However, regardless
of the daily encouragement by the healthcare society,
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maintaining a workout regimen in our fast-paced lifestyle is
challenging [9], [10], [11]. Therefore, this motivates us to
explore new horizons that can encourage people of all ages
to perform physical activities and track exercises repetitions
and movement quality.

Recently, several sports gadgets and smartphone appli-
cations have become available to assist people in tracking
workout activities and coaching. These applications and
gadgets have broadly become available with off-the-shelf
mobile devices specifically smartwatches or smart bands.
Some of these gadgets even have complete ecosystems with
the goal of increasing the motivation to work out and helping
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FIGURE 1. Prototype of repetitive action segmentation and recognition.

users to keep on tracking their progress. These gadgets
include feature positioning sensors, such as Global Position
System (GPS), inertial measurement units (IMU) sensors,
accelerometers, and gyroscopes fitness trackers. Most of
these devices perform well with simple tracking, counting
the number of daily steps, energy estimation, and sitting
time for long-lasting exercises, such as running, cycling,
and swimming. However, these devices usually have some
concerns to cover a wider range of complex sports activities,
especially for commercial reasons [12], [13]. Similarly,
people are more concerned about how many times they have
performed the exercise, and they need to maintain track of
their progress. But, these devices can not provide feedback
on a finer level of granularity [13], [14], [15].

To tackle the aforementioned shortcomings of the widely
used gadgets and apps, this work proposes a novel hierar-
chical repetitive action segmentation and recognition system
that counts, validates, and recognizes the repetition from the
physical activity video which is commonly used in a workout
regime as illustrated in figure 1. The proposed system works
at a single frame level to detect and recognize the current
movement on a finer level of granularity of the exercise
execution that provides guidance to fitness enthusiasts. The
system consists of three modules that are: The multi-features
pre-processing module analyzes the physical activity video
frame-by-frame to extracts the 3D skeleton information
using 3D pose estimation model to find the unit action
[16], [17], [18], [19] for complex sports activities, especially
the multitude of movements in one step. The second module
is the segmentation of the repetitive movements in the time
domain based on feature selection and peak analysis. The
third module is classifying the complex activities based on
movement characteristics to know the activity type, counting
the repetition, and other quantitative values.

The proposed system faces a major challenge which is
the collection of large scale data that are accurately labelled,
similar to [20], [21], [22], and [23]. This is only possible with
extensive human effort including supervision of recording
and analyzing the annotated data. Thus, we designed a data
collection system that allows collection of high quality data

FIGURE 2. Periodic physical activity system overview.

with minimal supervision to identify the repetitive action and
recognize it as illustrated in figure 2. First, the system labels
the activity data into the planned, organized, and repetitive
movement stages including contraction (C), relaxation (R),
pause (P), and noise (N). Each movement stage is represented
by the instance of a change of body joint position that looks
like a quarter-cycle wave and each half-cycle is composed of
several movement stages. The system labels each half-cycle
w.r.t the starting and ending time of the movement and counts
the repetitive movements per half-cycle. Second, the system
labels each physical activity w.r.t starting time of the first
quarter-cycle and ending time of the last quarter-cycle. Lastly,
the system labels the exercise type, time, # of sets, counting,
and and other quantitative values, such as joint angle, speed
velocity, and displacement. The output of the data collection
system is the NOL-18 activity dataset.

The accuracy of the proposed system is evaluated using
the NOL-18 activity dataset.The data set was captured
independently of subjects that performed physical activity,
and it contains gym exercises and square dance movements
in 211 videos of 18 different exercises with three different
shooting angles. The repetitive action segmentationmodule is
evaluated by IoUmetrics and time error. The repetitive action
segmentation is measured between the predicted and ground-
truth value by the ratio ≥ 50% and the time error duration
of the predicted value which must be within the range of
±1/3 of the ground truth value duration. The repetitive
action segmentation module has an accuracy is 96.4% with a
0.20s time error on the NoL-18 dataset. Similarly, the action
recognition module is evaluated on the NoL-18 dataset, and
its accuracy is 99.06%. Our primary contributions are listed
below

• The development of a periodical activity framework that
is capable of counting the repetitions, activity recogni-
tion, activity time, # of sets, and other quantitative values
including joint angle, speed velocity, and displacement,
and validating them based on three main modules.

• Creating the NOL-18 dataset containing 211 videos of
physical exercise including gym exercise and dancing
movement which were collected by the Network Opti-
mization Lab (NOL), NYCU, Taiwan.

• Developed framework extracted the skeleton informa-
tion from video, identify the keypoint axis by PCA,
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extracted the key feature for each body part like
arm movement, machine learning model detect and
recognize the activity based on the movement of the key
features.

The rest of the paper is organized as follows: Section II
discusses the related work about activity segmentation, object
detection, and activity recognition. Section III presents the
methodology and prototype design. Section IV-B describes
the performance evaluation and implementation environ-
ment, and section V concludes this research.

II. RELATED WORK
Human activity recognition (HAR) with rich bodywork is
an important sub-field of human-computer interaction (HCI).
HAR covers an extensive range of tasks including activity
recognition [24], repetition counter [25], [26], [27] and
distinguishing activity from non-activity [28], [29]. The
outcomes of these tasks have a wide range of potential in
real-world applications including healthcare the and physical
fitness. The most popular approach throughout the years
for activity tracking and coaching for fitness is the use of
commercially available wearable inertial sensor devices. For
instance, Google’s Wear [30] and Apple watch [31] collect
the activity data and distinguish between moving, exercising,
and standing positions, and support activity tracking naively
through third-party apps. Also, motion sensors are used for a
fitness tracking system that consists of separate lightweight
heart rates, and motion trackers are worn on the wrist
for boxing [32]. Nowadays, HAR is based upon many
different modalities, such as internal motion units (IMU)
[33], [34], [35], [36], electromagnetic waves [37], [38],
sound [39] and video [40], [41].

Several studies have focused on using wearable devices
including Heeven et al. [42] that proposed a deep learning-
based network based on reflectance-type photoplethysmog-
raphy (PPG) sensors to ensure accurate heart rate estimation
even during intensive exercise. Junchang et al. [43] proposed
Jerk-Kalman-based algorithm to estimate motion velocity,
acceleration detection, and energy expenditure for human
limb motion. Franca et al. [44] proposed stress detec-
tion system based on several machine learning algorithms
based on wearable technologies and m-health solutions.
Mokaya et al. [45] presented a MyoVibe system to determine
muscle movement in high-motion physical exercises that
sense vibration signals of muscles using the network of
accelerometers and modeling the characteristics of muscles.
Cheng et al. [46] developed a methodology to recognize
physical activity without training by putting a sensor on
the user’s hip. Similarly, other authors developed activity
recognition systems using the different wearable sensors,
as shown in table 1.
There are other technologies also developed to recognize

the complex physical movement in this race. For example,
the Motion Capture (MOCAP) system consists of multiple
cameras positioned to capture the 3D positions of reflective
markers put on an actor’s clothing in a specially designed

room. The MOCAP system tracks human motion very
accurately. But this system is not suitable for sports and
workouts enthusiast because they do not prefer wearing tight
suits with markers, and these systems are very expensive
[50], [51]. Similarly, Microsoft Kinect devices have been
used in cognitive assessment and rehabilitation. Kinect-based
systems [52] could facilitate the proper performance of
rehabilitation exercises at home that significantly minimize
trips to a physical therapy center, which are costly and
inconvenient for patients. Game consoles, Microsoft Kinect,
and other systems employing various ways of user interaction
have nowadays been established as a form of home-based
exercise. This system monitors the patient’s movements,
repetitions, and most importantly body posture based on the
recordings of the exercises in 3D form. However, certain
constraints create some problems including occlusion [53],
and complex recognition of exercise movement.

Up to now, the progress in the HAR field is dominated
by the classical machine learning methods that perform
the classification and segmentation tasks. These classical
methods include random forest, hidden Markov models,
naive Bayes classifiers, decision trees, and support vector
machines. Further, the increasing available data via off-
the-shelf devices, such as smartwatches, smartphones, and
fitness trackers, increases the complexity of data, partic-
ularly activity patterns detection, which shifts the focus
towards using computer vision (CV) and deep learning (DL)
[54], [55]. The CV and DL work extremely well for HAR as
compared to the classical methods of machine learning that
require feature engineering.

Recently, Human body pose estimation for HAR is
becoming most popular using CV and DL for complex
activity classification. The recent advances in pose estimation
that created a trans-disciplinary dialogue discourse allow
the computer vision community to produce a vast space
of solutions for workout activity recognition and repetition
counter. Interestingly, HAR methods use images and videos
to represent semantic-based human recognition. These meth-
ods identify the space and semantic-based features including,
pose, poselet, attributes, and scene context based on the 3D
and depth skeleton data. For instance, GymCam [56] is a
single-camera-based solution that uses Object detection to
extract the movement characteristics of a single person and
then uses neural networks to identify the activity type and
count the repetitions. However, it cannot count the time of
each exercise and cannot provide the quality of the activity.

Pose Trainer [57] is a single camera-based application that
detects and evaluates the human pose and provides personal-
ized recommendations. However, it does not give information
about activity repetition.Wolf and levy [58] proposed a CNN-
based online solution that contains repetitive movements.
Their solution counts the repetition variability in length and
appearance from online and real-time videos, however, it does
not measure the quality of each exercise, # of a set of each
activity, time of activity. Runia et.al. [59] proposed a real-
world repetition estimation model for activities such as push-
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TABLE 1. Comparison of activity repetition methods.

ups, cutting a melon, etc. however, it does not provide a
detailed analysis of each activity.

Interestingly, many other fitness tracker methods includ-
ing [60], [61], and [62] proposed the exercise repetitions
model for the different perspectives of patients’ rehabilitation
and fitness on a single activity. However, they do not
cover the wider range of physical activity to count the
activity repetitions and provide deep personalized analysis.
Therefore, there is a need for a system that addresses the
problem of complex activity at a single unit level of action to
counter the repetition and recognize and validate the activity
from the video.

III. SYSTEM ARCHITECTURE AND METHODOLOGY
The system architecture and workflow are illustrated in
figure 1. The proposed network is mainly divided into
threemodules including data pre-processing, repetitive action
segmentation and counting, and action recognition.

A. DATA PRE-PROCESSING
Data pre-processing consists of multiple steps including
Keypoint Normalization and Geometry Evaluation to smooth
each keypoints of every frame of a single activity.

1) KEYPOINTS NORMALIZATION
A deep learning-based 3D pose estimation model called
Video Inference for Body Pose and Shape Estimation
(VIBE) [63] is used to extract the activity data of human
skeleton joints as illustrated in figure 4. VIBE generates the
3D coordinates (x,y,z) data of 49 joints of the human body
for each frame of video. Each 3D coordinate is tracked to
smooth the body keypoint to avoid obscured frames. These
3D keypoints generalized because of different body length
measurements, distance from the camera, and other relative
factors [57] and generalized these keypoints based on torso’s
length. To calculate the torso’s length, compute the average
of the distance from the neck keypoints to the right and left
hip keypoints. Principal component analysis (PCA) is applied
on each joint keypoint to identify which keypoint axis is
most visible throughout all the activity due to high mobility
of human body parts, e.g. arms and legs and extract the
first principal component of each joint to indicate its activity

FIGURE 3. Human plane with joint points.

movement. Figure 5 illustrates the hands up 2 poses of the
right arm after extracting the principal component.

2) PERSPECTIVE DETECTION
We record each activity at different shooting angles to
resolve the ambiguity of which body joint participating in the
movement. To obtain the real movement of each human joint,
we convert the weak perspective camera parameters output by
VIBE into the absolute coordinates in the camera coordinate
system through the conversion matrix as described in 1.
In equation 1, the left matrix is the transformation matrix, and
the fourth column represents the weak perspective camera
parameters, the middle array is VIBE coordinates and the left
matrix represents to the camera coordinates. For example,
hands-up two activities were recorded with three different
angles, and we found the front view is the best perspective
because of both arm’s movements at a time.

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1



a
b
c
1

 =

a+ tx
b+ ty
c+ tz
1

 (1)

3) GEOMETRY EVALUATION
We calculate the body features (body vector) from joint key-
points due to different body planes and frames perspectives.
We define the human body coordinate system through the
relative coordinates of VIBE output. Based on three planes of
the human body in anatomical planes including the Coronal,
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FIGURE 4. Data pre-processing flowchart.

FIGURE 5. Hand up 2 key poses illustration.

Sagittal, and Transverse planes compute the three axes of
the human body coordinate system (X is the human torso
facing, Y is the right side of the human torso and Z is
the downward side of the human torso). Based on these
axes, measured the three-dimensional human body posture
using the linear regression and regression plane as defined in
equation 2 and the points used in each plane are illustrated in
figure 3. In equation 2, line 1 sub-equation represents to linear
regression where a and b are VIBE coordinates respectively.
Similarly, lines 2 and 3 represent plane equation [64] and
regression formula where a and b are VIBE coordinates andA
is transformation matrix respectively. These equations help to
find a body features which are 26 body features in total. For
example, body features elbowX is represented by the angle
between the elbow and X coordinate, biceps curl that can be
found between the upper arm and forearm keypoints angle,
etc. After the body feature identification, we smooth all body
information by applying the Savitzky Golay (SG) filter.

y = ax + b

z = ax + by+ c

x = (ATA)−1AT b (2)

B. STAGE 1: FEATURE ENGINEERING AND TIME
INTERVALS
Stage 1 defines the selection procedure of the important
features and filters out the time interval for each physical
activity as illustrated in figure 6. The features are selected
based on action peaks period and amplitude, as shown in
the left side of figure 6, and the right side shows the

FIGURE 6. Selection criteria of feature engineering and time intervals.

TABLE 2. Amplitude threshold data sheet.

time intervals of each exercise which is represented by
the union of all intersections of the time interval set. The
important features are selected based on the movement of
keypoints. When an action occurs, the wave pattern will
trend upward or downward resulting in a continuous wave
with different amplitude levels. Generally, we observed in
our action detection experiments the larger amplitude of a
wave is a better representation of action. Amplitude is a key
factor to decide whether the feature is important or should be
filtered out as an unimportant feature. We define a reasonable
amplitude threshold based on the two less movement physical
activities, e.g., hip inversion and elbow external rotation,
which was used to obtain displacement (D) and angular
displacement (AD) threshold. These activities are evaluated
based on three subjects and to determine the threshold values
that are 15cm and 30 degrees as shown in table 2.

C. STAGE 2: REPETITIVE ACTION SEGMENTATION AND
COUNTING
Stage 2 describes themovement sequence and action segmen-
tation. Movement sequence defines the physical activity into
different movement states and action segmentation selects
and divides the repetitive action w.r.t the movement states.

1) REPETITIVE MOVEMENT SEQUENCE
There are infinite possibilities for human physical activity,
but exercise is a planned, organized, and repetitive physical
activity. The movement of an exercise can be simplified as a
quarter-cycle movement. Based on this concept, a movement
sequence algorithm was designed with the goal to simplify
and condense the body information into movement states.
Movement states are used to represent the changes in the body
information, namely contraction (C), relaxation (R), pause
(P), and noise (N), as shown in figure 7. The body information
is composed of body keypoints and features. To process the
body information, we classify the input intomovement blocks
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FIGURE 7. Movement sequence.

TABLE 3. Detection error angle threshold.

with continuous body movement and define the block as C,
R, P, and N. The actual movement of the two adjacent blocks
has different meanings and are defined individually.

In terms of body features the movement states define the
pause state as when a person is standing upright and looking
straight ahead (Neutral state) and the angle of all body
features remains unchanged. When the angle becomes larger,
it means that the movement is in the ‘‘going’’ stage, and
this is called a contraction. Conversely, if the angle becomes
smaller, it means the movement is in the ‘‘return’’ stage, and
this is called relaxation. Similarly, we define the movement
sequence in terms of joint keypoints when a person stands
upright and looks straight ahead, the arms and legs hang
down naturally is called a pause state. When arms and legs
movement is upward, it means that the movement is in the
‘‘going’’ stage and called a contraction state. if the movement
is downward, it means that the movement is in the ‘‘return’’
stage and defined as a relaxation.

In addition, 3D:VIBE pose evaluation has movement
detection error which is 5.19 cm as mentioned in paper [63].
Therefore, when the keypoints movement is less than
5.19 cm, it cannot be judged which is classified as a pause.
Although the detection error is 5.19 cm, so keypoints have
different physical characteristics based on an error. Table 3
shows the body features evaluation based on the forearm,
upper arm, thigh, and calf. The table shows that detection
error causes an average of 14.5 degrees, so the body feature
angle changes less than 14.5 degrees, which is defined as
a pause. This evaluation uses some simple and fast actions
to measure the reasonable duration of the movement state.
Similarly, the reasonable duration of a movement state is
0.33 seconds as mentioned in table 4. Therefore, if the
duration of a block is less than 0.33 seconds, it will be
temporarily classified as idle first. If the duration of idle
exceeds 0.66 seconds, it will be classified as Noise. If it is
less than 0.66 seconds, it will be divided equally into the
contraction and relaxation movement states.

TABLE 4. Action duration threshold in seconds.

FIGURE 8. Movement sequence workflow.

2) MOVEMENT SEQUENCE ALGORITHM
The movement sequence algorithm is proposed based on the
keypoints movement as described in algorithm 1. Firstly,
we simplify each frame to find its movement sequence of
body information by using the slope. If the slope is greater
than the positive threshold value, it will be marked as ‘‘+’’
as shown in figure 8. If the slope is lower than the negative
threshold value, it. will be marked as ‘‘−’’, and if the slope
is between positive and negative threshold, it will be marked
as ‘‘0’’. Secondly, we smooth the slope that does not break
the threshold due to a slight pause in movement or detection
error. If the previous and next value of the slope is marked
with ‘‘0’’ the marker will be changed to a value that is
consistent with the previous and the next value. Thirdly,
we classify the consecutive values that do not reach the
reasonable duration mentioned above as idle and mark them
as ‘‘?’’. Fourthly, if the duration exceeds 0.66 seconds, it will
be classified as noise and marked as N. If the duration does
not exceed 0.66 seconds, the value of the slope is divided
equally between the before and after values of the slope.
Fifthly, we convert the blocks of the continuous value into
the actual movement state, and finally, concentrate them at
the state level.

Algorithm 1 Pseudo-Code of Movement Sequence
Algorithm
Input: Body Information (BI)
Output:Movement Sequence (MS)
//Initialization
state← convert_to_state(BI) // Step 1
state← smooth(state) // Step 2∼4
MS← state_to_real(state) // Step 5 & Output
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3) SINGLE ACTION SEGMENTATION
The action can be usually simplified as a half-cycle
movement, and multiple half-cycle is considered a repetitive
action. Repetitive action can be located by finding the
pattern of repeated contractions and relaxations. The start
time and the end time of each action can be known from
each contraction and relaxation and are useful for the
segmentation of repetitive actions. To know whether the two
half-cycle movements are the same or not, we analyze the
contraction-relaxation pattern by two factors including period
and amplitude. In addition, if the action is more complex,
there may be more than one movement state in a cycle. Two
factors’ descriptions are given below:
• Period: The period of the next action should be
within the range of ±1/3 of the period of the current
action.

• Amplitude: The amplitude of the next action must be
within ±1/5 of the period of the current action.

4) SINGLE ACTION SEGMENTATION ALGORITHM
The single-action segmentation algorithm aims to identify
the repetitive actions in movement sequences. Two adjacent
actions are selected in the sequence and compared according
to their periods and amplitudes. The principle of repetitive
action selection is based on the states of movement sequence
including contraction and relaxation. The single action starts
from the ‘‘contraction’’ state and goes to the start of the
next ‘‘contraction’’ state, and the action must contain two
states including contraction and relaxation as illustrated
in figure 9.
In step 1, we select two patterns from the index value

0 for comparison. The first pattern (red rectangle) starts
from the pause state and continues until the next pause state
and contains contraction and relaxation. The second pattern
(blue rectangle) is found similarly to the first pattern, but
the two adjacent sequence periods are not similar to meet
the standard of repetitive action. In step 2, we select the
two actions from the first pattern, the first action starts from
the contraction state and ends before the start of the next
contraction state and contains the contraction and relaxation
states. while the second action has a similar pattern and period
to meet the standard of repetitive action. Step 3, because
the previous comparison was successful, the second action
from the pattern is selected for comparison with the next
action. If the action period is close to the adjacent action
period and meets the standard of repetitive action, then we
mark the action as the same action. In step 4, we do a
further comparison for upcoming adjacent action and found
the period that does not meet the standard. In step 5, we show
the failure of the previous comparison, because the current
index doesn’t meet the standard criteria of action selection
including contraction and relaxation and the comparison goes
further until the action contains the contraction and relaxation
state. Otherwise, the algorithm will interrupt as shown in
step 6. The pseudo-code of single-action segmentation is
described in algorithm 2.

FIGURE 9. Example of single action segmentation algorithm.

Algorithm 2 Pseudo-Code of Single Action Segmenta-
tion
Input:Movement Sequence MS, Amplitude Amp,
MS Duration MSD
Output: Repetitive Period RP //Initialization for each
action i in exercise do

pivot← 0
while pivot < length(MS) do

action← select an action from index pivot
next_action← select an action after action
while action’s Amp and MSD is similar to
next_action do

Append action into RP
pivot← action end index
next_action← select an action after action

end
else

pivot← pivot + 1
end

end
end
RP← fix_common_miss_seg(RP)

D. ACTION RECOGNITION
Actions are composed of the movement of joints that controls
the muscles and have different exercise effects. Therefore,
we only analyze the joints that are mainly used for an
activity to action recognition. In addition, the various others
activity information obtained from each body features such
as displacement, angular displacement, angular velocity, etc.
are used to recognize each activity’s action. The unimportant
action information is discarded by the feature importance
threshold. Finally, all information is synthesized into a vector
and entered into the support vector machine (SVM) for action
recognition. The SVM uses the radial basis kernel function,
the loss function C is 22.5, and kernel function coefficient
Gamma is 1/# of features. The same action of the previous
stage that exceeds the moving window is identified by the
action of the current stage. The same action of the previous
phase is connected by the action recognition.
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TABLE 5. Distribution of exercise types.

IV. PERFORMANCE EVALUATION AND
IMPLEMENTATION ENVIRONMENT
In this section, the proposed solution including the repet-
itive action segmentation and recognition is evaluated by
modifying the accuracy method used in [65], [66], and
[67]. The repetitive action segmentation is evaluated by
the intersection-over-union (IoU) metric and the action
recognition is evaluated by the accuracy metric.

A. DATASET
We recorded two activity datasets includingNOL-18 Exercise
and Timed Up and Go (TUG). NOL-18 Exercise dataset is
used for themodel training, validation, and testingmeanwhile
TUG is used for testing the model.

1) NOL-18 EXERCISE DATASET
The dataset was captured independently on multiple subjects
and used for physical activity segmentation and recognition.
The type of physical activities including gym exercise
and movements contains 324 videos of 18 different activ-
ities. Videos are named based on the physical activity

characteristics and with a resolution of 640× 480 and a frame
rate of 30 fps. The total length of videos is 3,173.56 seconds.
Each video has at least one physical activity, and the number
of activity repetition movements is inconsistent, ranging
from 5 to 15, and each movement is performed by one
person, with no interaction between more than one person.
Each video is captured with three different backgrounds and
shooting angles including front, 45 degrees, and side (90
degrees) views.

Table 5 shows the physical activities including gym
exercise andmovement with # shooting of Angle, # of phases,
and descriptions of each activity phase. Each physical activity
is labeled into two different levels. First, physical activity is
labeled as a movement level where the movement sequence
of each body feature is labeled to simplify and condense
the information and define the movement starting time and
ending time durations, as illustrated in the middle of the
figure 10. Second, the action level labeling is divided into
two sub-levels including feature and body level. At feature
level labeling, the start time and end time of the repetitive
action of each body are labeled as illustrated at the bottom
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FIGURE 10. Labeling of different levels of physical activity.

TABLE 6. TUG dataset statistics.

of figure 10. Body level labeled the overall body movement
actions. It segments the starting and ending time of the overall
repetitive action as illustrated at the bottom of the figure 10.
The NOL-18 Exercise dataset demo can be found at URL:
https://hackmd.io/uc5R3jz1RMmcki-CKESzzQ.

2) TIMED UP AND GO (TUG) DATASET
TUG [68] is a method used to judge the risk of falling by
analyzing the simple balance test from sitting to standing and
walking. The subject sits on a chair without a backrest, and
when she hears the ‘‘start’’ command, she gets up and walks
forward at a constant speed to the target object at a distance
of 3 meters, walk around the target object, walk back, and sit
on a chair and camera at a fixed location and angle record the
whole scenario and time. If the time is less than 15 seconds,
it means that the subject has no risk of falling. If the time is
between 15 seconds and 20 seconds, this indicates that the
subject is at moderate risk of falling and needs to pay more
attention in daily life. If the time is longer than 20 seconds
indicate a high risk of falling and requires further examination
to avoid danger. This dataset is self-collected for this research,
including 3 shooting angles (front, 45 degrees, side) and 3 fall
conditions (normal, medium, and high). There is a total of
298 videos with risks. Table 6 shows some detailed statistics
for the TUG dataset.

B. EVALUATION OF REPETITIVE ACTION SEGMENTATION
The performance evaluation of repetitive action segmentation
was evaluated based on the two factors that were used to
predict the success rate of valid repetitive action by matching
the groundtruth and predicted values.

FIGURE 11. Predicted and groundtruth action matching diagram.

1) Duration: The time duration of the predicted action
should be within ±1/3 of the time duration of the
groundtruth action.

2) Intersection over Groundtruth (IoG): The proportion
of the intersection of the predicted action and the
groundtruth action must be ≥ 50%.

If the segmented action passes these two factors, then the
action is considered valid. Figure 11 illustrates the different
matching cases of groundtruth and prediction actions. Case 1:
As in the blue rectangle, the starting time of predicted and
groundtruth actions is the same and the ending time is
different. The predicted actions overlapped with groundtruth
by the one-to-one matching policy is more than 50%, which
is considered a valid action. Case 2: in the green rectangle,
the starting time of a predicted action and groundtruth action
are the same. However, the ending time doesn’t match with
groundtruth, and the overlap between them is less than 50%
w.r.t one-to-one that’s considered an invalid action. Case 3:
in the red rectangle, the starting time of the first predicted
action does not match with its one-to-one groundtruth action,
and that is considered an invalid action, the second predicted
action matches with its one-to-one groundtruth action and
ignores the second ground truth action. Case 4: in the yellow
rectangle, the starting and ending times of the predicted action
and ground truth do not match although the overlap ratio of
both is equal to 50% and matches with each other based on
the first come first served principle.

The movement sequence is evaluated using the NoL-18
dataset based on the accuracy and time error metrics. The
movement sequence in algorithm 1 is evaluated by pairing
sequences between the ground truth and predicted events in
the time domain. The pairing sequence is evaluated based on
equation 3 and 5 [65], [66], [67]. The movement sequence
simplifies and condenses the information of each joint and
represents the data in terms of state and time duration.
The movement sequence is also evaluated by finding the
accuracy of the total # of corrected movement pairs over the
maximum duration number of true and predicted values. The
movement sequence time error is evaluated by subtracting the
absolute value of movement start time of prediction with the
movement start time of true value then the movement ends
time of prediction with movement end time of groundtruth
value and adding them together. After addition, the total value
is divided by the maximum duration number of groundtruth
and predicted values. The accuracy and time error measured
by equation 3 and 5 [65], [66], [67] are shows in table 7.
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FIGURE 12. Hand up2 key poses movement.

TABLE 7. Evaluation of single repetitive activity movement sequence.

The average accuracy rate is 95.65%, and the time error is
0.1 seconds.

Further, the repetitive action segmentation module is
evaluated on the single activity video clips using the NoL-18
dataset based on the accuracy and time error metrics. The
repetitive action segmentation is evaluated on the joint’s
information, which is represented by the start time and end
time of the repetitive action and measured based on the
corrected pairing sequence between the ground truth and
predicted event in the time domain. The repetitive action
segmentation is measured based on the equation 4 and 6 [65],
[66], [67]. The accuracy, time error and # of each activity
repetitions are shown in Table 8. The average accuracy rate
is 96.27%, and the time error is 0.23 seconds.

AccuracyRMS =
# of Correct Movement Pairs
MAX (NumGT , NumPred )

(3)

AccuracyRAS =
# of Correct Action Pairs
MAX (NumGT , NumPred )

(4)

TimeErrorRMS =

(
# of (abs(MSTPred −MSTGT )
+ abs(METPred −METGT ))

)
2× #of Correct Action Pairs

(5)

TimeErrorRAS =

(
# of (abs(ASTPred − ASTGT )
+ abs(AETPred − AETGT ))

)
2× #of Correct Action Pairs

(6)

Similarly, the repetitive action segmentation module is
evaluated on more than one activity video clips using the

TABLE 8. Evaluation of single repetitive activity actions segmentation.

NoL-18 dataset on actions performed by the same subject.
First, the subject performs one activity then with the same
seconds of pause the subject performs the second activity.
All these activities are also under the umbrella of the Nol-18
dataset. These activities are evaluated based on the accuracy
and time error metrics. The accuracy and time error are
evaluated using the equations 3, 4, 5 and 6 are shows
in table 9. The average accuracy score with time error is
shown in the table. The overall average accuracy of repetitive
action segmentation is 94.01% with time error 0.175 seconds
respectively.

The action recognition module is evaluated using the
NoL-18 dataset based on the accuracy metric. Each activity
is recognized by its wave characteristics using the Support
vector machine (SVM) algorithm. As exercise is typically
performed in a cycle and repetitive fashion, the majority of
the frames tend to the inherent phases of their key poses.
For example, figure 12 illustrated the key pose phases of the
HandUp 2 activity. The SVMpredicts themost representative
classes based on the characteristics of the phase to achieve
state-of-the-art accuracy. Also, the SVM is validated using
10-fold cross-validation on the NoL-18 dataset and the
average accuracy reaches 99.06% as mentioned in table 11.
The proposed method is compared with a similar repeated

method as mentioned in 10. RepNet is an approach for
estimating the period with which an action is repeated in
a video. Similarly, we evaluate the proposed method on
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TABLE 9. Evaluation of multiple repetitive activities actions segmentation.

TABLE 10. Comparative analysis with related methods.

TABLE 11. Performance evaluation.

another dataset called TUG to validate the test procedure.
The TUG dataset collects the gait of weak and healthy people
from multiple perspectives. The SVM learns the difference
between weak and normal gait characteristics of fall risk and
determines the risk of falling. The accuracy rate is evaluated,
and the average accuracy rate reaches 94.64% as mentioned
in table 11. Based on the evaluation, we can use this module
to judge the gait characteristics of the elderly to determine
whether there is a risk of falling and to receive treatment early
to avoid falling.

V. CONCLUSION
This research proposed a system that provides a repetition
counter and recognition of physical exercise from video
frames based on the deep semantic features and repetitive
segmentation algorithm. The system handles the inputs of
real-time physical activity to segmentation and recognition
based on different modules in the spatiotemporal domain.
Our future work will include testing the proposed system in
different fitness and rehabilitation center environment.
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