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ABSTRACT The grinder consults measurement modules to control the endpoint thickness of the sapphire
wafer thinning process, but these modules have shortcomings. We propose a forecast-based endpoint
thickness and online error compensation approach for grinding hard, brittle material. We leverage forecasts
to improve grinding efficiency, and address the shortcomings of conventional probe gauges, which can be
used only when grinding is paused, as well as those of contact gauges, which require correction from time
to time due to wear. We construct a multi-signal time-series forecast model and compare the prediction
performance using features from various signals. We implement the forecast model in a vertical grinder
for actual grinding to evaluate the effectiveness of the proposed approach. The results show that online error
compensation reduces contact times for the contact gauge andmaintains precise thickness, greatly facilitating
the wafer thinning process. The proposed measurement approach applies not only to wafer thinning but can
also be extended to other grinding processes.

INDEX TERMS Wafer thinning process, acoustic emission (AE), tri-axial vibration, wafer endpoint
thickness, time-series forecasting.

I. INTRODUCTION
Wafer thinning is a crucial front-end process for manufactur-
ing wafers, and is considered shape processing rather than
surface processing. As such, the whole wafer is directly
scrapped if the processing fails to meet the quality require-
ments. Sapphire is a hard, brittle material used to make LED
substrates. In recent years, wafer demand has dramatically
increased in the industry due to the proliferation of mini-LED
and micro-LED products, and increased production capacity
is an urgent problem for the industry. Product quality require-
ments for the wafer thinning process are endpoint thickness,
flatness, and surface roughness [1].

Wafer thinning is divided into free abrasive lapping and
the fixed abrasive grinding. Although polishing is also free-
abrasive, it is not classified as thinning. The free abrasive
for lapping is a diamond slurry, which is not fixed on the
carrier and produces excellent surface roughness but poor

The associate editor coordinating the review of this manuscript and

approving it for publication was Ehab Elsayed Elattar .

machining efficiency [2]. However, its grinding quality is
gradually surpassing that of lapping because the precision and
manufacturing technology of grinding wheels has improved,
resulting in considerably faster processing times as well as the
greatly improved wafer surface roughness and flatness [3].

Since a diamond grinding wheel is sintered with diamond
grains and metal binders, the sintered surface is distributed
with many abrasive grains similar to small cutting tools and
pores that load chips [4]. Furthermore, to grind hard, brit-
tle materials, a grinding wheel must be chosen with good
self-sharpening ability and suitable grinding parameters; nev-
ertheless, good sharpening ability implies a high wear rate for
the abrasives. Nevertheless, as diamond wheels are expen-
sive, it is not desirable for the abrasive to be consumed
too quickly. Strong abrasive self-sharpening ability results
in increased manufacturing costs, whereas inadequate self-
sharpening ability results in wafer cracks or broken wheel
abrasives. The grinding wheel’s tilt angle with respect to
the workpiece is another significant factor in the specific
energy of grinding and wafer flatness. The configuration and
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coordinates between the wheel and workpiece have been
defined to investigate the effect of the angular deviation
of grinding on the surface profile of the ground wafer [5].
The wheel is more likely to shed abrasives under immense
grinding energy.

Grinding is a complex machining process in which many
variables cannot be controlled or measured. In addition, dis-
turbances in the grinding environment such as the splash-
ing of cooling water, chips, abrasive particles, noise, and
vibration from the spindle operation and grinding. Such
noises increase the difficulty of online monitoring [6]. Thus,
indirect signals such as acoustic emission (AE), vibration,
current, force, and power are used to monitor and evaluate
status conditions that characterize the grinding wheel and
workpiece [7].

In general, previous studies monitor the workpiece and
grinding wheel during the grinding process to improve the
workpiece quality by analyzing the status of the workpiece.
However, there is a paucity of research on improving the
endpoint thickness accuracy when thinning. For sapphire
wafers, endpoint thickness error affects the processing time
of fine polishing. The more accurate the endpoint thickness,
the faster fine polishing is. In general, grinders use a digital
probe gauge (PG) to measure wafer thickness, yet during
such measurement grinding must be halted; moreover, the
last feed must proceed at a slow speed to minimize thickness
error. Alternatively, the grinder can use a contact gauge (CG)
module to measure wafer thickness during grinding. Since
sapphire is harder than the gauge head, long-term use wears
down the gauge and reduces the measurement accuracy;
moreover, the sapphire surface can be scratched and marked
if the gauge does not properly break away from the sapphire.

We propose using the CGmodule with a forecast model for
endpoint thickness compensation for sapphire wafer thinning
to improve on the traditional PG’s need to stop grinding for
measurement and to address the CG’s problem with wear and
scratches. We implement this approach on the grinder, and
compare the results using the PG and CG modules.

We propose a thickness compensation forecast model for
wafer thinning. We extract three kinds of time-series signal
features and compare the performance of these features using
six deep forecast models. We use windowed time series data
with different periods to verify the forecast ability. We imple-
ment the proposed forecast model into the grinder and use it
for sapphire wafer thinning. Finally, we compare the wafer
endpoint thickness using the proposed approach with that of
a conventional grinder. Our main contributions are as follows:

1) We propose an forecast-based endpoint thickness and
online error compensation approach for grinding hard,
brittle material. The forecasts are leveraged to improve
the grinding efficiency and correct the conventional
PG module’s disruptive measurements; it also reduces
the frequency of corrections due to CG wear. Further-
more, we design and validate an endpoint thickness
compensation method to facilitate practical real-time
applications during grinding.

2) We construct a multi-signal time-series forecast model
and compare its prediction performance with the fea-
tures of each signal. During the grinding process, pre-
processing and feature extraction methods for each
signal—AE, vibration, and grinder current—are based
on real-time feature analysis. In addition, we compare
the performance between each characteristic signal
and the forecast model using six different time-series
deep forecast models. The Res-LSTM model exhibits
superior performance in predicting endpoint thickness
compensation values.

3) We implement the forecast model in a vertical grinder
for actual grinding to verify the effectiveness of the
proposed approach, and compare the endpoint thick-
ness accuracy between this approach and that of tra-
ditional grinders. The results attest the effectiveness of
the approach.

The following sections are arranged as follows. Section II
reviews monitoring technologies for the grinding process,
Section III describes the proposed endpoint thickness com-
pensation for the CG module with the forecast model, and
Section IV describes forecast models based on characteristic
signals and state data acquired in the grinding experiments
and compares the performance using different features and
models. Section V explains how the compensation approach
is implemented in the grinder and compares the results of
thinning experiments. Section VI concludes.

II. GRINDING PROCESS MONITORING
As grinding quality affects the success or failure of sub-
sequent processes and product values, it is almost always
performed by experienced personnel. Therefore, grinding
process monitoring has long been a popular topic in machin-
ing optimization, whether for metals or hard, brittle materials.
Scholars have identified various signals by which to monitor
the grinding process, seeking to identify the significant char-
acteristics at the moment of state change for each signal [8].

AE signals are commonly used to monitor the grinding
process. Since the surface of the grinding wheel contains a
distribution of tiny, randomly oriented grits and pores, an AE
signal with superior sensitivity and a wide frequency band
is suitable. Therefore, AE is used to visualize the surface
topography of the grindingwheel during the dressing process;
this approach facilitates evaluation of the wheel condition
when dressing and reduces abrasive waste when overdressing
[9]. Likewise, AE can be used to determine whether the wheel
surface condition is sharp or dull, which improves the work-
piece quality and reduces defects. The wheel surface is dulled
when cutting chips fill the surface pores or the grits are worn
down, thus losing the ability to grind [10]. Next, the bonder
grade of the abrasive can be distinguished by the AE signal; in
general, for diamond wheels the bond grade is distinguished
by calculating the wear ratio after grinding [11], [12], [13].
In addition, the AE signal is often used to monitor workpiece
conditions by identifying defects such as workpiece surface
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burning, chatter vibration marks, and roughness [14], [15],
[16]. Moreover, AE signal is often mentioned in other related
studies, such as non-destructive testing ofmaterial broken and
damage mechanisms with loading.

During grinding, a worn wheel is exhibits vibration as well
as increased grinding force and specific energy of grinding; to
identify grinding conditions, many studies use multi-sensors
such as accelerometers, dynamometers, current transducers,
power meters, and microphones [17], [18], [19].

To extract features, the time-domain signal power of AE
and the grinding force are proportional, and frequency-
domain features are more effective than time-domain fea-
tures for evaluating surface conditions [20]. Thus, feature
extraction involves time-frequency analytical methods such
as the short-time Fourier transform (STFT) [21] and the
discrete-time wavelet transform (DWT) [22]. Although novel
analytical methods such as ensemble empirical mode decom-
position (EEMD) and theHilbert transform [23] are also used,
such transformation algorithms are characterized by massive
calculations that preclude their use in real-time systems.
Hence, for real-time system applications, the performance
of feature extraction depends not only on how precisely the
features represent the grinding state but also on the time
needed to calculate the features.

Note that the CNN model’s convolutional layer cannot be
used to simultaneously extract multiple frequency signals,
in particular AE and vibration signals [24]. Also, the sam-
pling frequency of the raw AE signal is higher than that for
other signals; it is difficult to integrate features with such
quantitative differences and ensure that the resultant model
converges [25]. Therefore, related approaches generally do
not attempt to learn AE signals in combination with other
signals.Moreover, convolution for such a large number of raw
AE signal data points takes a long time for 1-D as well as 2-D
convolution kernels, which makes it challenging to apply this
to real-time systems.

III. METHODOLOGY
Here we describe the configuration, the grinding wheel, the
parameters, the external control method, the running state
data of the vertical grinder, and the experiment for extracting
time-series data, as well as the time-series data acquisition
module, the sensors, and the feature extraction algorithms for
the characteristic signals: AE, tri-axial vibration, and tri-axial
motor current.

A. EXPERIMENTAL SETUP
The vertical grinder grinds the workpiece to produce excel-
lent flatness via a stable and precise feed system. A pair of
upper and lower non-coaxial rotating shafts rotate simulta-
neously to ensure a flat surface. The upper shaft is equipped
with a cup grinding wheel, which is called the grinding wheel
axis (S1); installed on S1, the feeding axis (Z) stabilizes
the grinding wheel and supplies micro-feeding. The lower
shaft has a porous ceramic vacuum chuck table that holds the

FIGURE 1. Vertical grinder and sensors.

ceramic block that fixes the workpiece, called the workpiece
axis (S2). During grinding, the speed of S1 is typically faster
than that of S2 during grinding, and the two axes rotate in
different directions. To grind all of the workpiece, including
the center, the abrasive distributed on the outer circumference
of the grinding wheel must traverse the center of the work-
piece. When grinding, a large amount of cooling water must
be sprayed to remove the workpiece and wheel chips.

The grinder has a contact gauge (CG) module to measure
the wafer thickness during the grinding process: two sensors
measure the height of the reference plane (ceramic block)
and the workpiece (wafer) simultaneously, and the difference
between the two is taken as the thickness of the wafer to be
measured.

In this study, the grinding wheel uses a 400 grain diamond
abrasive with a metal bonder that ensures a grinding ratio of
0.05:1 between the wheel and the sapphire wafer, the most
commonly used configuration in the sapphire wafer thinning
process. The workpiece is a 4-inch sapphire wafer bonded to
the center of the ceramic block with wax. The grinding path
coordinates mirror those defined previously [5]; the tilting
angle of the grinding wheel +α is 0.01 degrees, and +β

is 0.01 degrees. The grinding wheel tilting angle not only
determines theworkpiece topography but also affects the hard
material’s grinding force.

The experimental test configuration of the vertical grinder
and sensors is shown in Figure 1. The sensors cannot be
installed in the work area because the vertical grinder has
two rotation axes; therefore, we use noncontact or indirect
measurements. As the fluid AE sensor receives the signal
through cooling water, it is not affected by the configuration
of the working area; however, it must be installed where the
cooling water sprays onto the grinding area. The headstock is
closest to the grinding wheel, so it is the best place to receive
tri-axial vibration signals from the grinding wheel. The accel-
erators are fixed to the headstock using magnets. The current
transducers are mounted on motor drivers on the S1, S2,
and Z axes to measure changes in current during grinding.
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FIGURE 2. Architecture of signal and grinder state data transmission.

The drivers are installed in the control cabinet behind the
grinder.

The architecture of the signal and grinder state data trans-
mission is shown in Figure 2. The data acquisition (DAQ)
module is the National Instruments (NI) CompactDAQ
(NI-9174), the AE signal is captured by the NI-9775 module,
the tri-axial vibration signals are captured by the NI-9234
modile, and the tri-axial current signals are captured by the
NI-9205 module. The grinder’s state data can be accessed by
other devices through a shared network folder.

Additionally, we extracted and processed the characteris-
tic signals and trained the time-series models using Python
3.6.8 with TensorFlow 2.5.0 on a Ubuntu 18.0.4 system, and
used Matlab for signal analysis. We used a NVIDIA GeForce
GTX3090 GPU with CUDA 11.3 and cuDNN 8.1.0.

B. GRINDING EXPERIMENT TO EXTRACT
TIME-SERIES DATA
To obtain the characteristic signal when grinding the sapphire
wafer, we conducted 14 grinding experiments; we collected
AE, tri-axial vibration, and tri-axial current signals as well as
the state data of the running grinder. The grinding workpiece
was a 4-inch sapphire wafer fixed to a ceramic block center
using wax. The total thickness variance (TTV) after waxing
the wafers ranged from 660 to 680 µm because the initial
wafer thickness and waxing technique differed.

Table 1 lists the grinder’s experimental parameters. The
spindle speed (S1), chuck speed (S2), and feed rate (Z) are
production-line process parameters for the #400 grinding
wheel, and the endpoint thickness is the wafer thickness after
grinding.

The wheel exhibits good grinding performance when the
S1 (motor driver) current loading is 37% during processing;
in contrast, the S1 loading is 40% when the surface condition
of the wheel is loaded with chips or the abrasive is dull.
Therefore, the grinding wheel must be dressed when the

TABLE 1. Experimental grinder parameters.

FIGURE 3. Wheel feed path (blue line) and wafer thickness (red dotted
line) during grinding. The 1h value is the difference value between the
two (green line).

wheel surface is loaded with workpiece chips to ensure good
grinding ability. Poor grinding ability causes wafer edges
to crack or wheel abrasive to break. For this reason, the
grinding wheel was dressed six times during the course of
the experiment with a dressing depth of 0.2 um each time.

Figure 3 shows that the grinding wheel feed follows the
parameter settings (blue line) and the changing thickness of
the wafer being thinned (red dotted line) during grinding;
the green line shows the difference between the two. The
data in the figure was collected from the 14th experiment,
and the X-axis represents the time series of the grinding
process. The relative coordinate system of the Z-axis on the
left axis of the figure is based on the machining coordinate
system, which is based on the plane of the ceramic block.
As this plane also served as the CG reference plane, when
the wheel position is equal to the thickness of the wafer,
this is taken to mean that the grinding wheel is ground to
the wafer. The difference 1h, as expressed by (1), between
the Z-axis position PZ and the wafer thickness TW (DBZPT)
is caused by wheel frame deformation or abrasive fallout or
dullness of the grinding wheel. The right axis (the green line)
represents the difference between the blue and red lines, and
increases over time. These changes in difference values varied
for each experiment; the grinding factors that determine this
change are many and complex, in particular the grinding
wheel, which is one reason for the unpredictable grinding
feed.

1h = TW − PZ (1)

DBZPT is the feed compensated by the grinding wheel,
which means that to thin the wafer to a given thickness,
the grinding wheel must feed a corresponding amount at the
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specified thickness. Because the feed slope is known, the
forecast DBZPT predicts how much further the Z-axis feed
must move to thin the wafer to the specified thickness after a
few seconds: this is thus the ground truth of this study’s time-
series forecasting models. We use median filtering (n=7)
to preprocess the data before model training to reduce data
noise.

C. ACOUSTIC EMISSION SIGNALS
The high frequency and high sensitivity of the AE signal
make it suited for monitoring the grinding state; it eliminates
noise in the grinding environment and provides information
about damage to the wheel and workpiece. Many studies use
the AE signal to identify workpiece surface burn and wafer
edge cracks during grinding, as well as the grinding wheel’s
abrasive grade and surface condition. The AE signal of the
grinding process contains much information about the state
of the wheel [16].

Here we used a fluid AE sensor produced by the Balance
Systems Company, which enables noncontact transmission of
signals through water and operates at frequencies from 10k
to 1MHz. Thus, according to the Nyquist–Shannon sampling
theorem [14], the AE signal is captured by NI-9775 at a
frequency of 2.5 M/s.

YRMS =

√
1
N

∑N

n=1
|xn|2 (2)

σSTD =

√
1
N

∑N

n=1
(xn − µ)2 (3)

Yvariance =
1

n− 1

∑N

n=1
(xn − µ)2 (4)

The root mean square (RMS), as expressed by (2), is a
statistical method for time-domain signal processing. Anal-
ysis of the probability distribution of continuous variables
mainly concerns the data’s central tendency or degree of
dispersion; RMS is a measure of the former [11]. RMS is
thus a representative feature of AE signals and is often used
to assess the magnitude of the signal power. Many studies
confirm that the RMS of the AE signal is positively correlated
with the grinding force, and is thus often used to detect chip
loading or dulled abrasives in the grinding wheel. Standard
deviation (STD) and variance, in turn, as expressed by (3)
and (4), are used to extract features that characterize statistical
dispersion [9].

Figure 4 shows the characteristic frequency band distribu-
tion of the power spectrum (determined by theWelchmethod)
of the AE signal for various grinding durations, where the
characteristic bands at which the condition of the wheel
surface is observed to change during grinding are the 312.5 to
560 kHz segments and 600 to 900 kHz segments. The ratio of
power (ROP), expressed as (5), is used to calculate the power
ratio at a particular frequency band in the spectrum. It is
known that grinding wheels with different bonding grades
exhibit different characteristic frequency band distributions
in the spectrum; thus ROP yields excellent performance in
identifying grinding wheel grades [12]. After observing the

FIGURE 4. Power spectrum density of AE signals at various grinding
durations.

spectrum in the experiments, the frequency band was divided
into ten segments from 100 kHz to 1 MHz, which were then
used as features.

XROP =

∑n2
k=n1

|xk |2∑N−1
k=0 |xk |2

(5)

The high sampling rate of the AE signal makes it easy
to miss details as the wide frequency distributes characteris-
tics during frequency domain analysis. The discrete wavelet
transform (DWT) decomposes feature bands to denoise them
or extract features from them [26]. Here we use Daubechies
10 (Db10) as the mother wavelet ψ [13].
Given the characteristic frequency bands, we selected vari-

ables (a, b) of wavelet packet decomposition as (1, 2) and
(2, 2), where the packet (1, 2) coefficients characterized the
600 to 900 kHz band and the packet (2, 2) coefficients from
312.5 to 560 kHz. The statistical features listed in Table 2
were extracted from packet (1, 2) and (2, 2) coefficients such
as STD, mean absolute deviation (MAD), 2-norm, skewness,
kurtosis, peak factor, impulse factor, and so on [27]. These
features contain much characteristic information, and are
easy to use and calculate.

There are thus 3 time-domain features, 9 frequency-
domain features, and 22 features from two wavelet packets;
the above calculation features a total of 34 items, which are
the time-series features of the AE signal for a single second.

D. VIBRATION SIGNALS
The accelerometer converts the vibration of the mass block—
its displacement—into an electronic signal; accelerometers
are small and low-cost, and can be used for most vibra-
tion measurement applications. The vibration signal is often
used to monitor grinding conditions such as wheel flut-
ter, chip loading, and dullness, and to predict workpiece
surface roughness [28]. Here we used the Benstone 786A
accelerometer with a sensitivity of 100 mV/g produced by
Wilcoxon Research; the sensors were magnetically fixed to
the headstock. Tri-axial grindingwheel vibration signals were
captured by NI-9234 modules at a frequency of 25,600 Hz.

When extracting the time-domain features, we also calcu-
lated the autocorrelation function, as expressed by (6). The
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TABLE 2. Statistical features.

FIGURE 5. Tri-axial vibration spectrograms for 20 and 600 seconds on the
(a) x-axis, (b) y-axis, and (c) z-axis, respectively.

autocorrelation function compares a random variable series
with itself to compute the signal correlation between different
time points. This is often used in signal processing to detect
periodicity and is a significant feature describing random
variables in the time domain.

Y(k) =
E [(Xi − µi)(Xi+k − µi+k )]

σ 2 (6)

The short-time frequency transform (STFT) is utilized to
observe how the frequency of a nonstationary signal changes
over time [29]. The STFT of the signal was determined by

sliding a window of length N over a signal (here N=256)
and calculating the discrete Fourier transform (DFT) of the
window data. Following most studies, the window moves
over the signal at intervals of 1/2 samples. The DFT of the
window data is merged, and the one-dimensional time series
signal is transformed into a two-dimensional matrix repre-
senting time and power spectral density, which is the spectro-
gram [30]. Figure 5 shows the tri-axial vibration spectrogram
during grinding when starting (20 seconds) and when almost
finished (600 seconds). In the tri-axial spectrograms, the
power spectral density of the x-axis is distributed the widest,
with the maximum power in the high-frequency regions,
whereas the power of the z-axis is concentrated in only a few
bands, with a power density generally lower than that of the
y-axis; this reflects the rigidity of the S1 spindle in the tri-
axial direction. We also compared the spectrograms at the
beginning of grinding (a) and at the end (b). After a period
of grinding, the tri-axial power density in high-frequency
regions reduces, which shows the usefulness of the vibration
signal’s time-frequency characteristics as the wheel surface
goes from sharp to dull.

The spectrogram was used to calculate the full-time mean
value of the segmented spectra [31]. After selecting the fre-
quency, all values along the time axis were summed and aver-
aged to obtain the full-time mean for the specific frequency
band as

µss(k) =
1
N

∑fuk

m=flk
|S(m, n)| , (7)

where µss(k) is the full-time mean of the k-th band, N is
the number of matrix elements in the specific band, and
flk and fuk are the upper and lower frequencies of the k-th
band, respectively. The STFT matrix is represented by S,
in which m is a frequency vector and n is a time vector.
When the full-time mean value is calculated, n is the number
of time axis columns. The tri-axial spectrograms here were
segmented into 13 bands to calculate the features of the full-
time mean. Hence, the vibration signal’s features include
12 statistical parameters and 13 full-time mean values. As the
above calculation features 25 items for each axis, the tri-axial
features comprise a total of 75 items.

E. MOTOR CURRENT SIGNALS
In the industry, the motor loading is used to reveal wheel
conditions and poor grinding performance. We thus installed
a current transducer (CT) on the frequency converter of the
tri-axial motor to extract the current signal [25]. We used
LEM’s HTR 100-SB current transducer and measured the
motor loading changes during grinding. The current sig-
nals were captured via a NI-9205 module at a frequency of
25,600 Hz, and we used the absolute mean value: the equiv-
alent current value from the raw data of CT. Figure 6 shows
the changes in motor current for the S1 and S2 axes during
grinding: the motor loads of the S1 and S2 axes increase
as the grinding wheel loses its ability to grind. Therefore,
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FIGURE 6. Current variation of tri-axial motor during grinding.

the tri-axial motor current’s features are 3 equivalent current
values.

F. REAL-TIME GRINDER DATA AND EXTERNAL CONTROL
The vertical grinder in this study outputs the running status
parameters during processing. Every second, the real-time
running status parameters are output to a CSV file, includ-
ing the S1 rotation speed, S1 current loading, S2 rotation
speed, S2 current loading, Z feeding speed, Z current loading,
Z relative coordinate position, and workpiece thickness, for a
total of 8 parameters. When the grinder commences grinding,
a file containing the running status parameters is created in
a shared network folder so that other devices can access the
parameters for analysis.

Likewise, the vertical grinder can be externally controlled
via a CSV parameter file during grinding. The command
parameters in this file include motions and motion parame-
ters. Motion control parameters are used to advance, stop, and
retract the Z-axis motion; to change the rotation speed of the
S1-axis and the S2-axis; and to change the Z-axis feed rate,
feed direction, and retracting distance. An external device can
send a command file to control the grinding process via the
shared network folder when the grinder is operating.

IV. TIME-SERIES FORECASTING
A. TIME-SERIES DATA WINDOWING
We use a sliding window so that data with time sequence
relationships can be entered into the forecasting model and
predicted in the time sequence, where the window slides over
the time sequence data and splits it into past and future time
steps.

The window architecture used in this study for DBZPT
compensation is illustrated in Figure 7. Inputs represent past
data, which is the data of each characteristic signal and run-
ning state in the past p seconds, and the DBZPT at each time
point is the ground truth (learning target) for model training,
which is the labels. The predictions represent future data, pre-
dicting the upcoming p seconds of the DBZPT sequence [32].

FIGURE 7. Time-series data windowing.

For multiple time-step prediction, the model must learn
one period of past data to predict an equal-length period
of future data. Therefore, the inputs and predictions are
composed of a period of length p: input time-series data of
length p, and the model predicts future time-series data of
length p.

We forecast the DBZPT sequence to predict the grind-
ing wheel compensation feeding distance in p seconds.
As the Z-axis feed rate is constant during grinding, the
compensation distance is converted to a compensation time
to finish thinning the wafer to the endpoint thickness.
The forecasting series data focuses on the p-second results
since compensation is performed for p seconds in the
future.

B. MULTI-STEP FORECAST MODELS
To forecast the DBZPT sequence data, we investigate six dif-
ferent styles of multi-step neural network models. We extract
the characteristic signals for each second and combine these
using extraction algorithms. We arrange the features accord-
ing to the time sequence and experimental order as a dataset,
window the data, and use it for network training.We thus train
six models on the same dataset with mean square error (MSE)
loss, the Adam optimizer, and the mean absolute error (MAE)
training metric [33].

1) LINEAR MODEL
The linear model uses a single hidden layer between the input
and output layers, and the hidden layer size is set to p, the
length of a sliding window. No activation is used for the
hidden layer [34].

2) MULTILAYER PERCEPTRON (MLP) MODEL
After evaluating the model architectures with the collected
data, the model architecture of the fully connected (FC) and
the remaining layers is 128 × 128×128 × 64×64, using the
ReLU activation function. No activation function is used for
the regression MLP in the output layer, and dropout neurons
are inserted after FC layers 2 and 3 for regularization, which
is 0.2 [35].
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FIGURE 8. Multiple input C-LSTM network.

FIGURE 9. Multiple input Res-LSTM network.

FIGURE 10. Multiple input AR-LSTM network.

3) LSTM MODEL
For the RNN models, two LSTM are stacked, each with 128
LSTM units. The first LSTM produces output for each input,
whereas the second LSTM returns output only at the last
step [36].

4) C-LSTM MODEL
A 1D convolution layer combines the FC and recurrent layers
(C-LSTM) to build a neural network, as shown in Figure 8.
The 1D convolution layer has multiple kernels for scanning
sequence data for feature extraction because the kernels tra-
verse numerous time steps to obtain context information.
In this way we extract the correlation between sequences and
efficiently process large amounts of time-series data. In the
C-LSTM architecture using 1D convolution operations with
32 different filter kernels of 1×4 size and 1 stride, all network
activation functions were ReLU. The FC layer sizes were
both 64, and two LSTM layers of size 64 were stacked in the
recurrent layers. Because this was a single-shot network, the
recurrent layers returned the output at the last step [37], [38].

5) RES-LSTM MODEL
The residual LSTM (Res-LSTM) model uses shortcut con-
nections to build the RNN model, as shown in Figure 9.
A residual block with a shortcut connection adds its input to
its output, which is then the input plus the residual (Delta).
Termed residual learning, this approach allows blocks to
avoid degradation during feature transfer, even if it does not
learn new features. Moreover, during initial network training,
its weights are all zero; residual learning causes the network
to output the identity function, which helps the network con-
verge faster. In the Res-LSTM architecture, two LSTM layers
of size 64 are stacked in the residual block. Again, as this
is a single-step network, the network returns an output for
each input. After the warmups, the last output is used as the
prediction result for the 2p-th second [39].

6) AR-LSTM MODEL
In the autoregressive model, the prediction output of each
time step is fed back to itself to predict the next time
step, as shown in Figure 10. Therefore, each output makes
a prediction based on the previous one, as in the classic
RNN architecture. We constructed an autoregressive LSTM
(AR-LSTM) model and used single-step output because the
network decomposed prediction into individual time steps
for the recurrent next step, using 128 LSTM units. The final
prediction output was taken as the forecast for the 2p-th
second [40].

C. PERFORMANCE COMPARISON BETWEEN
CHARACTERISTIC SIGNALS AND MODELS
For the various forecasting models and features, we evaluated
the performance using grinding state data. We compared fea-
tures of different signals to determine which signals were the
best predictors of grinding thickness compensation. The fea-
tures included 34 features from the AE signal, 78 items from
the tri-axial vibration signals and motor current values, and
8 items from the grinder running state, where 6 were training
model features such as the S1 speed, S1 motor loading, S2
speed, S2 motor loading, Z motor loading, and Z relative
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TABLE 3. Results for different signals and models.

coordinate position. The final DBZPT was the training data
label. In this way, we trained models using features from the
various signals to represent the grinding state and compare
which signal features yielded better prediction performance.

Table 3 shows the cross-validation results separated by
signal and model in terms of MAE between the sequence
forecasted by the model and the ground-truth sequence.
In the dataset from 14 complete grinding experiments, the
time-series data from the first to the twelfth experiments
was concatenated as the training data, and the last two parts
were used for validation and the testing set, respectively.
Res-LSTM outperforms the other models.

We also evaluated the results using the combined signals.
The AE signal and the combined signal both yield good
prediction results for the Res-LSTM model: they perform
equally well on the test set but the combined signal is bet-
ter on the validation set. This suggests that the combined
signal provides more stable prediction results. Therefore,
Res-LSTM and the combined signal were used to implement
the thickness compensation system.

D. FORECAST PERIOD ASSESSMENT
We evaluated the prediction performance using different
period lengths for the forecast model. Previous training
models used a 60-second sliding window and required
architecture design, hyperparameter fine-tuning, and fea-
ture comparison. Each experiment took about 600 seconds
to complete one grinding run, as the feed rate was set to
0.06 mm/sec. Thus, we considered the input and prediction
periods when deciding the p value for the sliding window.

Hence in this section we evaluate the model for different
period lengths to determine whether the forecast error was
within the allowable range (<7um), that is, the grinding
accuracy error of a traditional grinder with the PG module.
Figure 11 shows the MAE of six forecast models for 6 differ-
ent period lengths. To prevent multiplier effects and ensure
representative training results, we ensured that the period
lengths were not multiples of each other. The results show
that the Res-LSTM performance is still best; also, the predic-
tion errors for different periods are nearly almost all within
the design range, except for p = 300. Table 4 shows the
prediction error of the Res-LSTM model on the test dataset:
the forecast period should be set according to the process
requirements, as long as the period is less than 180 seconds.

FIGURE 11. Results of 6 models at different period lengths: (a) 13 sec.
(b) 27 sec. (c) 60 sec. (d) 110 sec. (e) 187 sec. (f) 300 sec.

TABLE 4. Prediction results for different period lengths.

We thus sought to better understand the stability and accu-
racy of different period lengths with the forecast model. The
endpoint compensation approach included an input period
and a prediction period covered by a sliding window, as illus-
trated in Figure 7. We calculated the compensation distance
(ŶCP) according to the feed speed to estimate the time when
endpoint thickness would be reached (ŶCT ) given the input
and prediction periods, and then compensated for the thick-
ness endpoint (�t ) using ŶCT .

V. METHOD VERIFICATION RESULTS AND DISCUSSION
A. FORECAST MODEL FOR DBZPT COMPENSATION
We use characteristic signals and a forecast model for online
DBZPT compensation. Algorithm 1 of the program builds
on the IPC, which collects characteristic signal data and also
transmits the state data to the grinder via a shared network
folder, as shown in Figure 2. Therefore, the program contains
functions for extracting the characteristic signals, collecting
the grinder state data, forecasting the DBZPT, and sending
commands to the grinder. Since two computers exchange the
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FIGURE 12. Proposed approach.

data, the system times of the computers must be synchronized
before executing the program.

A flowchart of the proposed method is illustrated in
Figure 12. The signal and task status data is divided into two
characteristic signals and one set of grinding state data. As the
state data was exported as a file, the state data was delayed,
which necessitated further data alignment.

The forecast starting point in the program is not derived
from the grinder state data, although the command is issued
by the CGmodule and received by the DAQNI-9205module.
When the CG module detects that the wafer thickness has
reached the forecast starting point, the prediction module
begins receiving each signal’s features.When the input length
has reached p (that is, the length of the input period, see
Figure 7), the features are input to the time-series forecast
model according to their timestamps. Thus we use the times-
tamps to find the file with the grinder signal data from the
network folder and concatenate features with the same times-
tamp. The features for period p are then input to the time-
series forecast model.

After Res-LSTM outputs the prediction, the resulting
DBZPT compensation distance ŶCP is transformed to the
compensation time ŶCT . Thus, at time �t , when the wafer
thickness endpoint has been reached, the command file is
used to stop feeding to the grinder. There is a 0.5-sec delay
after the grinder receives the command to stop, but the
effect of this delay on the resultant endpoint thickness is
insignificant.

FIGURE 13. Sapphire wafer thinning results.

In the AE acquisition module, a function that determines
the AERMS value was added to record the Z-axis position
when the grinding wheel contacts the wafer to warn the user
that the grinding wheel has touched the wafer.

B. EXPERIMENTAL RESULTS AND DISCUSSION
To verify the feasibility of the proposed approach, we used the
proposed forecast compensation method in real-world wafer
thinning experiments. Sapphire wafer thinning was executed
to compare the endpoint thickness after grinding between
the PG, CG, and CG+Res-LSTM grinder. Table 1 shows the
grinder parameters.

Figure 13 shows the grinding results with three measure-
ment approaches as the average, minimum, and maximum
thickness distributions of PB (black line), CG (green line),
and CG+Res-LSTM (blue line), respectively. The thick red
line is the target thickness of 0.183 mm; the process must not
fall below the target thickness. The CG module, the whole
contact measurement, has the smallest error in endpoint
thickness. The average thickness of the proposed approach
is only 1 µm greater than that of the CG module, and the
maximum and minimum distributions are similar. The PG
module yields the worst performance.

For the PG experiment, the grinder used two feeding
stages: coarse grinding with fast feeding at the beginning
and then fine grinding with slow feeding. After the coarse
grinding stage, grinding was paused to measure the thickness
using the PG, and then the second stage of slow fine grind-
ing proceeded to remove the remaining thickness. During
this process, the wheel wear ratio was used to estimate the
grinding feed compensation, which yielded a significant error
in terms of workpiece accuracy. The grinder manufacturer
provided 80 records of PG thickness data for sapphire wafer
grinding. The wafer thickness endpoint (�) was 0.183 mm,
the average thickness was 0.191 mm, and the upper and lower
error limits were 0.2015 mm and 0.185 mm, respectively.

For the CG experiment, the grinder was set for a sin-
gle infeed. The CG module has a measurement error of
±3 µm [41]. Thus, although the target wafer thickness
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was 0.183 mm, � was set to 0.186 mm to avoid exces-
sive grinding. In addition, to prevent the CG from scratch-
ing the wafer, it was withdrawn before reaching the target
thickness. The grinder manufacturer provided 64 records of
CG thickness data for sapphire wafer grinding. The wafer
thickness endpoint (�) was 0.186 mm, the average thickness
was 0.1862 mm, and the upper and lower error limits were
0.1894 mm and 0.1840 mm, respectively.

For the proposed CG+Res-LSTM approach, we conducted
10 runs of validation experiments. The wafer thickness end-
point (�) was 0.186 mm, as for the CG approach. The sliding
window’s period (p) was set to 60 seconds, and we used the
Res-LSTM forecast model. The threshold value of AERMS
was 0.5. After grinding was completed, we waited 2 seconds
for the grinding wheel to rise. The average thickness of the
experiment was 0.1872 mm, and the upper and lower error
limits were 0.1902 mm and 0.1852 mm, respectively.

As this study’s forecast model and training data were all
from the CG module, the experimental results are similar
to the module results, as expected. However, as this model
exhibits forecast error as well as delay during communication
or file I/O, the average thickness is 0.001 mm more than
the CG module. Since this loss is within the CG module’s
error range, it does not affect the backend polishing process.
This result verifies that the DBZPT compensation approach
accurately predicts changes in grinding thickness and com-
pensates for this, mitigating CG wear. Also, the fact that the
forecast error for a 180-second period is within the allowable
range suggests that using a shorter period would yield similar
performance. Then, we note that the stability of the sensor
determines the quality of the wafer endpoint thickness, so
more thinning and gap measurements for grinding can be
further investigated.

VI. CONCLUSION
We propose a forecast-based endpoint thickness and online
error compensation approach for the grinding of hard, brittle
material, where AE, vibration, current signals, and grind-
ing state data are utilized as time-series input features.
We analyze the time-frequency characteristics of the AE,
tri-axial vibration, and current signals in the grinding pro-
cess to develop preprocessing and feature extraction meth-
ods for each signal. We construct six different multi-signal
time-series forecast models and evaluate their performance
through verification and testing, and show that Res-LSTM
yields the best performance. We also investigate prediction
using different period lengths for the forecast model, show-
ing good performance for periods shorter than 180 seconds.
We use the resultant compensation approach with the forecast
model in wafer thinning experiments and compare the results
of the PG andCGmodules. The results attest the effectiveness
and performance of the proposed CG + Res-LSTM method,
which can be extended to other grinding types and materials.
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