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ABSTRACT Energy Harvesting technology contributes significantly to green cellular networking by
ensuring self-sustainability and extinguishing environmental hazards. Due to the imbalance between the
harvested energy and traffic load of the base stations (BSs), energy cooperation has become a crucial
requirement. However, the decision of optimal energy cooperation among the BSs in amulti-operator cellular
network is a challenging task due to the consideration of various factors, such as cost, loss of energy,
future information of traffic load, and harvested energy of the BSs, etc. The two conflicting objectives
are minimizing the energy buying cost and the loss of energy while transferring through the power links.
In this work, we present an optimal energy cooperation framework, formulated as a multi-objective linear
programming (MOLP) problem which brings a trade-off between the two above-mentioned conflicting
objectives considering the harvested energy and load of the BSs at future time slots. For the prediction
of harvested energy of the BSs, we develop a Deep Q-Learning-based prediction method that intelligently
increases measurement accuracy through continuous exploration and exploitation. The results of simulation
experiments carried out in MATLAB depict that the proposed multi-operator energy cooperation framework
outperforms state-of-the-art works in terms of cost, performance, and energy-loss reduction.

INDEX TERMS Energy harvesting, green cellular networking, energy cooperation, energy sustainability,
deep Q-learning, optimization.

I. INTRODUCTION
The Cellular telecommunication has been playing a crucial
role in the domain of information and communication tech-
nology (ICT). At present, the number ofmobile phone users is
drastically increasing and currently, it is nearly 7.8 billion [1],
[2]. With the advent of mobile Internet services and the emer-
gence of data-intensive applications, the volume of mobile
data traffic in the cellular network is surging up gradually [3].
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And to keep pace with them, the deployment of cellular base
stations (BSs) is also being escalated.

The major part of energy consumption in the cellular net-
work (around 60% - 80%) is held by BSs [4]. Therefore, the
increase in the number of BSs contributes to higher energy
consumption and increased operating expenditure (OPEX),
a large part of which is dominated by electric bills [5]. Due
to the shortage and unavailability of electricity in the rural
areas, the mobile operators proceeded towards using diesel
generators which is not considered a viable option because
of its increased OPEX approximately by 10 times [6]. The
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revenue of mobile operators is decreasing because of the
ever-increasing OPEX generated from the maintenance of
the increased number of BSs. On the other hand, electric-
ity consumption in the cellular BSs contributes immensely
to carbon emission thus causing environmental hazards [7].
Therefore, while dealing with the increased number of BSs,
it is not possible to provide power to all of them from the
electricity grid in a cost-effective way [8]. Therefore, the
energy harvesting (EH) technology of green wireless cellular
networks is anticipated as a promising technology that will
be cost-effective and environmentally friendly.

Energy harvesting is an emerging technology that converts
the ambient energy from the environment (from solar, wind,
sound, kinetic energy, etc.) to electrical energy that will power
autonomous electronic devices to operate or store the energy
for later use [9]. This technology can enable low-power BSs
to capture energy from the environment and serve its users
with that energy. However, the availability of ambient envi-
ronmental energy is uncertain in most cases, such as, solar
energy will be unavailable during rainy days. Therefore, com-
bining energy-harvesting capable BSs with BSs purchasing
energy from electrical grids can be considered a promising
solution that will diminish the OPEX of mobile operators and
also cause less environmental hazard [10].

In this research work, we advocate cellular networks where
energy harvesting and storage devices will be implemented
inside the BSs. The BSs are of two types, i.e., off-grid BSs
that only operate using the harvested energy and on-grid BSs
that are also capable of purchasing energy from the electricity
grid as well as using the harvested energy. Because of the
imbalance in harvested energy and loads in the BSs, energy
sharing among them has become a crucial requirement [11].

Energy cooperation among the BSs has been well studied
in a few papers [12], [13], [14]. In [12], the authors have
introduced the concept of energy sharing between two nodes
in the networks. In [13], the authors have proposed optimal
energy allocation among the BSs as a convex optimization
problem with an objective to minimize the energy mis-
matches and the distance between the source and consumer
BSs. However, they have not consideredmulti-operator cellu-
lar networks and any pricingwhile sharing energy. In [14], the
authors have proposed an optimized energy transfer frame-
work among the BSs considering energy pricing. However,
they only tried to minimize the energy buying cost of the
consumer BSs and they did not consider the minimization of
the loss of energy while transferring energy from source BSs
to consumer BSs.

Energy cooperation plays a vital role in ensuring
self-sufficiency and promoting green cellular networking.
However, taking the decision of optimal energy cooperation is
a challenging task due to the consideration of various factors,
such as cost, service performance, energy loss, etc. In a real-
life cellular network scenario, usually, the BSs of different
operators are deployed more closely in a certain geographical
area or zone than the BSs of the same operator. Therefore,

in most cases, inter-operator BS distance is much less than
that of intra-operator BSs. If two BSs of different operators
share energy among themselves, the consumer BS will have
to pay a price to the source BS. On the other hand, receiving
energy from a source BS of the same operator encounters no
energy buying cost.

While transferring energy from a source BS to a consumer
BS through the sequence of power links between them, a cer-
tain amount of energy loss occurs due to the resistivity of
the link and it is proportional to the length of the power
link between them [15]. The more the distance between the
source and consumer BSs, the more energy loss will be
encountered. Therefore, to minimize energy loss, it will be
better if consumer BSs receive energy from nearby source
BSs. However, this will increase the energy buying cost of the
consumer BSs as BSs of different operators are usually more
adjacent and it requires energy buying cost receiving energy
from a different operator BS. On the other hand, to minimize
cost, it is preferable to choose the source BS of the same
operator but the distance between source and consumer BSs
rises in this case thus resulting in an increased loss of energy.
Therefore, minimizing both the loss of energy and energy
buying costs are two conflicting objectives. In this paper,
we have developed a framework for theMinimization ofCost
and Eenergy Loss namely MCEL for cellular networks. The
main contributions of this paper are summarised as follows:
• We formulate an optimal energy cooperation frame-
work for the BSs of multiple network operators as a
multi-objective linear programming (MOLP) problem.

• We bring a trade-off between the above-mentioned two
conflicting objectives, i.e., minimizing the energy buy-
ing cost of the consumer BSs and minimizing the loss of
energy while transferring through power links.

• We have explored and exploited the deep Q-learning
method for the prediction of harvested energy of the
BSs in the future time slot while determining the energy
demand/surplus of the BSs.

• We have simulated our proposed system in MATLAB
and studied comprehensive performance analysis and
compared the proposed system with other state-of-the-
art works.

The rest of the paper is organized as follows. Section II
presents some related works. Sections III and IV describe the
system architecture and solution approach of our proposed
system respectively. Section V represents the performance of
the proposed solution and comparison with other state-of-the-
art works. Finally, section VI presents the conclusion which
summarizes our contribution and future scope of work.

II. RELATED WORKS
Due to the rapid increase in the number of BSs contributing
to a higher carbon footprint, energy harvesting in the BSs is
gaining much attention. Many international research projects
have been working on green cellular networking and energy
efficiency in cellular networking over the decade, such as
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EARTH [16], ECONET [17], TREND [18] etc. A wide range
of work has been done on energy management and redistri-
bution among the BSs in a cellular network. In [19], an opti-
mal energy management solution is given for the BSs with
energy harvesting capability connected to the electrical grid
where they tried to minimize the cost of energy buying from
the grid. In [20], multiple electrical grid retailers have been
encountered and energy management of the BSs has been
presented to minimize cost and carbon footprint. However,
they didn’t consider any energy sharing among the BSs to
meet the energy demands.

Energy cooperation among the BSs has been studied in
a good number of works [21], [22], [23], [24], [25], [26].
However, in [21], the authors have not encountered energy
harvesting at the BS sites and have not studied the uncertainty
related to it. In [26], the case of energy sharing is studied for
two sustainable BSs and the energy is transferred through
the direct link between them. Several energy cooperation
architectures have been presented in the literature. In [27],
an energy-sharing scheme is given, where an entity called
an aggregator, which works as a mediator between a group
of BSs and the electrical power grid. When the BSs have
surplus energy they inject power into the aggregator and in
case of shortage, they can drag power from it. In this scheme,
some amount of harvested energy can get wasted if none of
the BSs drags it when it is injected. In [28], wireless power
transfer (WPT) and packet power grid (PPG) energy-sharing
architectures are presented. Their extensive analysis shows
that the power transfer efficiency of WPT is not as good as
PPG [29].

The authors of [13] have proposed an energy cooperation
framework among the BSs and they have tried to minimize
the distance between source and consumer BSs to minimize
the loss of energy while transferring through the power link
between them. They have also tried tominimize themismatch
between the shareable energy of source BSs and the energy
demand of consumer BSs. However, they have not considered
a multi-operator network scenario and have not encountered
any energy pricingwhich is not practical in real life. They also
do not consider the prediction of traffic load and harvested
energy at future time slots of a certain BS. Rather, they have
calculated the energy demand or shareable surplus energy of
a BS based on a threshold battery state.

In [14], the authors have proposed an optimal energy-
sharing framework that focuses on the minimization of the
energy buying cost of the consumer BSs. However, they have
not considered the multi-operator network scenario. They
also don’t consider the loss of energy while transferring
energy from source to consumer BSs. For determining the
energy demand of the BSs, they have used threshold energy
levels rather than using any prediction of harvested energy
and traffic load of the BSs in the next time slot. In [30],
the authors have proposed an energy cooperation framework
among the BSs such that the loss of energy due to energy
transfer between source and consumer BSs is minimized.

FIGURE 1. Energy cooperation architecture in multi-operator cellular
networks.

They have presented a prediction approach for harvested
energy and traffic load of the BSs to determine the energy
demand of the BSs in future time slots. However, they do
not consider multi-operator cellular networks and did not
consider any energy pricing of the BSs.

None of the existing works considers the trade-off between
the two conflicting objectives, i.e., to make a good balance
between minimizing the energy buying cost of the BSs and
minimizing the loss of energy due to energy transfer. In this
paper, we present an optimal energy cooperation framework
that brings a trade-off between these two conflicting objec-
tives. We have considered the multi-operator cellular network
scenarios and the prediction of harvested energy and traffic
load of the BSs for determining the demand of consumer BSs
and the available energy of the source BSs in future time slots.

III. SYSTEM MODEL AND ASSUMPTIONS
The system architecture of our proposed system is repre-
sented in Fig. 1. Here, we have considered a multi-operator
cellular network comprising a set of BSs, denoted by N .

Each BS is equipped with a solar energy harvestingmodule
and energy storage. Thus, they are capable of solar energy
harvesting and storing the energy for later use. The BSs are
classified into two types, i.e., on-grid BS and off-grid BS.
The off-grid BSs are only bounded to operate and serve their
users using the energy they acquire from energy harvesting
or they can use the derived energy from other BSs in case of
energy shortage. And in the case of surplus energy, they can
be energy sources and transfer energy to other consumers’
BSs. On the other hand, the on-grid BSs can purchase energy
from the grid in case of energy shortage along with using their
own harvested energy. In case of energy surplus, the on-grid
BSs will serve the consumer BSs by transferring energy, and
the residual energy after the energy sharingwith the consumer
BSs will be sold back to the grid. The off-grid BSs, denoted
by Noff ⊂ N , can act both as a source BS and a consumer BS
whereas the on-grid BSs, denoted by Non ⊂ N , can only act
as a source BS when it has an energy surplus.

A packet power grid (PPG) is implemented in this network
for energy sharing among the BSs. In PPG, an entity called
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TABLE 1. Notation table.

energy router is responsible for taking the decision of energy
routing and finding suitable source BSs for the consumer BSs
under it from where the consumer BSs can seek energy [13].
An energy router is responsible for maintaining the energy
cooperation among the BSs of a certain area. The energy
routers can collaborate and manage source BSs for that
energy router has a shortage of source BSs to fulfill the energy
demand of the consumer BSs under its domain. According
to [15], the BSs are connected through a sequence of DC
power lines and the energy transfer between them occurs
in time division multiplexing (TDM) fashion. That means,
when a particular link is busy transmitting the energy of a
particular energy trade, it can not be accessed for any other
energy transmissions. A single path comprising a sequence
of one or more power links is considered from one BS to
another in this network. While transferring energy from one
BS to another, a certain amount of energy loss is induced that
is proportional to the resistivity as well as the length of the
power link between the source and consumer BS. We assume
that the time is slotted and the length of the one-time slot is
denoted by τ . The major notations used to design MCEL and
their descriptions are presented in table 1.

IV. DESIGN OF MCEL
In this section, we unfold the operational details of vari-
ous components of the proposed energy cooperation system,
MCEL. First, we determine the source and consumer BSs
based on their predicted energy harvesting and consumption
profiles. Then, we present an optimization framework for
optimal energy cooperation among the BSs. An energy router

manages the allocation of optimal energy sources for the
consumer BSs under its domain.

A. DETERMINING SOURCE AND CONSUMER BSs
The energy state of an off-grid BS i ∈ Noff at the beginning
of a time slot t + 1 is represented by,

Bi(t + 1) = Bi(t)+ Ehi (t)− E
c
i (t)± E

s
i (t), (1)

where, Bi(t) is the stored energy of BS i ∈ Noff at the
beginning of time slot t , Ehi (t) is the harvested energy of BS
i ∈ Noff during time slot t , Eci (t) is the energy consumption of
BS i ∈ Noff during time slot t and Esi (t) is the amount of total
energy transferred during time slot t , which will be added if
BS i ∈ Noff was a consumer or subtracted if BS i ∈ Noff was
a source at time slot t .

On the other hand, the energy state of an on-grid BS i ∈ Non
at the beginning of a time slot t + 1 is represented by,

Bi(t + 1) = Bi(t)+ Ehi (t)− E
c
i (t)− E

s
i (t)± Gi(t), (2)

where, Bi(t) is the stored energy of BS i ∈ Non at the
beginning of time slot t , Ehi (t) is the harvested energy of BS
i ∈ Non during time slot t , Eci (t) is the energy consumption
of BS i ∈ Non during time slot t , Esi (t) is the amount of total
energy transferred from BS i ∈ Non during time slot t and
Gi(t) is the amount of energy shared with the grid at time
slot t. It will be added if energy is purchased from the grid.
Otherwise, it will be subtracted if energy is transferred to the
grid at time slot t .
The set of consumer BSs under the router where the system

is running is denoted by X c and the set of source BSs is
denoted by X s. The traffic load of a BS i ∈ N at the next
time slot is denoted by Lpi (t + 1) and we calculate it using
a hybrid traffic prediction model according to [31] which
is a combination of double seasonal ARIMA (DSARIMA)
and long-short term memory (LSTM) based networks. The
energy needed for BS i ∈ N to serve the predicted load at
time slot t + 1 is represented by Ec

′

i (t + 1). The predicted
harvested energy of a BS i ∈ N in the next time slot is denoted
by Eh

′

i (t + 1) and we have proposed a deep Q-learning based
approach to derive this.

For a particular BS (off-grid or on-grid) i ∈ N , if Ec
′

i (t +
1) − {Bi(t + 1) + Eh

′

i (t + 1)} ≥ ωi, where ωi denotes a
threshold energy level value that BS i ∈ N wants to reserve
as backup, it acts as an energy source at time slot t + 1 and
the amount of energy it is ready to transfer to other consumer
BSs is presented by,

Ei = Bi(t + 1)+ Eh
′

i (t + 1)− Ec
′

i (t + 1)− ωi. (3)

Otherwise, if the BS is off-grid, i.e., BS i ∈ Noff , it behaves
as a consumer BS and the amount of its energy demand is
presented by,

di = Ec
′

i (t + 1)− Bi(t + 1)− Eh
′

i (t + 1). (4)

And if the BS is on-grid, i.e., BS i ∈ Non, it purchases energy
from the electrical grid and the amount of its purchased
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energy is denoted by,

Gi(t + 1) = Ec
′

i (t + 1)− Bi(t + 1)− Eh
′

i (t + 1). (5)

B. ENERGY HARVESTING PREDICTION MODEL
In this section, we present a Deep-Q-Learning (DQL) based
approach for the prediction of the harvested energy of a
particular BS i ∈ N . Exponentially-weightedmoving average
(EWMA) is a well-known and most used energy prediction
algorithm which assumes that the harvested energy of a cer-
tain time slot shows a similarity with the exact time slot of
the previous days [32]. In EWMA, the harvested energy for
a particular time slot is predicted as a weighted average of
the historical data of harvesting energy and prediction during
the same time slot from the previous days. The weights are
exponential which results in gradually decreasing weights for
the older data. The predicted harvested energy for BS i ∈ N
at time slot t of the day d according to EWMA is represented
by,

Ei(d, t) = β × Ei(d − 1, t)+ (1− β)× Ehi (d − 1, t), (6)

where, Ei(d − 1, t) is the predicted energy at time slot t of
the previous day according to EWMA, Ehi (d − 1, t) is the
actual harvested energy at time slot t of the previous day,
β is the weight factor and β ∈ [0, 1]. EWMA exhibits a
good accuracy of prediction in the areas where the weather
remains stable. However, it will produce more prediction
errors in case of frequently changing weather. The concept of
EWMA combined with the consideration of current weather
conditions, i.e., how the weather is changing in the most
recent time slots is essential for frequent weather changing
scenarios [33]. For ensuring this, we consider the energy
generation information of n recent previous time slots. The
modified equation of predicted energy of BS i ∈ N for time
slot t is presented by,

Eh
′

i (t) = Ei(d, t)× (1+ η), (7)

where, Ei(d, t) is the amount of predicted energy at time slot
t of the present day according to EWMA and η is the weather
changing ratio which represents the average harvested energy
increasing/decreasing ratio of the previous slots. The value
of η can be positive if there occurs an increase of harvested
energy in the previous time slots on average, otherwise,
negative. Now, we will describe the attributes of our deep
Q-network (DQN) and its training process in the subsections.

1) SYSTEM STATE SPACE
As in our system model, each day is divided into slots and the
length of each time slot is τ . There is a total of T repetitive
time slots in a day. Each state in DQN is determined by the
corresponding time slot and the actual harvested energy of BS
i ∈ N during n previous time slots. System state at time slot t
is represented by st = {t,Ehi (t−n),E

h
i (t−n+1), . . . ,E

h
i (t−

1)}. Therefore, the system state space of our DQN system can
be represented by,

S = {s1, s2, s3, . . . , sT }. (8)

2) ACTION SPACE
The harvested energy is estimated according to Eq. (7) in
our prediction algorithm. We have considered three different
ways to calculate the weather changing ratio, η, and these
three different ways represent our possible actions from a
state in the DQN system. Therefore, the action space can be
presented by,

A = {a1, a2, a3}, (9)

where, action a1 is calculating η considering all of the n
previous time slots. In action a2, we choose those time slots
from n previous slots whose energy harvesting value falls in a
threshold range. And, in action a3, we choose those time slots
whose energy harvesting value deviates by a certain allowable
amount from the mean value of the harvested energy of n
previous time slots.

According to action a1, the weather-changing ratio is cal-
culated by the following equation,

η =

t−1∑
t ′=t−n

Pe(t ′)× R(t ′)× t ′

t−1∑
t ′=t−n

t ′
, (10)

where, Pe(t ′) is the prediction error ratio at time slot t ′,
R(t ′) is the prediction reliability level of time slot t ′ which
we determine using DQL algorithm. Here, we calculate the
average weather change ratio in terms of the fluctuation of
actual harvested energy from the predicted energy in the
recent time slots. For giving more priority to the recent time
slots, the slot number is multiplied as a weight. The prediction
error ratio for any time slot t is presented by,

Pe(t) =
Ehi (t)− E

h′
i (t)

Eh
′

i (t)
, (11)

where, Ehi (t) is the actual harvested energy and Eh
′

i (t) is the
predicted harvested energy of BS i ∈ N at time slot t .
According to action a2, the weather-changing ratio is pre-

sented by the following equation,

η =

t−1∑
t ′=t−n

Pe(t ′)× R(t ′)× t ′ × I
{∇t

min≤E
h
i (t
′)≤∇t

max }

t−1∑
t ′=t−n

t ′ × I
{∇t

min≤E
h
i (t
′)≤∇t

max }

. (12)

Here, I{.} is an indicator function whose value is 1 when
the event {.} is true, otherwise, 0. Here, we are considering
those previous time slots whose actual harvested energy falls
in a threshold range [∇t

min,∇t
max]. In this paper, we have

calculated these threshold values by taking two standard
deviation ranges from the mean value of harvested energy of
the corresponding BS during the particular time slot of the
previous 30 days.
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Finally, according to action a3, the weather-changing ratio
can be calculated by the following equation,

η =

t−1∑
t ′=t−n

Pe(t ′)× R(t ′)× t ′ × I
{|Ehi (t

′)−µh|≤λ}

t−1∑
t ′=t−n

t ′ × I
{|Ehi (t

′)−µh|≤λ}

, (13)

where, µh is the statistical mean of the harvested energy
of previous n time slots of BS i ∈ N . λ is the allowable
difference of harvested energy of a particular time slot from
the mean value. The statistical mean of the harvested energy
of the recent previous n time slots is presented by,

µh =
1
n

t−1∑
t ′=t−n

Ehi (t
′). (14)

Here, we take the sum of harvested energy of n previous
time slots and divide it by n to derive the mean value.

3) REWARD
For energy prediction at each time slot, there will be a reward
based on the prediction accuracy. This will help the agent
learn and adjust its action accordingly in order to derive more
precision in predicting the harvested energy. The reward for
taking an action a ∈ A from state st can be represented by,

r(st , a) =

{
1, if Pe(t) < Pemax
−1, otherwise

, (15)

where, Pmax is the maximum allowable prediction error ratio
in the system. If the prediction error ratio for a certain time
slot becomes less than or equal to the maximum allowable
prediction error ratio, then the agent will obtain a reward of
1. Otherwise, it will obtain a reward of −1.

4) TRAINING OF THE DQN
For accelerating the learning process of the traditional
Q-learning method, we propose a deep Q-learning-based
approach which is also known as a deep Q-network (DQN).
In DQN, a deep neural network (DNN) is used to esti-
mate the Q-function values for different state-action pairs.
As DNN-based Q-Learning faces the problem of instabil-
ity, we integrate the experience replay technique with Deep
Q-Learning [34]. If the DNN learns from the sequential sam-
ples, the learning process often becomes inefficient as there
is a chance of high correlation among the samples. And in
the experience replay technique, a particular experience is
potentially used formanyweight updates that promote greater
data efficiency.

Q-function value in reinforcement learning represents the
quality of choosing an action from a particular state and helps
in policy making. In our Deep Q-Learning method, there is
a DNN called training network with weight vector, θ, and
the system learns by updating the weight of this network.
We represent the reliability level of a certain time slot as the
predicted maximum Q-value by passing the corresponding

Algorithm 1 Training of the Deep Q-Network at Each BS
Input: State space S, action space A.
Output: Trained DQN
1: Initialize replay memory D with capacity N
2: Initialize the training network with state-action function
Q and random weights θ

3: Initialize the target network with the state-action function
Q̂ and weights θ̂ = θ

4: steps = 0
5: for episode=1,M do
6: for t = 1, T do
7: if probability ≥ ϵ then
8: at = Random (A)
9: else
10: at = argmaxa∈AQ(st , a; θ)
11: end if
12: ϱt = r(st , at )
13: D← (st , at , ϱt , st+1)
14: e′← Random-minibatch(D)
15: for all ei ∈ e′ do
16: Zi = ϱi + γ ×maxa′∈A Q̂(si+1, a′; θ̂)
17: L(θ) = {Zi − Q(st , at ; θ)}2
18: Perform Gradient Descent on L(θ) with respect

to θ

19: steps = steps+ 1
20: if steps == c then
21: set θ̂ = θ

22: steps = 0
23: end if
24: end for
25: end for
26: end for
27: return Trained DQN

state to the training network. The prediction reliability at time
slot t , denoted by R(t), can be presented by,

R(t) = max
a∈A

Q(st , a; θ), (16)

where, the reliability level of a time slot t is equal to the
maximum Q-value we obtain from the training network for
the corresponding state st .

In our deep Q-learning model, we use a separate neural
network with weight vector θ̂ to find out the target Q-values.
The target Q-value for taking an action at ∈ A from state st
in Deep Q-Learning is presented by the following equation,

Z = r(st , at )+ γ × max
a′∈A

Q̂(st+1, a′; θ̂). (17)

Here, γ is the discount factor. Here, r(st , at ) the immediate
reward of choosing action at from state st and st+1 is the
next state. The maximum Q-value from the next state is
multiplied by the discount factor and this value is added with
the immediate reward. The Q-value for the next state st+1
is calculated by passing the state to the target network with
weight vector θ̂. The actual predicted Q-value, denoted by
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Q(st , at ; θ), is obtained by passing the state st to training
networkwithweight vector θ. In DQN,we try tominimize the
loss function in terms of the difference between the predicted
Q-value and the target Q-value. The loss function can be
presented as,

L(θ) = {Z − Q(st , at ; θ)}2, (18)

where, the loss function is calculated as the square value of
the difference between the target Q-value and the predicted
Q-value. For updating the weight parameter of the training
network, we perform a gradient descent on the loss function.
To obtain the gradient, we differentiate the loss function with
respect to weight parameter θ and it can be represented by,

∂L(θ)
∂θ
= {r(st , at )+ γ × max

a′∈A
Q̂(st+1, a′; θ̂)

−Q(st , at ; θ)}
∂Q(st , at ; θ)

∂θ
. (19)

Gradient Descent [34] is then performed to update the
weights of the training network to minimize the loss function.
The training process of the DQN is presented by algorithm 1.
At first, we initialize the replay memory D, the training
network with random weights θ and we initialize the tar-
get network with weight parameter, θ̂ = θ. For each state
in each episode, with probability ϵ, we choose a random
action, at . Otherwise, we select the action that gives us the
maximumQ-value for the state in the training network. Then,
we perform the action from the state, observe the reward
and store the transition st , at , the reward we get, and the
next state into the replay memory. After this, we sample a
random minibatch of transition from the replay memory. For
each transition, we calculate the target Q-value, and the loss
function and then perform gradient descent on the weight
parameter of the training network θ. And after each c update,
we clone the training network into the target network by
setting θ̂ = θ.

5) COMPLEXITY ANALYSIS
In this section, we have analyzed the time complexity of
Algorithm 1. Let, |st | denote the size of the state space at time
slot τ . Therefore, the size of the state space of our developed
system is |st | × T . Let, |A| denote the size of the action
space. Therefore, the required time complexity of line 2 is
O(|st |×T ×|A|). In line 10, we have selected an action from
the action setA, and the required time complexity of line 10 is
O(|A|). In line 14, we have selected mini-batch e′ and the size
of the mini-batch is |e′|. Lines 15 to 24 are enclosed in a loop,
which iterates at most |e′| times. Therefore, the worst case
time complexity from lines 5 to 26 isO(M×T × (|A|+|e′|)).
As a result, the overall time complexity of Algorithm 1 is
O(|st | × T × |A| +M × T × (|A| + |e′|)).

C. OPTIMAL ENERGY COOPERATION
In this section, we first formulate the optimal energy cooper-
ation framework. The related calculations and operations are
described in the subsequent sub-sections.

1) PROBLEM FORMULATION
Let, ζij denote the normalized energy buying cost of consumer
BS i ∈ X c from source BS j ∈ X s for the purchased energy.
φij is the energy loss factor due to the transfer of energy from
source BS j ∈ X s to consumer BS i ∈ X c through the DC
power line between them. In our objective function, we bring
a trade-off between minimizing the energy buying cost of the
BSs and minimizing the loss of energy due to energy transfer
among the BSs introducing a priority factor, α. We impose
weight α to energy buying cost minimization of the consumer
BSs and (1 − α) to the minimization of loss of energy due
to energy transfer among the BSs. The objective function is
presented as follows,
Minimize :

W =
∑
i∈X c

∑
j∈X s

{α × ζij + (1− α)× φij} (20)

Here, the value of weight factor α is in between (0, 1]), deter-
mined by the system administrator. The objective function is
subject to the following constraints:

0 ≤ xij ≤ 1, ∀i ∈ X c, ∀j ∈ X s (21)∑
i∈X c

xij ≤ 1, ∀j ∈ X s (22)∑
j∈X s

E sij ≤ di, ∀i ∈ X c (23)

∑
j∈X s

E sij ≥ ρi × di, ∀i ∈ X c (24)

σs <= δm (25)

Here, in constraint (21), xij is a energy sharing factor. The
value of xij is in between [0, 1] and it means the portion of
available energy of source BS j ∈ X s that is transferred
to consumer BS i ∈ X c. This constraint means that a con-
sumer BS can receive any fraction of the available energy
of any source BS. Constraint (22) is the availability con-
straint. It denotes that, the total amount of energy a certain
source BS transfers to the consumer BSs cannot exceed the
available energy of that source BS. Constraint (23) and (24)
together represent the demand constraint. Constraint (23)
means that the total amount of energy a certain consumer
BS receives from the source BSs cannot exceed its energy
demand. Constraint (24) means that the minimum portion of
energy demand set by a consumer BS must be fulfilled by
deriving energy from the source BSs. Constraint (25) means
that the standard deviation of the remaining sharable energy
of the source BSs after all the energy transfers cannot exceed
the maximum allowable value, δm, basically for maintaining
a balance between them and increasing the network lifetime.

2) CALCULATION OF COST
The normalized cost consumer BS i ∈ X c pays to source BS
j ∈ X s for energy transfer is presented by,

ζij =
Cu
ij × E

s
ij

Cu
max × Eumax

, ζij ∈ [0, 1], (26)
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where, Cu
ij is the cost per unit energy source BS j ∈ X s

demands from consumer BS i ∈ X c, xij ∈ [0, 1] means the
fraction of energy that is transferred from source BS j ∈ X s

to consumer BS i ∈ X c, Cu
max is the maximum cost per unit

energy fixed by any source BS in the network and Eumax is the
maximum possible energy that can be transferred from any
source BS to consumer BS in the network. The amount of
energy source BS j ∈ X s transfers to consumer BS i ∈ X c is
denoted by,

E sij = xij × Ej, (27)

where, xij ∈ [0, 1] means the fraction of energy that is
transferred from source BS j ∈ X s to consumer BS i ∈ X c

and Ej is the total amount surplus energy of source BS i ∈ X c

that it is ready to transfer to the consumer BSs.

3) CALCULATION OF ENERGY LOSS FACTOR
The energy loss factor, in case of transferring energy from
source BS j ∈ X s under the domain of energy router k ∈ R
to consumer BS i ∈ X c through the sequence of DC power
lines, is represented by,

φij =
E sij − E ′ij
E lmax

, φij ∈ [0, 1], (28)

where, E ′ij is the amount of energy received by the consumer
BS i ∈ X c after transferring through the power link. And E lij is
the maximum amount of energy loss observed in the network.

4) COMPUTING STANDARD DEVIATION OF REMAINING
SHARABLE ENERGY
The amount of remaining energy of source BS j ∈ X s after
the energy cooperation is defined by,

rj = Ej −
∑
i∈X c

E sij. (29)

Here, we are subtracting the total amount of energy trans-
ferred to the consumers from the sharable energy of the source
bs j ∈ X s. The standard deviation of the remaining energy of
the source BSs after performing energy sharing is presented
by,

σs =

√∑
j∈X s (rj − µ)2

s
, (30)

where, µ is the mean remaining energy of the source BSs and
s is the total number of source BSs.

V. PERFORMANCE EVALUATION
In this section, we implement our proposed MCEL system
and we present the comparison of the performance of our pro-
posed system with other state-of-the-art works: CONV [13],
MinCost [14] and GPs+MPC+CONV [30]. We have imple-
mented our proposed energy harvesting prediction model
using MATLAB [35]. To solve our optimal energy cooper-
ation problem, we use CPLEX solver at NEOS optimization
server [36] (2x Intel Xeon E5-2698@ 2.3-GHz 569 CPU and
92-GB RAM).

TABLE 2. Simulation parameters.

A. SIMULATION ENVIRONMENT
For the experimental environment setup, we have considered
a simulation area of 2000 × 2000 m2, 5 energy routers, and
5 to 25 consumer BSs under each energy router. The energy
harvesting data and traffic load data were achieved randomly
following a practical scenario according to [13]. We have
considered 24 time slots in a day and the length of each
time slot is one hour. For the deep Q-Network, we have
considered three hidden layers each having 64 nodes. The
ReLU activation function is used for the hidden layers and
the Softmax activation function is used for the output layer.
The learning rate of the deep Q-Network is set to 0.001.
We have plotted the data points in each graph after taking
the average result from 30 runs. The value and the range of
performance parameters are presented in Table 2.

B. PERFORMANCE METRICS
For comparing the performance of our proposed system, the
following performance metrics have been considered:

• The normalized cost defines the normalized value of
total energy buying costs of the consumer BSs to fulfill
the services of the users.

• The normalized loss of energy is defined by the normal-
ized value of the total loss of energy occurring from the
energy transfer among the BSs through the DC power
lines.

• Integrated performance is defined by the integrated met-
rics of energy buying costs and loss of energy while
transferring through the DC power lines. It can be pre-
sented by the following equation:

Integrated Performance = 1− 0.5× (ϑ + κ), (31)

where, ϑ is the normalized energy buying cost of the
BSs and κ is the normalized loss of energy due to energy
transfer among the BSs. The value of the integrated
performance is between [0, 1]. The higher the value of
integrated performance, the better the performance of
the system.

• User service disruption is defined as the percentage of
user service requests that can not be fulfilled by the BSs
due to a shortage in the available energy to serve them.
The lower the percentage of user service disruption, the
higher the performance of the system.
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FIGURE 2. Impacts of varying the number of consumer BSs.

C. SIMULATION RESULT
In this section, we present the performance of our proposed
system, MCEL, by varying the number of consumer BSs, the
number of average users per consumer BSs and the number
of source BSs.

1) IMPACT OF A VARYING NUMBER OF CONSUMER BSs
In this experiment, we have varied the number of consumer
BSs keeping the number of source BSs at 15.

Fig. 2(a) represents the impact of varying the number of
consumer BSs on the normalized energy buying cost of the
consumer BSs. From the graph, we can see that, with the
increase in the number of consumer BSs, the normalized
energy buying cost increases. As MinCost only focuses on
the minimization of energy buying cost of the consumer BSs,
it is performing best in this case. However, it doesn’t consider
the loss of energy due to energy transfer among the BSs.
On the other hand, CONV and GPs+MPC+CONV do not
focus on cost minimization. That’s why their performance is
poor in this case. Here, our proposed system MCEL brings a
trade-off between the minimization of the energy buying cost

and the loss of energy and it performs better than CONV and
GPs+MPC+CONV.

Fig. 2(b) depicts the impact of varying the number of
consumer BSs on the normalized loss of energy due to energy
transfer. It can be realized from the graph that, with the
increasing number of consumer BSs, the normalized loss of
energy increases. As CONV and GPs+MPC+CONV only
focus on minimizing the loss of energy, they are performing
better in this case. However, they do not consider the mini-
mization of the energy buying cost of the BSs. On the other
hand, MinCost is performing worst in this case as it does not
consider the loss of energy at all. Here, our proposed system
MCEL is performing better than MinCost.

Fig. 2(c) depicts the impact of varying the number of
consumer BSs on the integrated performance of the system
in terms of normalized cost and loss of energy. It can be
observed from the graph that, with the increase in the num-
ber of consumer BSs, the integrated performance decreases.
In this case, our proposed system MCEL outperforms other
solutions because the other three solutions only focus either
on the minimization of energy buying cost or the loss of
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FIGURE 3. Impacts of varying the average number of users per consumer BSs.

energy due to transfer. When they try to minimize one, the
other increases. As our proposed solution brings a trade-off
between these two conflicting objectives, it is performing
much better than the other three approaches.

Fig. 2(d) depicts the impact of varying the number of
consumer BSs on user service disruption. As MCEL and
GPs+MPC+CONV consider the prediction of harvested
energy of the BSs and traffic load of the BSs, user service
disruption is less for these two solutions than MinCost and
CONV. MinCost and CONV do not consider the prediction
of harvested energy and traffic load of the BSs. Rather they
determine the energy demand of the BSs concerning certain
threshold energy levels. That’s why their performance is poor
in this case and our proposed solutionMCEL outperforms the
other three approaches.

2) IMPACT OF A VARYING NUMBER OF AVERAGE USERS
PER CONSUMER BSs
In this experiment, we have varied the number of average
users per consumer BSs keeping the number of source BSs
and consumer BSs at 15 and 20, respectively.

Fig. 3(a) presents the impact of the varying average num-
bers of users of the consumer BSs on the normalized energy
buying cost of the consumer BSs. It can be observed from
the graph that, with the increase in the number of average
users, the energy buying cost of the consumer BSs increases
as it creates increasing energy demands in the consumer BSs.
As discussed earlier, MinCost only focuses on the minimiza-
tion of the energy buying cost of the consumer BSs, it tends to
achieve it by taking energy mostly from the source BSs of the
same operators. Therefore, MinCost is performing better in
this case. On the other hand, CONV and GPs+MPC+CONV
do not consider the minimization of energy buying cost of the
consumer BSs. For this reason, they are performing worse
in this case. And our proposed system MCEL is performing
better than CONV and GPs+MPC+CONV as it tries to bring
a trade-off between the two conflicting objectives.

Fig. 3(b) depicts the impact of varying the average number
of users of the consumer BSs on the normalized loss of
energy. We can see from the graph that, with the increase in
the number of average users, the loss of energy due to transfer
increases since the energy demands of the consumer BSs
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FIGURE 4. Impacts of varying the number of source BSs.

increase. As a result, the transfer of energy from the source of
consumer BSs and the loss of energy due to energy transfer
increase. As CONV and GPs+MPC+CONV only minimize
the loss of energy due to energy transfer, they are performing
better in this case. On the other hand, as MinCost does not
consider minimizing the loss of energy due to energy transfer
among the BSs, its performance is poor in this case. Here,
our proposed solution MCEL is performing much better than
MinCost.

Fig. 3(c) represents the impact of varying the average
number of users of the consumer BSs on the integrated per-
formance in terms of normalized cost and normalized loss
of energy. It can be observed from the graph that, with the
increasing number of users per consumer BSs, the integrated
performance decreases for all of the four approaches as
the normalized energy buying cost and loss of energy both
increase. As our proposed solution brings a trade-off between
these two conflicting objectives, i.e., minimization of the
energy buying cost and the loss of energy, it outperforms the
other three approaches.

Fig. 3(d) represents the impact of varying the average num-
ber of users of the consumer BSs on user service disruption.
As MinCost and CONV do not perform the prediction of har-
vested energy and traffic load to determine the energy demand
of consumer BSs for the next time slot, they are performing
worse than MCEL and GPs+MPC+CONV. MinCost and
CONV determine the energy demand of the consumer BSs
based on pre-determined threshold energy levels and this
is not a viable solution. When the user is less, they can
be served mostly by the available energy of the consumer
BSs. That’s why the four approaches are performing near to
each other for fewer users. But with the increasing number
of users, MinCost and CONV perform worse than MCEL
and GPs+MPC+CONV, which exploit the prediction of har-
vested energy and traffic load of the BSs. Here, our proposed
system MCEL outperforms all the other three approaches.

3) IMPACT OF VARYING NUMBER OF SOURCE BSs
In this experiment, we have varied the number of source BSs
keeping the number of consumer BSs at 10.
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Fig. 4(a) represents the impact of a varying number of
source BSs on the normalized energy buying cost of the
consumer BSs. It can be observed from the graphs that, in the
case of MinCost, with the increase in the number of source
BSs, the energy buying cost of the consumer BSs decreases.
That is because, with the increasing number of source BSs,
the different options of selecting a source BS for a consumer
BS increase, andMinCost further tries tominimize the energy
buying cost of the consumer BSs by selecting the source BSs
of the same operators. Therefore, MinCost is performing bet-
ter in this case. On the other hand, with the increasing number
of source BSs, CONV and GPs+MPC+CONV further try to
minimize the loss of energy by selecting the nearby source
BSs. However, usually nearby BSs appear to be of different
operators and for this reason, the energy buying cost of the
consumer BSs increases. As our proposed solution MCEL
minimizes both the energy buying cost and loss of energy by
bringing a trade-off, with the increased number of source BSs,
it selects source BSs in such a way that, both the normalized
cost and loss of energy decrease. Here, MCEL is performing
better than CONV and GPs+MPC+CONV in this case.

Fig. 4(b) represents the impact of varying the number
of source BSs on the normalized loss of energy due to
energy transfer among the BSs. We can observe from the
graph that, with the increased number of source BSs, CONV
and GPs+MPC+CONV further try to minimize the loss of
energy while transferring by choosing nearby BSs. CONV
and GPs+MPC+CONV only focus on the minimization of
loss of energy. Therefore, they are performing better than
MCEL and MinCost in this case. On the other hand, with
the increased number of source BSs, MinCost further tries to
minimize energy buying costs by giving priority to choosing
the source BSs of the same operators. Since BSs of the same
operator are more distant than the BSs of different operators,
the loss of energy due to energy transfer increases. That’s
why MinCost is performing worst in this case. Here, our
proposed solution MCEL is performing much better than
MinCost.

Fig. 4(c) represents the impact of varying the number of
source BSs on the integrated performance in terms of the
normalized energy buying cost and loss of energy due to
energy transfer. It can be observed from the graph that, with
the increasing number of source BSs, the integrated perfor-
mance increases. As our proposed solution tries to bring a
trade-off between minimizing energy buying costs and loss
of energy, it outperforms the other three approaches in this
case.

Fig. 4(d) represents the impact of varying the number of
source BSs on user service disruption. We can observe from
the graph that, with the increase in the number of source
BSs, the user service disruption decreases. Here, MCEL and
GPs+MPC+CONV are performing better than MinCost and
CONV as they consider the prediction of harvested energy
and load of the BSs for calculating the energy demand of the
consumer BSs. Here, our proposed solution MCEL outper-
forms the other three approaches in this case.

VI. CONCLUSION
In summary, in this work, we proposed an optimal energy
cooperation framework for energy sharing among the BSs
in multi-operator cellular networks. We ensured a trade-off
between two conflicting objectives- minimization of the
energy buying cost and loss of energy. The inclusion of
the prediction of future harvested energy and energy con-
sumption profile of the BSs in the framework helped it
to achieve significant performance impact. The simulation
results showed that our proposed systemMCEL achieved sig-
nificant improvement in terms of service disruption reduction
and integrated performance of energy loss reduction and cost
as high as 15% and 20%, respectively. As a future work, the
joint optimization of energy cooperation along with BS state
scheduling in a multi-operator network environment will be
an avenue for achieving better performance in 5G concerning
ever-increasing traffic and data-intensive applications.
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