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ABSTRACT Low-rate Distributed Denial of Service (LDDoS) attacks have been one of the most notorious
network security threats, which use periodic slight multi-variate time series pulse flows to degrade network
quality. Limited by the poor data in a single client, a powerful and satisfactory LDDoS attack detection
model is hard to be trained. Federated Learning (FL) is a promising paradigm offering joint learning
through multiple clients. We propose an asynchronous federated learning arbitration framework based
on bidirectional LSTM (bi-LSTM) and attention mechanism (AsyncFL-bLAM). In the AsyncFL-bLAM,
the leader node election algorithm is proposed for constructing the framework of asynchronous federated
learning. The proposed bLAM model composed of feature extracter and arbitrator takes on the responsibility
of LDDoS detection locally. Furthermore, the novel AsyncFL framework helps to upload and aggregate
the bLAM models’ parameters asynchronously between leader node and client nodes. Experimental results
show that the AsyncFL-bLAM outperforms the state-of-the-art models in accuracy, and reduces the overall
communication rounds.

INDEX TERMS Arbitration mechanism, asynchronous federated learning, deep learning, low-rate
distributed denial-of-service.

I. INTRODUCTION adversarial samples for attacking directly. As we know,

With the increasing number of Internet of Things (IoT)
devices, network attacks are increasing in both intensity and
frequency. Recently, LDDoS attacks are reported as the most
common ones in IoT. According to CNCERT [1], as many as
8,423 hacked IoT botnets, with no less than 100 IoT devices,
were used to orchestrate and launch LDDoS attacks in
2021. Various variants of LDDoS attacks are found recently.
Hivenets [2] could transform a single under-controlled IoT
device into an intelligent robot to make autonomous decisions
with minimal supervision. A multi-targets LDDoS attack
model [3] used the bots’ unused gaps between bursts
to fire another attacks. The novel LSTM-CGAN [4] and
TTS-GAN [5] methods could generate high-quality LDDoS
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LDDoS attacks are a kind of complex large-scale attack
behavior with strong time-domain characteristics in IoT
network. Unlike volumetric traffic or high-rated flooding
attacks, LDDoS attacks show similar patterns in terms of
speed and volume to the traffic produced by legitimate clients.
Therefore, LDDoS attacks are difficult to identify due to
the characteristics of a low average rate. To the best of our
knowledge, Blacknurse [6] is the only big-scale low-rate
attack found in a real network. This is why there is not
enough LDDoS dataset for learning. Another aspect is that
when LDDoS attacks are ongoing, the users and attackers are
impacted and can not send/receive traffic to/from the network
normally. This leads to some packets in the collected datasets
being missed, making the training datasets worse.

In order to obtain a stable model with high performance,
the intuitive idea is to use datasets that are scattered
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in different data centers and integrate them for learning.
However, in reality, data centers regard datasets as important
business secrets and are not allowed to leak them to
others. Fortunately, FL [7], proposed recently, may have the
prospects to solve the problem. FL is a distributed machine
learning process where clients collaboratively train a model
under the orchestration of a central server while keeping
the training data decentralized. After resolving the training
dataset problem, the next step is to fix missed packets in
the training dataset. To solve this issue, we introduce the
bi-LSTM method and attention mechanism. The advantage of
bi-LSTM can refer and fill the right values in the placeholder
of noise since it can learn from the previous values in
the sequence and the upcoming values. And the attention
mechanism can help to focus on the import features. With
them, we can reduce the impact of missed packets and train
for a high-performance AsyncFL-bLAM model.

In summary, we make the following contributions in this
paper:

+ We design an equal time step sliding window method
for data pre-processing with the goal of maximizing data
utilization.

o« We develop a local model based on bi-LSTM and
attention mechanism to eliminate the impact of noise
data and preserve time dependency during LDDoS
attacks detection.

o We propose a leader node election algorithm and design
weights to construct the framework of asynchronous FL,
and leverage the framework for getting the high accuracy
classifier and reducing time complexity with keeping
data decentralized.

The rest of this paper is organized as follows: Section II
discusses related work. Section III presents the framework
of the proposed asynchronous federated learning. And then,
we describe the essential parts of this framework, such as
the equal time step sliding window method, the bi-LSTM
network with attention mechanism, and the detailed method
of asynchronous learning. Next, experiments are carried
out and discussed in terms of the classification accuracy,
precision, recall, and even the time complexity of FL on the
public ISCX dataset for estimating the model in section IV.
Section V concludes the paper.

Il. RELATED WORK

LDDoS attacks have attracted wide attention since they were
proposed as far back as 2003. LDDoS attacks reveal that
TCP’s retransmission timeout mechanism can be exploited
using maliciously chosen low-rate gusty attack flow to make
TCP throughput fall to a very low rate. To develop the LDDoS
attacks defense models and verify the models’ effectiveness,
large-scale datasets with high credibility and high fidelity are
needed. But these kinds of datasets are not enough.

In order to address the issue, researchers attempted to make
full use of existing public datasets through better feature
representations algorithms or machine learning methods.
Diro and Chilamkurti [8] investigated, compared, and tested
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traditional and deep learning approaches in public datasets.
And they concluded that deep learning models were superior
to shallow ones in detection accuracy, false alarm rate, and
scalability. Yue et al. [9] investigated a new identification
approach based on wavelet transform and combined neural
networks to classify normal network traffics from LDDoS
attacks. Liu et al. [3] proposed to do pre-classify by locality-
sensitive features extraction and then made use of Convolu-
tional Neural Networks (CNN) to learn high dimensionality
feature representations in pre-classified smaller buckets.
However, the datasets used in the above literature are not
large enough, which brought the performance bottleneck
of detection models. At the same time, other researchers
tried to generate a private LDDoS dataset for training.
Hong et al. [10] used the NS3 tool to simulate a network
for generating and capturing training datasets. Song and
Wang [11] proposed LDDoS emulation technologies based
on lightweight virtualization, which can construct an LDDoS
emulation scenario with 400 routing nodes in a single physi-
cal server. Charlier et al. [12] presented the novel framework
SynGAN that generated adversarial network attacks using
the Generative Adversarial Networks (GAN) based on real
attack traffic. Liu and Yin [4] proposed an LSTM-CGAN
model towards generating LDDoS adversarial samples. The
model extracted time-domain characteristics of LDDoS by
LSTM and generated mimicking behaviors of attacks by
Condition Generative Adversarial Networks (CGAN) model.
Madane et al. [5] extended CGAN to transformer-based one
for better long LDDoS attack sequences. These methods help
to the fake large-scale training dataset.

However, compared with the ground truth data, the
credibility and fidelity of simulation or GAN fake one needs
to be further tested. Since the ground truth data in a single
cloud datacenter was not enough and fake data was not
qualified, researchers tried to use FL technology to adopt
multiple real-world dataset across different cloud datacenters.
McMahan et al. [13] presented a practical synchronous FL
method to the non-IID data distributions. Rahman et al. [14]
proposed a synchronous FL-based scheme for IoT intrusion
detection. As experimental results and empirical analysis
explored, The scheme maintained data privacy availably with
higher accuracy. Wang et al. [15] proposed an intrusion
detection method based on FL and CNN to solve the
problem of training a depth model with high accuracy under
the limited label data generated by a single mechanism.
Li et al. [16] proposed a novel federated deep learning
scheme to detect cyber threats by making use of CNN and
gated recurrent units (GRU). Extensive experiments on a
real dataset demonstrate the scheme’s high effectiveness in
detecting various types of cyber threats. But the accuracies of
local CNN models used in above FL methods are still below
expectation, and the synchronous FL methods themselves
are time consumption. Therefore, on the one hand, with the
emergence of the LSTM networks, researchers saw their
abilities in recognizing long-time dependent LDDoS attack
sequences. Sun et al. [17] proposed a hybrid CNN and GRU
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FIGURE 1. AsyncFL-bLAM: the asynchronous federated learning framework.

model to extract deeper spatial and temporal features of
LDDoS attacks. Mohammad et al. [18] proposed a novel
autoencoder-based anomaly detection system to leverage
time-based features (TAE) over multiple time windows for
efficiently detecting anomalous DDoS. Zhou et al. [19]
proposed a variational LSTM (VLSTM) learning model
for intelligent anomaly detection based on reconstructed
feature representation. An encoder-decoder neural network
associated with a variational reparameterization scheme was
designed to learn the low-dimensional feature representation
from high-dimensional raw data. Experiments using a public
dataset demonstrated that the proposed VLSTM model could
efficiently cope with high dimensional issues, significantly
improve the accuracy, and reduce the false rate. Further-
more, researchers began to apply LSTM into FL methods.
Zhao et al. [20] proposed an effective intelligent intrusion
detection method based on federated learning aided long
short-term memory framework (FL-LSTM), which can solve
the problem of a powerful deep learning model training
and intrusion risks at the central server and violate user
privacy. On the other hand, the asynchronous FL methods are
investigated. Lu et al. [21] performed a rating algorithm to
incent powerful nodes asynchronously.

In this literature, we propose an asynchronous FL
arbitration framework with local bi-LSTM network and
attention mechanism, which can use the advantages of both
LSTM-based models and FL frameworks to improve the
performance of LDDoS detections and address LDDoS
threats.

Ill. THE ASYNCHRONOUS FEDERATED LEARNING
FRAMEWORK BASED ON BIDIRECTIONAL LSTM
NETWORK AND ATTENTION MECHANISM

This section introduces the bi-LSTM and attention-
based asynchronous federated learning (AsyncFL-bLAM)
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framework that we proposed for LDDoS attacks detection.
Figure 1 illustrates the framework of the AsyncFL-bLAM,
which is mainly divided into three parts. The first part is the
data pre-processing by the proposed equal time step sliding
window method. The proposed method helps to perform
traffic analysis and feature extraction on the original dataset.
After that, only the feature subset related to the LDDoS
attacks is selected for training. The second part is the local
arbitration model. An LDDoS defense model is built and
trained locally. In it, the bi-LSTM network is used to learn
the time sequenced features, and attention mechanism is used
to judge which ones are available for detection. The last
third part is the asynchronous global aggregation through the
federated learning framework. It includes the leader node
election algorithm and asynchronous method with weight
correction.

A. PRE-PROCESSING: THE EQUAL TIME STEP SLIDING
WINDOW METHOD FOR LDDoS FEATURES
TRANSFORMATION

In the data pre-processing stage, the main work is to generate
a bidirectional stream related parameter dataset, which is used
as the input of the LDDoS detection model. Since the number
of input neurons of bi-LSTM is fixed, the input feature-length
must also be fixed. Therefore, we propose an equal time step
sliding window method, as shown in Figure 2. By this, we can
not only get the fixed-length chronological order samples, but
also enlarge the training dataset.

Firstly, we analyze and extract the features. As known, the
wave-shapes of LDDoS flooding attack traffic are rectangle,
and they have observable burst features. That is, the normal
network traffic is stable, while LDDoS network traffic is
gusty. Hence, we can sample the network stream at 1-min
intervals and define IP packet statistical features of network
flow as IP; = > Pa;, where P is the number of packets.

VOLUME 11, 2023
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FIGURE 2. The equal time step sliding window method.

TABLE 1. The LDDOS time domain features based on network flow.

Num | Features | Descriptions

1 1P; The domain value of the IP package of flow at 1-min
intervals based on a threshold.

2 FD The domain value of Flow Duration based on a
threshold.

3 LFP The domain value of Length of First Package based
on a threshold.

In the definition of /P, when multiple IP attack sources send
useless packets to a destination IP address, the number of
IP address packets increases in At time. When an IP attack
source sends useless packets to multiple destination ports of a
target host in Az time, the number of different destination port
numbers also increases abnormally. Including /P, some extra
connection features and flow similarity features are extracted
in Table 1. FD is used to indicate the communication time,
which becomes one of the most common parameters for
LDDoS botnet detection. LFP is the indicator of low-level
protocol, which is an important parameter to different botnets.

After the above modeling, the flow data is sorted in a
sequential time serial. Every time step is related to the front
and back ones. That is, the LDDoS training dataset is a
time-related information set, which can be represented by a
matrix comprised of LDDoS training data in the same time
step. The shape and content of representing the matrix of
single-stream looks like (1), where IP;, FD, LFP are various
dimensions, and 7 represents the time step of the stream. The ¢
may be different in different streams. If taking all the streams
into account, the shape of the matrix will be m * n, where m
represents the total number of packets in all streams, n means
the dimension.

1Py FDy LFPg
IPgy FD;, LFP M
IP; FD, LFP,

Next, a sliding window with the same step size 7T is used
to segment LDDoS time series blocks on the stream. If the
number of messages in the flow is less than step 7', it is filled
with zero. This can facilitate bidirectional LSTM learning and
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has no impact on the final model. Since these padding data,
same as the real noise data, can be treated as noise data to
handle later. Till now, all the feature sequences are reshaped
into the tensor of Zzzl ki * n x T, where m and k; is shown
in (2).

n
m = Zl,’
i=1

L—T+1 [>T

ki =
J 1 lj<T

@)

After the above conversions, the label in the original stream
can be added to the corresponding feature block to form
several smaller matrixes for training. From Figure 2, we can
see that package-based features are converted to time series-
based features. Under these operations, the model can not
only learn the characteristics of the current package but also
the characteristics of the previous (7-1) and subsequent (7'-1)
packets of the current package.

B. LOCAL ARBITRATION MODEL: THE LDDoS ATTACK
DETECTION MODEL BASED ON BI-LSTM NETWORK AND
ATTENTION MECHANISM

In reality, the collected LDDoS attack traffic is composed of
a sequence of attack packets, but there are missing packets
in this sequence. These missed packets are hurt to the final
predicting result. As shown in Figure 3, the bidirectional
LSTM network of the proposed bLAM model can refer and
fill the right values in the placeholder of missed packets since
it can learn from not only the previous values in the sequence
but also the upcoming values. The attention mechanism
in the bLAM model can improve the role of key features
in the final decision-making through the redistribution of
parameter weight. Thus, the hybrid of bi-LSTM network
and attention mechanism can learn the time-domain features
of forwarding and backward packets and bring the double
improvement of precision and recall. In the data plane of
Figure 3, the segmented LDDoS data is fed into bidirectional
LSTM network, which is used to learn the valid information
from noise data in their forward and backward hidden states.
Sequentially, an attention mechanism as is used to merge
important features together and choose the critical features
by redistributing the weights. At last, two fully connected
layers are used for classification. Some key technologies are
used in the proposed model to avoid the over-fitting problem,
such as the dropout layer with the dropout rate of 0.3 and the
L2-normalization loss function. The detailed layers informa-
tion, output shape, and parameter number of each layer are
listed in Table 2. There are 111,873 parameters totally in the
proposed model. Notes: the layers in attention mechanism
and dropout, whose parameter number is 0, are hidden in the
table.

1) THE BIDIRECTIONAL LSTM NETWORK
As Figure 4 shown, the bidirectional LSTM network in the
proposed bLAM has two LSTM stacked on top of each other.
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FIGURE 3. The layer-wise structure of proposed bLAM model.

TABLE 2. The layers of proposed bLAM model.

Output Shape | Param Number
(None, 25, 128) | 46,080
(None, 25, 128) | 16,384

Layer (type)
bidirectional (Bi-LSTM)
attention_score_vec (Dense)

attention_vector (Dense) (None, 128) 32,768
dense (Dense) (None, 128) 16,512
dense_1 (Dense) (None, 1) 129

Each of the LSTM layers consists of 128 neurons. One of
them is used to learn from the forward direction, while the
other is learning from the inverse direction. The outputs of
the two layers are integrated into the subsequent layer so that
each neuron in the subsequent layer can get the complete
sequence context information. Equation (3) explains the
operations performed in bidirectional LSTM cells, where x;
is the input at timestamp 7. w’s are the weights of gates of
LSTM cells. h; and /} are the forward and backward output,
respectively. The output gate og; keeps the information about
the bidirectional steps. Based on this, bidirectional LSTM
network solves the problem of vector gradient disappearing in
the time domain during the LDDoS learning process, realizes
the preservation of a large range of temporal information,
and improves the ability to extract association features of
long-time-interval context messages in the case of packet
loss.

hy = tanh(wix; + wohy_1)
h
08¢

tanh(w3x; + wsh,_,)
tanh(wah; + wsh;) 3)

After the generated vector of chosen features is fed to
the bidirectional LSTM network, an L2 regularizer and an
activation tfanh (tanh(.) is a hyperbolic tangent function)
are adopted to finish normalize to help reduce over-fitting.
When running the network, the vector with a size of
T % o is combined by the next layer, where o is the
number of the hidden neurons of each bidirectional LSTM
cells. In our experiment, after feature extraction of the
bidirectional LSTM layer, the feature dimension is expanded
to 128. However, the contributions of these 128 features
to the detection results are not equal. Therefore, this paper
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FIGURE 4. The basic structure of three-stage bi-LSTM networks.

introduces an attention mechanism and a fully connected
layer as lower and upper arbitrations.

2) THE ATTENTION MECHANISM

An attention function can be described as mapping a query
and a set of key-value pairs to an output. Thus, we use
it to redistributed the weights of features for filtering the
important features to classify. As Figure 5 shown, the
attention mechanism in the bLAM model is used to extract
single feature attention and feature relation attention so as
to select the features that have a significant influence on the
results. Firstly, attention mechanism calculates a score of a
group of score_vec by dot-product function for each feature.
And then, all the scores are running by softmax function for
scaled scores, and stored into weights. Next, these weights
are aligned and summed up for context_vector as (4). pu;
means the representation information of hidden layer, wg is
the similarity of feature vectors. «; is the normalized weight.
Here, the reason why the dot-product attention is chosen
instead of additive attention is that the former has advantages
in computing and saving memory.

e = tanh(wghy + bg)
o = _ep(piid) @)
> exp(upha)

3) THE OTHER LAYERS OF bLAM MODEL
After the above transformation, there are two fully connected
layers in the end of bLAM model (as seen in Figure 3). They
are playing different roles. One fully connected layer is as
upper arbitration to reduce the dimension of the features,
while the other one is as classifier to judge whether the traffic
is an LDDoS attack or not and produce the classification
outcome. Thus, sigmoid and softmax activations are used for
different purposes.

To avoid the over-fitting problem, a dropout layer with
a 0.3 dropout rate is followed by the bidirectional LSTM
network, which permits the hidden layer to drop out certain
neurons during training phase randomly. During model
compiling, the binary cross-entropy loss function is used to
calculate the loss in the training dataset and validation dataset.
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And Adam optimizer is used to adjust weights and biases
through backpropagation.

C. AsyncFL: THE NOVEL ASYNCHRONOUS FEDERATED
LEARNING FRAMEWORK

As known, federated learning can protect data privacy. But
the traditional federated learning frameworks are easily
impacted by abnormal parameters or gradients during global
aggregation. A stable model cannot be trained availably
sometimes, once the abnormal parameters or gradients are too
many. The proposed AsyncFL framework reduces the impact
of abnormal parameters on the overall parameter aggregation
and improves the robustness of the algorithm. It has two main
improvements compared with traditional ones. The one is the
leader node election algorithm. Through this algorithm, the
best node is chosen for global aggregation. The other one is
the asynchronous FL method with weight correction. It helps
to finish asynchronous global aggregation.

1) THE LEADER NODE ELECTION ALGORITHM

Federated learning happens among multiple cloud computing
data centers, which belong to different autonomous organi-
zations. Each data center has a different dataset size. As a
result, it is difficult to forcibly specify a data center as the
leader node for parameter summarization. Therefore, it is
necessary to select an appropriate data center as the leader
node through negotiation among these participants. In this
paper, the proposed election conditions are that the node that
has a large IP address and more latest training data will be the
leader node.

To do this, the ballot with the content of (IP, datasize,
newdatasize) needs to be passed during the election phase.
The datasize means the count of training data in the local
current data center. The newdatasize means the count of up-
to-date training data according to the preset time threshold.
When the election begins, each node first calculates its own
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newdatasize and votes for itself. Next, it broadcasts the
ballot to other nodes. When other nodes receive the ballot,
they record the carried datasize for that node immediately.
It begins to calculate and compare the ratio by (5). If the ratio
exceeds or equals the preset threshold, it will insist on electing
itself; otherwise, it will record and elect the opposite node
in the next round. If it does not exceed the preset threshold,
the IP address is compared, and the one with a larger IP
address is selected. In this way, after several rounds of the
election, the node that finally obtains more than half of the
ballots is elected as the leader node. Pseudocode is shown in
Algorithm 1.
NewDataSize,

ratio = (100% — - —) ()
NewDataSize; + NewDataSize,

Algorithm 1 The Leader Node Election Algorithm

Input: (IP, DataSize, NewDataSize)
Output: The elected leader node

Global Parameters: gRatioThresh

The process of receiving ballot:
1: Calculate the new data ratio by (5);
2: if ratio > gRatioThresh then
3:  Cache the ticket (IP, DataSize, NewDataSize);
4: else {IP < incoming IP}
5:  Cache the ticket (IP, DataSize, NewDataSize);
6: end if
7: Count the number of tickets selected;
8: if a number of tickets selected > 50% then
9 Mark as master node;

10: end if

The process of sending ballot:

1: if not exist cached tickets then

2 vote self by (IP, DataSize, NewDataSize);
3: else

4 send the cached tickets;

5: end if

At the same time as completing the leader node election,
the leader node also knows the dataset size D of all
participating nodes by summarizing the datasize field in the
ballot. If the data size of the leader node is big enough, it can
segment its own dataset into the training and testing part.
In this way, the leader node can not only act as the computing
node to participate in the overall training but also complete
the parameter update, which speeds up the generation of the
detection model.

2) THE ASYNCHRONOUS METHOD WITH WEIGHT
CORRECTION

During federated learning, the accuracy of uploading parame-
ters and learning progress of different nodes are not the same,
which is caused by the different number of training samples
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and the basic computing power of each node. Thus, using
the traditional synchronous methods to update the global
parameters equally in the leader node is not reasonable.
The asynchronous parameters obtained in the leader node
should be modified according to the detection effect, which
can solve the imbalance problem of parameters updating in
asynchronous federated learning.

Considering that the number of samples of each node
has been clearly known during the process of leader node
election, the sample weight is introduced. In detail, the
sample weight y! is the ratio of the number of samples owned
by the submitted parameter node to the total number of node
samples. The sample weight solves the problem of sample
imbalance in asynchronous training. The calculation formula
is shown in (6). Among them, D; is the sample number of the
i'h node.

D "
vi="7.D=2.Di (6)
i=1

During electing, partial test dataset is also reserved in
the leader node; thus, the normalized test weights are
introduced. That is, when the leader node receives the updated
parameters, these parameters are loaded into the local model
of the leader node, and the detection accuracy is calculated
in the reserved test set as the test weights. The test weights
reflect the contribution of nodes to the whole model and also
solve the problem of inconsistent learning progress caused
by asynchronous training. After this, the test weights of
different nodes are processed by softmax, and the exponential
normalized test weights yti are obtained.

Based on the sample weight and normalized test weights,
the model parameters 6’ are modified. The calculation
formula is shown in (7).

(vs +v)
5 (N

During the process of asynchronous learning, the global
parameters are optimized according to the FedAvg algo-
rithm [13], [22] after the parameters are modified by weights.
After optimization, the leader node sends the updated
parameters to all other nodes for the next iteration. After
applying the asynchronous update algorithm based on weight
correction, the sample imbalance problem and the training
iteration speed problem are resolved so that the obtained
model also has certain robustness.

0 =0 %

IV. EXPERIMENT EVALUATION

A. LDDoS DATASET INTRODUCTION AND REVISE

The ISCX-2016-SlowDos [23] and the Friday dataset of
the 1st week of 1999 DARPA [24] are chosen as attack
and normal traffic. The ISCX-2016-SlowDos is captured in
a testbed environment with a victim web server running
Apache Linux v.2.2.22, PHPS, and Drupal v.7 as a content
management system. DARPA samples were provided by the
Air Force Research Laboratory for the real-time evaluation
of network security. Considering that we only need to detect
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FIGURE 6. The time delta of sequenced packages of LDDoS attack flows.

low-volume DDoS attacks, we remove the high-volume ones
and intermix the left ones with DARPA samples.

In order to verify that whether the proposed model is
available in a smaller dataset with noise data, we take 80,000
samples (40,000 is for LDDoS data, while 40,000 is for
normal traffic. This partition can avoid the problem of data
imbalance). In addition, 10% values in both training and
testing are changed to random ones, which is simulating
the noise data. And then, we check the time deltas of the
LDDoS (slow-header, slow-body, hulk, and rudy) flows and
normal traffics. As indicated in Figure 6, different variants of
LDDoS attacks have different attack time deltas and packet
numbers. For all, the time deltas of LDDoS attacks are
greater than 30 seconds, and the packet number is bigger than
10. Figure 7 shows the normal traffics. Their access times
are less than 20 seconds, and the packet number is smaller
than 5. Furthermore, we make a comparison of the mean
value between the original dataset and the revised dataset.
We take the average package size as an example to draw their
boxplot, as indicated in Figure 8. The minimum, maximum,
and Q2 are changed, but they can still be used to classify
attacks.

In order to verify the proposed federated learning method,
we set up three data centers; the data volume of the three data
centers is 30,000, 50,000, and 70,000, respectively. The data
centers compete for the leader node. According to the leader
node election algorithm, the third data center is selected as
the leader node, and its dataset will be divided into 40,000
training data and 30,000 testing data.

B. EXPERIMENT ENVIRONMENT SETUP

The experiment was conducted on a laptop with Intel(R) Core
(TM) i5-7200U CPU. GPU is not used here. The library
Keras with TensorFlow as the backend was imported into the
proposed model implementation.
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FIGURE 8. The boxplots of average package size of original and revised
dataset.

C. ABLATION EXPERIMENT AND HYPER-PARAMETERS
TUNING

1) EQUAL TIME STEP SLIDING WINDOW SIZE TUNING
Different sizes of sliding windows represent information of
different time spans. But as the size of the sliding window
increases, the data correlation becomes weaker. Therefore,
the size of the sliding window needs to be set with an upper
threshold. Once the upper threshold is exceeded, it will lead
to a decrease in accuracy and an increase in loss. In order
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FIGURE 9. The accuracy comparison of bLAM model in different window
size.

to obtain the optimized value of the sliding window size,
we compared the detection accuracy and loss under the size
range of [1, 5, 15, 25, 35] in the experiment.

Figure 9 and Figure 10 show the detection accuracy
and cross-entropy loss under different sliding window sizes,
respectively. When the sliding window size is set to 1,
the training data does not contain time domain-related
information, and the model also degenerates into a BP-like
network. It is difficult for such a model to learn the difference
of strong correlation in the time domain between LDDoS
attack flows and normal traffics. As a result, when the sliding
window size is 1, the accuracy of the model is very low,
maintained at about 53% (the blue line in Figure 9), but the
cross-entropy loss of the model is as high as 0.7 (the blue line
in Figure 10). As the size of the sliding window increases,
the accuracy first increases rapidly and then slows down.
When the sliding window size is 25, the maximum accuracy
and minimum loss are reached. However, when the sliding
window size further increased, the accuracy decreases and
the cross-entropy loss continues to increases. Analysis shows
that the large sliding window introduces useless long-term
dependencies into the model, resulting in the above scenarios.
Thus, this paper uses the sliding window with a value of 25 as
the tuning size.

2) BI-LSTM AND ATTENTION ABLATION EXPERIMENT AND
HYPER-PARAMETERS TUNING

The validation of the bidirectional LSTM networks and
attention mechanism was tested and compared through
ablation experiment of bLAM model. In Figure 11 and
Figure 12, we compare the accuracy and loss among
LSTM, bi-LSTM, bi-LSTM with dropout, and bi-LSTM with
attention (proposed bLAM model). The training is carried
out in 40 epochs. Obviously, the proposed bLAM model has
the best performance, with an accuracy up to 98.00%, and
cross-entropy loss is less than 0.1. The epoch 40 with the
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FIGURE 11. The accuracy comparison of ablation experiment in validation
set.

best performance is chosen to validate in the test dataset.
Figure 13 presents the results in the test dataset. The proposed
method still has the best performance while considering both
accuracy and loss. Its accuracy is 98.20%, which is a little
higher than other RNN methods, and its loss is also better
than others. Thus, bi-LSTM, Dropout method, and Attention
mechanism are available and added to our proposed bLAM
local model.

After the model is obtained, the hyper-parameters are
well-tuned through testing the output of different values.
A greedy-wise tuning method named grid search is used to
achieve as close to the optimal performance as possible. The
different dropout values and the number of neuron units are
testing in the provided dataset. As shown in Figure 14, when
the dropout rate is 0.3, both the loss and accuracy have the
best performance. Thus, we use 0.3 as the dropout rate in the
proposed model.

After applying the selected dropout rate, a different number
of neuron units in the bidirectional LSTM layer is tested by
grid search. As shown in Figure 15, the best number is 128.
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It can learn the representation features and get an accuracy
of 98.87%.
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TABLE 3. The table of hyper-parameters.

Hyper-parameters Values

Dropout rate 0.3

Neuron Units of bidirectional LSTM 128

Dominant Layers Bidirectional LSTM,
Attention, Dropout

7500
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LDDoS

- 4500

True Label

- 3000

Normal

- 1500

LDDoS Normal
Predicted Label

FIGURE 16. The heatmap of classification of bLAM model.

Learning rate is not necessary since Adam is used during
model compiling. The optimizer Adam will help to the best
learning rate automatically.

Thus, when the above exploration is done, the hyper-
parameters are gotten. Table 3 lists the value of the tuned
hyper-parameters.

D. EXPERIMENTAL RESULTS

1) EXPERIMENTAL RESULTS OF bLAM MODEL

Figure 16 shows the confusion matrix of the revised
ISCX-2016-SlowDos dataset. We can see that the prediction
accuracy is 98.80%, the precision is 99.34%, and the recall is
98.25%, which indicated that the proposed model has good
performance for classifying the network LDDoS attacks.
In addition, we also compare shallow classifiers and other
classics CNN/RNN models.
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In Figure 17, for the purpose of comparing with shallow
machine learning classification, this paper sets the sliding
window size to 1. Since the shallow classifier does not have
the ability to analyze time steps. The experimental result
shows that Random Forest [25], SVM [26] and KNN [27]
indexes are significantly lower than the proposed classifier.
This verifies a huge gap between the shallow classifiers and
the proposed one in the aspect of historical feature extraction.

As shown in Figure 18, all RNN models, including
TAE [18], VLSTM [19], and FL-LSTM [20], have high
precision and recall rate, indicating that the RNN model can
learn the representation of time sequence-related features
and shows that the time sequence-related features of LDDoS
are the main influencing factors. Compared with the LSTM-
like models, the indexes of the CNN-LSTM model [28] are
slightly lower. The reason is that the dataset does not contain
spatial information, making the CNN layer unable to play
its advantages in spatial feature extraction. Based on same
idea, the hybrid CNN+GRU model (HY-CNN+GRU) [29]
also used CNN and GRU, but it tried to optimize the
hyper-parameters of model by improved sailfish algorithm.
From the results, the performance was not as expected. The
FSL-SCNN model [30] has an improvement compared with
CNN methods. This is because siamese encoding network
helps to measure distances of input samples based on their
feature representations, and alleviate the loss of key features.
The proposed bLAM model has better performance than
other models. This is because the proposed method further
enhances the bidirectional LSTM-based model through
an attention mechanism. It improves the importance of
critical features in the final decision-making by redistributing
weights, which brings about double improvement of preci-
sion and recall rate.

2) EXPERIMENTAL RESULTS OF AsyncFL FRAMEWORK

In order to verify the effectiveness of the proposed asyn-
chronous federated learning framework, the accuracies and
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FIGURE 19. The accuracy comparison of AsyncFL and local learning
(5% dataset).

cross-entropy losses of each node in different epochs under
5% dataset and fully dataset are compared.

In the case of the 5% dataset, the data used for training in
the three cloud centers is 1,500, 2,500, and 3,500 (of which
2000 are used for local learning and 1500 for federal learning
testing), respectively. The experimental results are shown
in Figure 19 and Figure 20. Figure 19 shows the accuracy
of different epochs of the bLAM model in local learning
and federated learning. Even if the accuracies of the local
nodes are not high, the global accuracy is greatly improved
after applying the proposed federated learning framework.
Figure 20 shows their cross-entropy loss. It can be seen
that the losses of local nodes tend to grow up with epochs
increasing. The reason is that the size of training data of
each node is small and over-fitting occurs. On the contrary,
the cross-entropy loss of the proposed AsyncFL framework
is smooth, indicating that the AsyncFL framework avoids
over-fitting through weight correction.

In the case of the full dataset, the data used for training
in the three cloud centers are 30,000, 50,000, and 70,000,
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FIGURE 21. The accuracy comparison of AsyncFL and local learning (full
dataset).

respectively (40,000 for local learning and 30,000 for federal
learning testing). The experimental results are shown in
Figure 21 and Figure 22. Figure 21 shows the accuracy
of different epochs of local learning and federated learning
under a large amount of data. Similarly, the accuracies of
local nodes are not high, and the accuracy is greatly improved
by the proposed AsyncFL framework. Figure 22 shows
their cross-entropy loss. Compared with local learning, the
cross-entropy loss of the bLAM model is smoother and lower.
It verifies that the AsyncFL framework improves the weight
of effective parameters and makes the classification more
accurate.

To verify that the AsyncFL framework is better than
other federated learning frameworks, we compared it with
synchronous (DeepFed) [16] and classics asynchronous
(PAFL) [21] frameworks. As mentioned above, FedAvg is
adopted to do parameters aggregating. We add random delay
in asynchronous updating cluster frameworks when local
models’ weights are uploading. This makes the experimental
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results more clearly. As shown in Figure 23, the bLAM
model’s accuracy under the AsyncFL framework is better
than ones under other frameworks in the same epoch, and
bLAM model’s accuracy grows smoother. The weighted
correction method acts as a regularization part, which helps
prevent the over-fitting of learning. Thus, these abnormal
parameters have little influence during the global parameters
aggregating. This also shows that the training model under
AsyncFL framework has high robustness. At the beginning
of the curve under AsyncFL framework, there is a significant
oscillation. The reason is that the initial parameters of a data
center arrive late but are unconditionally aggregated into the
global parameters, which brings the robustness problem of
the framework. Per the final accuracy, the bLAM model under
AsyncFL framework has the highest accuracy of 98.68%,
which is better than synchronous DeepFed update (98.6%)
and asynchronous PAFL update (98.6%). The reason is
related to the accuracy of the bi-LSTM networks in bLAM
model. The optimal accuracy of the bi-LSTM networks on a
single small dataset can reach 98.5%.
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V. CONCLUSION

In this paper, we have addressed the problems of LDDoS
attack detection over multiple cloud datacenters using
AsyncFL-bLAM framework. The proposed framework is
partitioned into three stages: pre-processing, local training
based on bLAM model and global aggregation based on
AsyncFL framework. In the pre-processing stage, we propose
an equal time step sliding window method feature splitting
in order to get a good feature engineering. In the local
training stage, the bLAM models are trained in each local
datacenter. After models are trained, the models’ parameters
are asynchronously uploaded to the central participant for
the joint training. Experiments demonstrate that our proposed
bLAM model has good effectiveness in both detection
accuracy and time consumption for IoT network-based
attacks. The comparison among different classifiers/models
demonstrated that the proposed bLAM model has a higher
accuracy. And federated learning experiments show that the
models under the proposed AsyncFL framework can get
higher accuracy with the least epochs.

Nevertheless, the LDDoS attacks are composed of multi-
variate flows. Thus, they can be handled by a multi-head
arbitration. In the near future, we will design a novel multi-
head bi-LSTM arbitration model to down the detection time.
With the application of edge computation, some LDDoS
attack datasets are in the edge nodes. We will also further
expand the AsyncFL model for involving edge nodes.
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